
The Thing That We Tried Didn't Work Very Well:
Deictic Representation in Reinforcement Learning

Sarah Finney

AI Lab
MIT

Cambridge, MA 02139

Natalia H. Gardiol

AI Lab
MIT

Cambridge, MA 02139

Leslie Pack Kaelbling

AI Lab
MIT

Cambridge, MA 02139

Tim Oates

Dept of Computer Science
Univ. of Maryland, BC
Baltimore, MD 21250

Abstract

Most reinforcement learning methods oper-
ate on propositional representations of the
world state. Such representations are of-
ten intractably large and generalize poorly.
Using a deictic representation is believed to
be a viable alternative: they promise gener-
alization while allowing the use of existing
reinforcement-learning methods. Yet, there
are few experiments on learning with deic-
tic representations reported in the literature.
In this paper we explore the e�ectiveness
of two forms of deictic representation and a
na��ve propositional representation in a sim-
ple blocks-world domain. We �nd, empiri-
cally, that the deictic representations actu-
ally worsen learning performance. We con-
clude with a discussion of possible causes of
these results and strategies for more e�ective
learning in domains with objects.

1 Introduction

Real-world domains involve objects: things like chairs,
tables, cups, and people. Yet most current machine
learning algorithms require the world to be represented
as a vector of attributes. How should we apply our
learning algorithms in domains with objects? It is
likely that we will have to develop learning algorithms
that use truly relational representations, as has been
done generally in inductive logic programming [12],
and speci�cally by Dzeroski et al. [5] for relational
reinforcement learning. However, before moving to
more complex mechanisms, it is important to estab-
lish whether, and if so, how and why, existing tech-
niques break down in such domains. In this paper, we
document our attempts to apply relatively standard
reinforcement-learning techniques to an apparently re-
lational domain.

One strategy that has been successful in the plan-
ning world [8] is to propositionalize what is essentially
a relational domain. That is, to make an attribute
vector with a single Boolean attribute for each possi-
ble instance of the properties and relations in the do-
main. There are some fairly serious potential problems
with such a representation, including the fact that it
does not give much basis for generalization over ob-
jects. Additionally, the number of bits to be consid-
ered grows exponentially with the number of objects
in the world, even if the task to be accomplished does
not become more complicated. An alternative to this
full-propositional representation is to create a deictic-
propositional representation that, intuitively, a�ords
more possibility for appropriate generalization.

The word deictic was introduced into the arti�cial in-
telligence vernacular by Agre and Chapman [1], who
were building on Ullman's work on visual routines [15].
A deictic expression is one that \points" to something:
its meaning is relative to the agent that uses it and
the context in which it is used. The-book-that-I-am-
holding and the-door-that-is-in-front-of-me are exam-
ples of deictic expressions in natural language. The
primary motivation for the use of deictic representa-
tion is that it avoids the arbitrary naming of objects,
naturally grounding them in agent-centric terms [2].
Deictic representations have the potential to bridge
the gap between relational and propositional represen-
tations, allowing much of the generalization a�orded
by �rst-order representations yet remaining amenable
to solution (even in the face of uncertainty) by existing
algorithms.

Our motivating intuition was that deictic represen-
tations might ameliorate the severe scaling problems
of full-propositional representations. First, we can
achieve passive generalization through use of the mark-
ers. For example, if I have learned what to do with
the-cup-that-I-am-holding, it doesn't matter whether
that cup is cup3 or cup7. Second, since the size of
the observation space in a deictic representation only

grows with the number of attentional markers, our
agent should be able to perform a task in domains
with varying numbers of objects more easily than the
full-propositional agent. Last, we expected that our
deictic agent would gain an advantage from the ability
to focus its attention on aspects of the world relevant
to its current activity and to ignore the aspects that
do not matter.

In most deictic representations, and especially those
in which the agent has signi�cant control over what it
perceives, there is a substantial degree of partial ob-
servability: in exchange for focusing on a few things,
we lose the ability to see the rest. As McCallum ob-
served in his thesis [10], partial observability is a two-
edged sword: it may help learning by obscuring ir-
relevant distinctions as well as hinder it by obscuring
relevant ones.

What is missing in the literature is a systematic evalu-
ation of the impact of switching from full-propositional
to deictic representations with respect to learning per-
formance. The next sections report on a set of exper-
iments that begin such an exploration.

2 Experiment Domain

Our learning agent exists in a simulated blocks world.
It must learn to pick up a green block by �rst removing
any blocks covering it. This problem domain was in-
troduced by Whitehead and Ballard [16] in their early
work on deixis in relational domains. They developed
the Lion algorithm to deal with the domain's partial
observability by avoiding aliased states. McCallum [9]
showed that this partial observability could be directly
handled by keeping a short history of observations.

For example, if the agent is currently looking at, say,
a red block in the domain shown in Figure 1, it cannot
tell if it should proceed to search for the green block,
or if it should pick up that red block in order to clear it
from o� the top of the green block. By examining the
last action and observation, however, the agent knows
that if it has just looked up from a green block, then it
is in the state where it should clear o� the red block.

