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Abstract

We proposeanew classificatiorfor multi-agentiearningalgorithms with
eachleagueof playerscharacterizethy boththeir possiblestratgyiesand
possiblebeliefs. Usingthis classificationyve review the optimality of ex-
isting algorithms,including the caseof interleagueplay. We proposean
incrementalmprovemento theexistingalgorithmsthatseemdo achieve
averagepayofsthatareatleastthe Nashequilibriumpayofsin thelong-
run againstfair opponents.

1 Intr oduction

Thetopic of learningin multi-agenternvironmentshasrecevedincreasingattentionoverthe
pastsereralyears.Gametheoristshave begunto examinelearningmodelsin their studyof

repeatedjamesandreinforcementearningresearcherbave begunto extendtheir single-
agentlearningmodelsto the multiple-agentase As traditionalmodelsandmethodsrom

thesetwo fieldsareadaptedo tacklethe problemof multi-agentiearning,the centralissue
of optimality is worth revisiting. Whatdo we expecta successfulearnerto do?

Matrix gamesand Nashequilibrium. Fromthe gametheoryperspecitie, the repeated
gameis a generalizatiorof the traditional one-shotgame,or matrix game The gameis

definedas a reward matrix R; for eachplayer R; : Ay x Ay — R, where A, is the

setof actionsavailableto playeri. Purelycompetitve gamesare calledzelo-sumgames
and mustsatisfy R; = —R,. Eachplayersimultaneouslychoosego play a particular
actiona; € A;, oramixedpolicy u; = PD(A;), which is a probability distribution over

the possibleactions,andrecevesreward basedon the joint actiontaken. Somecommon
examplesof single-shomatrixgamesareshavn in Figurel. Thetraditionalassumptions

thateachplayerhasno prior knowledgeaboutthe otherplayer As is standardn thegame
theory literature, it is thus reasonabldo assumethat the opponentis fully rationaland
choosesctionsthatarein its bestinterest.In return,we mustplay a bestresponsedo the

opponent choiceof action. A bestresponsdunctionfor playeri, BR;(n—;), is defined
to bethe setof all optimalpoliciesfor playeri, giventhatthe otherplayersareplayingthe

jointpolicy pu—;: BRi(p—i) = {p; € MilRi(p;, pp—i) > Ripi, p—i)Vpui € M},

If all playersare playing bestresponseto the otherplayers’stratgies, u; € BR;(1i—;),
thenthe gameis in Nashequilibrium Onceall playersareplaying by a Nashequilibrium,
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Figurel: Somecommonexamplesof single-shotmatrix games.

no singleplayerhasanincentive to unilaterally deviate from his equilibriumpolicy. Any
gamecanbe solvedfor its Nashequilibriausingquadratigprogramminganda playercan
choosean optimal stratgy in this fashion,given prior knowledgeof the gamestructure.
The only problemariseswhenthereare multiple Nashequilibria. If the playersdo not
manageo coordinateon oneequilibriumjoint policy, thenthey may all endup worseoff.
The Hawk-Dove gameshown in Figure1(c) is a goodexampleof this problem. Thetwo
Nashequilibriaoccurat (1,2)and(2,1), but if the playersdo not coordinatethey mayend
up playingajoint action(1,1) andreceve O reward.

Stochasticgamesand reinforcementlearning. Despitetheseproblemsthereis general
agreementhatNashequilibriumis anappropriatesolutionconcepfor one-shogamesin
contrast for repeatedjamestherearea rangeof differentperspecties. Repeatedyjames
generalizeone-shogameshy assuminghatthe playersrepeathe matrix gameover mary
time periods.Researchers reinforcementearningview repeatedjamesasaspecialcase
of stochasticor Markov, games. Researcherin gametheory on the otherhand, view
repeatedgamesas an extensionof their theory of one-shotmatrix games. The resulting
framawvorksaresimilar, but with a key differencein theirtreatmenif gamehistory. Rein-
forcementiearningresearcherfocustheir attentionon choosinga singlestationaryy that
will maximizethelearners expectedrewardsin all futuretime periodsgiventhatwe arein

timet, max, F, {Zf:t ﬂ/T—tRT(M)} , whereT maybefinite or infinite, andy = PD(A).
In theinfinite time-horizoncasewe oftenincludethediscountfactor0 < ~ < 1.

Littman[1] analyzeghisframawork for zero-sungamesproving corvergenceo the Nash
equilibriumfor his minimax-Qalgorithmplayingagainstanotheminimax-Qagent.Claus
andBoutilier [2] examinecooperatie gameswhere R, = Ry, andHu andWellman[3]
focus on general-sungames. Thesealgorithmssharethe commongoal of finding and
playing a Nashequilibrium. Littman [4] andHall and Greenvald [5] further extendthis
approachto considervariantsof Nashequilibrium for which cornvergencecanbe guaran-
teed.Bowling andVeloso[6] andNagayukietal. [7] proposeo relaxthe mutualoptimality
requiremenbf Nashequilibriaby consideringational agentswhich alwayslearnto play
a stationarybest-responst their opponents stratgy, evenif the opponenis not playing
an equilibrium strateyy. The motivationis thatit allows our agentsto actrationally even
if the opponentis not acting rationally becausef physicalor computationalimitations.
Fictitiousplay [8] is a similar algorithmfrom gametheory

Gametheoretic perspectie of repeatedgames. As alludedto in the previoussection,
gametheoristsoften take a more generalview of optimality in repeatedyames.The key
differenceis the treatmentof the history of actionstakenin the game. Recallthatin the
stochastigamemodel,we took y; = PD(A;). Herewe redefineu; : H — PD(A;),
whereH = J, H" and H' is the setof all possiblehistoriesof lengtht. Historiesare



Table1: Summaryof multi-agentiearningalgorithmsunderour new classification.

| [ Bo [ By | B [ B |
Ho minimax-Q, Bully
Nash-Q
H, Godfather
Hoo || @-learning (Qo), | Q1 PHC- multiplicative-
(WoLF-)PHC, Exploiter weight*
fictitious play

* assumegpublic knowledgeof the opponents policy ateachperiod

obsenationsof joint actions,h! = (a;,a_;,ht~1). Playeri's strat@y at time ¢ is then
expresseds; (ht~1). In essencewe areendaving our agentwith memory Moreover,

the agentoughtto be ableto form beliefsaboutthe opponents stratayy, andthesebeliefs
oughtto corverge to the opponents actual stratgy given suficient learningtime. Let

Bi + H — PD(A_;) beplayeri's belief aboutthe opponents strateyy. Thena learning
pathis definedto be a sequenc®f histories beliefs,andpersonaktrategjies. Now we can
definethe Nashequilibrium of a repeatedyamein termsof our personaktrateyy andour

beliefs aboutthe opponent. If our predictionaboutour opponents stratey is accurate,
thenwe can choosean appropriatebest-responsstrateyy, and this will guaranteeNash
equilibrium.

Proposition 1.1. A learningpath {(h?, p; (ht=1), 3;(h*71))|t = 1,2,...} corvergesto a
Nashequilibriumiff the following two conditionshold: (1) Optimization: V¢, ju;(h!=1) €

BR;(B:(h*™1)), and(2) Prediction:lim; ., |3;(ht™1) — pu_; (Rt 1) = 0.

However, Nachbarand Zame[9] shows thatthis requiremenbf simultaneougprediction
and optimizationis impossibleto achieve, given certainassumptionsboutour possible
stratgiesandpossiblebeliefs. We cannever designanagentthatwill learnto bothpredict
theopponentsfuturestratgy andoptimizeoverthosebeliefsatthesameime. Despitethis

fact,if we assumesomeextra knowledgeaboutthe opponentwe candesignanalgorithm
that approximateshe best-responsstationarypolicy over time againstany opponent.in

the gametheoryliterature,this conceptis often called universal consistency Fudenlrg

and Levine [8] and Freundand Schapire[10] independentlyshav that a multiplicative-
weightalgorithmexhibitsuniversalconsisteng from thegametheoryandmachindearning
perspecttes. This give usa strongresult,but requireshe strongassumptiorthatwe know

theopponents policy at eachtime period. Thisis typically notthe case.

2 A new classificationand a new algorithm

We proposea generalclassificationthat categorizesalgorithmsby the cross-producof
their possiblestratggiesandtheir possiblebeliefsaboutthe opponents strateyy, H x B. An
agentspossiblestratgiescanbeclassifiecdbasedipontheamountof historyit hasin mem-
ory, from H, to H~. Givenmorememory theagentcanformulatemorecomplex policies,
sincepoliciesare mapsfrom historiesto actiondistributions. H, agentsare memoryless
andcanonly play stationarypolicies. Agentsthatcanrecallthe actionsfrom the previous
time periodareclassifiedasH; and canexecutereactize policies. At the otherextreme,
H agentshave unboundednemoryandcanformulateever more comple stratgjiesas
the gameis playedovertime. An agents belief classificatiormirrorsthe strateyy classifi-
cationin the obviousway. Agentsthatbelieve their opponenis memorylessareclassified
as B, players,B; playersbelieve thatthe opponentbasests stratgy on the previous t-
periodsof play, andsoforth. Althoughnotexplicitly statedmostexistingalgorithmsmake
assumptionandthushold beliefsaboutthetypesof possibleopponentsn theworld.



We canthink of eachH, x B; asadifferentleagueof playerswith playersin eachleague
roughly equalto oneanotherin termsof their capabilities. Clearly someleaguescontain
lesscapablgplayersthanothers.We canthusdefineafair opponentisanopponenfroman
equalor lesselleague.Theideais thatnew learningalgorithmsshouldideally be designed
to beatary fair opponent.

The key role of beliefs. Within eachleague,we assumehat playersarefully rational
in the sensehatthey canfully usetheir availablehistoriesto constructtheir future policy.
However, animportantobsenationis thatthe definitionof full rationalitydepend®n their
beliefsaboutthe opponent.If we believe thatour opponentis a memorylesglayer, then
evenif we areanH,. player, ourfully rationalstrateyy is to simply modelthe opponents
stationarystratgyy andplay our stationarybestresponseThus,our belief capacityandour
historycapacityareinter-related.Without arich setof possiblebeliefsaboutour opponent,
we cannotmake gooduseof our availablehistory. Similarly, andperhapsnoreobviously,
withoutarich setof historicalobsenations,we cannothopeto modelcomplex opponents.

Discussionof currentalgorithms. Many of theexistingalgorithmsfall within the H . x

By league As discussedh theprevioussection theproblemwith theseplayersis thateven
thoughthey have full accesso the history, their fully rationalstrateyy is stationarydueto

their limited belief set. A generalexampleof a H., x By playeris the policy hill climber
(PHC). It maintainsa policy andupdateshe policy baseduponits history in an attempt
to maximizeits rewards. Originally PHC wascreatedor stochastiggamesandthuseach
policy alsodepend®nthecurrentstates. In our repeatedjamesthereis only onestate.

For agenti, Policy Hill Climbing (PHC) proceedssfollows:
1. Let o andé bethelearningrates.Initialize
1

A S A;.
|Ai\ s € D,a€ A;

Q(S,Cl) — Oaui(sﬂa) —

2. Repeat,
a. Fromstates, selectactiona accordingto the mixedpolicy u;(s) with someexploration.

b. Observingrewardr andnext states’, update

Q(s,a) — (1 —a)Q(s,a) + a(r + ’YII%?)(Q(S’,G/)).

c. Updateu(s, a) andconstraint to alegal probability distribution:

] if @ = argmax,, Q(s,a’)

pi(s,a) < (s, a) +{ ﬁ otherwise

The basicideaof PHC is that the Q-valueshelp us to definea gradientuponwhich we
executehill-climbing. Bowling andVelosos WoLF-PHC[6] modifiesPHC by adjustingo
dependingonwhethertheagentis “winning” or “losing.” Trueto theirleaguePHCplayers
play well againststationaryopponents.

At theoppositeendof thespectrumlLittmanandStong11] proposealgorithmsin Hg x B4

andH; x B thatareleaderstratgiesin the sensethatthey choosea fixed strategy and
hopethattheir opponentwill “follow” by choosinga bestresponsdo thatfixed stratayy.

Their “Bully” algorithmchooses fixed memorylesstationarypolicy, while “Godfather”
hasmemoryof thelasttime period.Opponentsncludednormal@-learningand@; players,
whicharesimilarto Q-learnersxceptthatthey explicitly learnusingoneperiodof memory
becausehey believe that their opponentis also usingmemoryto learn. The interesting



resultis that “Godfather” is able to achieve non-stationaryequilibria against, in the
repeatedprisoners dilemnagame,with rewardsfor both playersthat are higherthanthe
stationaryNashequilibriumrewards.This demonstratethe power of having beliefmodels.
However, becausé¢hesealgorithmsdo not have accesgo morethanoneperiodof history,
they cannotbegin to attemptto constructstatisticalmodelsthe opponent. “Godfather”
workswell becauset hasa built-in bestresponséo @); learnergatherthanattemptingto
learnabestresponsdrom experience.

Finally, Hu and Wellman's Nash-Qand Littman’s minimax-Q are classifiedas Hy x By
players,becauseven thoughthey attemptto learnthe Nashequilibrium throughexperi-
ence their play is fixed oncethis equilibrium hasbeenlearned.Furthermorethey assume
that the opponentalso plays a fixed stationaryNashequilibrium, which they hopeis the
otherhalf of their own equilibriumstrateyy. Thesealgorithmsaresummarizedn Tablel.

A newclassof players. Asdiscusse@bose, mostexistingalgorithmsdo notform beliefs
aboutthe opponenbeyond B,. Noneof theseapproachess ableto capturethe essencef
game-playingwhichis aworld of threatsdeceits andgenerallyout-witting the opponent.
We wish to openthe door to suchpossibilitiesby designinglearnersthat can modelthe
opponentand usethat information to achieve betterrewards. Ideally we would like to
designanalgorithmin H., x B thatis ableto win or cometo anequilibriumagainstary
fair opponentSincethisis impossiblg9], we startby proposinganalgorithmin theleague
Hoo X Boo thatplayswell againsarestrictedclassof opponentsSincemary of thecurrent
algorithmsare best-responsplayers,we choosean opponentlasssuchasPHC. We will
demonstrat¢hatthis algorithmdoeswell againsimostof the existing fair opponents.

A new algorithm: PHC-Exploiter. Ouralgorithmis differentfrom mostpreviouswork
in that we are explicitly modelingthe opponents learningalgorithm and not simply his
currentpolicy. In particular we would like to modelplayersfrom H., x Bg, sincemary
of the existing algorithmsarein this league.Sincewe arein H, X Boo, it is rationalfor
usto constructsuchmodelsbecauseve believe thatthe opponents learningandadapting
to usovertime usingits history Theideais thatwe will “fool” ouropponeninto thinking
thatwe arestupidby playingadecq policy for anumberof time periodsandthenswitch
to adifferentpolicy thattakesadvantageof their bestresponséo our decq policy. Froma
learningperspecitie, theideais thatwe adaptmuchfasterthantheopponentjn fact,when
we switch away from our decg policy, our adjustmento the new policy isimmediate.In
contrastthe H., x By opponentadjuststs policy by smallincrementsandis furthermore
unableto model our changingbehaior. We can repeatthis “bluff and bash” cycle ad
infinitum, therebyachieving infinite total rewardsast — oo. The opponenihever catches
onto usbecausét believesthatwe only play stationarypolicies.

A goodexampleof a H., x By playeris PHC.Bowling andVelososhavedthatin self-

play, a restrictedversionof WoLF-PHC always reachesa stationaryNashequilibriumin

two-playertwo-actiongames,and that the generalWoLF-PHC seemgo do the samein

experimentalrials. Thus,in thelong run,aWoLF-PHCplayerachiesesonly its stationary
Nashequilibrium payof againstary other PHC player We wish to do betterthan that
by exploiting our knowledgeof the PHC opponents learningstrateyy. We canconstruct
a PHC-Exploiteralgorithm for agenti that proceeddike PHC in steps1-2b, and then
continuesasfollows:

c. Observingactiona® ; attime ¢, updateour history i and calculatean estimateof the
opponents policy:
Zi:tfu) #(h‘[T] = a)

At K = v
fiZi(s, a) " a,

wherew is thewindow of estimationrand# (h[r] = a) = 1 if theopponentactionattime

~t—w

T is equalto a, and0 otherwise We estimatei” ;" (s) similarly.




d. Updates by estimatingthelearningrateof the PHC opponent:

5 it i)
. .

e. Updatey;(s,a). If wearewinning,i.e. Y, pi(s,a")Q(s,a’) > R;(f1;(s), t—i(s)),
thenupdate

0 otherwise '
otherwisewe arelosing,thenupdate

1i(s, ) { 1 if a = argmax,, Q(s,a’)

) if @ = argmax,, Q(s,a’)

pi(s,a) «— pi(s, a) +{ ﬁ otherwise

Note thatwe derive both the opponent learningrate andthe opponents policy /i ;(s)
from estimateausingthe obsenable history of actions. If we assuméhe gamematrix is
publicinformation,thenwe cansolve for theequilibriumstratey /i (s), otherwisewe can
run WoLF-PHC for somefinite numberof time periodsto obtain an estimatethis equi-
librium strateyy. The mainideaof this algorithmis thatwe take full advantageof all time
periodsin whichwearewinning, thatis, wheny" , 11;(s,a")Q(s,a") > Ri(f1; (), fi—i(s)).

Analysis. The PHC-Exploiteralgorithmis basedupon PHC andthusexhibits the same
behaior asPHC in gameswith a single pure Nashequilibrium. Both agentsgenerally
corvergeto the single pure equilibrium point. The interestingcasearisesin competitve
gameswherethe only equilibriarequiremixed stratgies,asdiscussedy Singhetal [12]
andBowling andVeloso[6]. Matchingpenniesshavn in Figure1(a),is onesuchgame.
PHC-Exploiteiis ableto useits modelof theopponentslearningalgorithmto choosebetter
actions.

In thefull knowledgecasewherewe know our opponentspolicy uo andlearningrated, at
everytime period,we canprove thata PHC-Exploitedearningalgorithmwill guaranteeis
unboundedewardin thelong run playinggamessuchasmatchingpennies.

Proposition 2.1. In the zero-sumgameof matchingpennieswherethe only Nashequi-
librium requiresthe useof mixed stratgies, PHC-Exploiteris ableto achieze unbounded
rewardsast — oo againstary PHC opponengiventhatplay follows the cycle C defined
by thearrovedseggmentsshown in Figure?2.

PlayproceedslongC,,, C;, thenjumpsfrom (0.5,0) to (1,0), follows theline sggmentsto
(0.5,1), thenjumpsbackto (0, 1). Givenapoint (z,y) = (u1(H), u2(H)) onthegraphin
Figure2, we know thatour rewardis

Ry(z,y) = =1 x[(#)(y) + 1 —2)(1 —y)] + 1 x [(1 = 2)(y) + (2)(1 — y)].

We wish to show that

/ Ry(z,y)dt =2 x (/ Ry(z,y)dt + Rl(aé,y)dt) >0 .
C Cuw ]

We considereachpart separately In the losing section,we let g(t) = z = 1/2 — t and
h(t) =y =t,where0 <t <1/2. Then

1

Byt — [ Ralg(t).h(t)di —
Al“%”“‘ﬂ 1o(6), Bt =~

Similarly, we canshaw thatwe receve 1/4rewardover Cy,. Thus, [, Ry (z, y)dt = 1/3 >
0, andwe have shavn thatwe receve apayof greaterthanthe Nasﬁequmbnum payof of
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Figure2: Theoretical(left), Empirical (right). The cyclic play is evidentin our empirical
resultswherewe play a PHC-Exploitemplayerl againsia PHC player2.
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Figure3: Total rewardsfor agentl increaseaswe gainrewardthrougheachcycle.

zeroover every cycle. It is easyto seethatplay will indeedfollow the cycle C' to a good
approximationdependingon the size of §,. In the next section,we demonstratéhatwe
canestimateu, andd, sufiiciently well from pastobsenations,thus eliminating the full

knowledgerequirementshatwereusedto ensurethe cyclic natureof play above.

Experimental results. We usedthe PHC-Exploiteralgorithm describedabove to play

againstseveral PHC variantsin differentiteratedmatrix gamesjncluding matchingpen-

nies,prisonersdilemna,androck-paperscissorsHerewe give theresultsfor thematching
penniesgameanalyzedabove, playing againstWoLF-PHC. We useda window of 5000
time periodsto estimatethe opponents currentpolicy 2, aswell asthe changen his pol-

icy, d2. As shown in Figure2, the play exhibits the cyclic naturethatwe predicted. The

solid linesindicateperiodsin which our PHC-Exploitedearneris winning, andthedashed
linesindicateperiodsin whichit is losing.

In thesectionabove, we derivedanupperboundfor our total rewardsovertime, whichwas
1/6 for eachtime step. Sincewe have to estimatevariousparametern our experimental
run,we donotachievethislevel of reward. We gainanaverageof 0.08total rewardfor each
time period. Figure 3 plots the total reward for our PHC-Exploiteragentover time. The
periodsof winning andlosing arevery clearfrom this graph. Furtherexperimentstested
the effectivenesf PHC-Exploiteragainstotherfair opponentsincludingitself. Against
all theexisting fair opponentshavn in Tablel, it achievedat leastits averageequilibrium
payof in thelong-run. Not surprisingly it alsopostecthis scorewhenit playedagainsta
multiplicative-weightlearner



Conclusionand futur e work. In this paper we have presented new classificatiorfor
multi-agentearningalgorithmsandsuggestednalgorithmthatseemso dominateexisting
algorithmsfrom thefair opponenteaguesldeally, we would lik e to createanalgorithmin
theleagueH . x B, thatprovablydominatedargerclassef fair opponentsn any game.
Moreover, all of the discussiorcontainedwithin this paperdealtwith the caseof iterated
matrix games.We would like to extend our framewnork to more generalstochastigames
with multiple statesandmultiple players.Finally, it would beinterestingto find practical
applicationsf thesemulti-agentiearningalgorithms.
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