The experiments described in this section di�er from
previous empirical work with deictic representations in
two important ways. First, our goal was to compare
the utility of the di�erent representations, rather than
to evaluate or develop a learning algorithm tailored
for one representation. Second, we have not tuned the
perceptual features, actions, or training paradigm to
the task but instead developed a set of perceptual fea-
tures and actions that seemed reasonable for an agent
that might be given an arbitrary task in a blocks world.

Figure 1: Adding history to handle partial observability.

2.1 Two Deictic Representations

A deictic name for an object can be conceived as a
long string like the-block-that-I'm-holding, an idea that
can be implemented with a set of markers. For ex-
ample, if the agent is focusing on a particular block,
that block becomes the-block-that-I'm-looking-at; if the
agent then �xes a marker onto that block and moves
its attention somewhere else, the block becomes the-
block-that-I-was-looking-at.

For our experiments, we developed two avors of de-
ictic representation. In the �rst case, called \focused"
deixis, there is a focus marker and one additional
marker. The agent receives all perceptual information
relating to the focused block: its color (red, blue,
green, or table), and whether the block is in the
agent's hand. In addition, the agent can identify a
marker bound to any block that is above, below, left
of, or right of the focus. The second case, called \wide"
deixis, receives perceptual information (color and iden-
tities of any adjacent markers) for each marked block,
not just the focused block. The action set for both
deictic agents is:

� move-focus(direction): The focus cannot be
moved beyond the top of the stack or below the
table. If the focus is to be moved to the side and
there is no block at that height, the focus falls to
the top of the stack on that side.

� focus-on(color): If there is more than one block of
the speci�ed color, the focus will land randomly
on one of them.

� pick-up(): This action succeeds if the focused
block is a non-table block at the top of a stack.

� put-down(): Put down the block at the top of the
stack being focused.

� marker-to-focus(marker): Move the speci�ed
marker to coincide with the focus.

� focus-to-marker(marker): Move the focus to co-
incide with the speci�ed marker.

2.2 Full-Propositional Representation

In the fully observable propositional case, arbitrary
names are assigned to each block. The agent can per-
ceive a block's color, the location of the block, and the
name of any block under it. In addition, there is a
single bit that indicates whether the hand is holding a
block. The propositional agent's action set is:

� pick-up(block#): This action succeeds only if the
block is a non-table block at the top of a stack.

� put-down(): Put down the block at the top of the
stack under the hand.

� move-hand(left/right): This action fails if the
agent attempts to move the hand beyond the edge
of the table.

2.3 Comparing State and Action Spaces

Propositional representations yield large observation
spaces and full observability; deictic representations
yield small observation spaces and partial observabil-
ity. We examine the concrete implications of this next.

Our experiments used two di�erent blocks-world start-
ing con�gurations (Figure 2). The number of distinct1

block arrangements is 12 in the blocks1 setup and 60
in blocks2. The underlying state space in the full-
propositional case depends on all the ways to name
the blocks. This yields 5760 ground states in blocks1
and 172,800 in blocks2. The size of the observation
space, however, outpaces the number of ground states
dramatically: roughly 10 billion in blocks1 and roughly
3 trillion in blocks2.2

The underlying state space in the deictic case depends
on possible marker locations rather than on block
names. This gives a total of 1200 ground states in
blocks1 and 8640 in blocks2. The size of the observa-
tion space, however, is constant in both domains: the
size of the focused deictic observation space is 512, and
that of the wide deictic observation space is 4096 [6].

The action set for the deictic representations does not
change with additional blocks, so it is constant at 12
actions. The full-propositional representation requires
an additional pickup() action for each block, so it has
�ve possible actions in blocks1 and six in blocks2.

1Blocks of the same color are interchangeable.
2Note that this observation space corresponds to the

size needed for a look-up table, and it includes many com-
binations of percepts that are not actually possible.

T T T T TT

R

G

R

GB

a) b)

Figure 2: The two blocks-world con�gurations: a) blocks1
and b) blocks2. The table is made of unmovable table-
colored blocks.

3 Learning Algorithms

In these experiments, we took the approach of using
model-free, value-based reinforcement learning algo-
rithms, because it was our goal to understand their
strengths and weaknesses in this domain. In the con-
clusions, we discuss alternative methods.

As discussed previously, because we no longer observe
the whole state in the deictic representation, we have
to include some history. The additional information
requirement renders the observation space too large for
an explicit representation of the value function, like a
look-up table. Thus, we required learning algorithms
that can approximate the value function.

We chose Q-learning with a neural-network func-
tion approximator (known as neuro-dynamic program-
ming [3], or NDP) as a baseline, since it is a common
and successful method for reinforcement learning in
large domains with feature-based representation. We
hoped to improve on the performance of NDP by us-
ing function approximators that could use history se-
lectively, such as the G algorithm [4] and McCallum's
U-Tree algorithm [10]. After some initial experiments
with U-Tree, we settled on using a tree-growing algo-
rithm based on the G algorithm and U-Tree.

3.1 Neuro-Dynamic Programming

Our implementation of NDP used a two-layer back-
propagation neural network for each action. The input
to each network was a vector containing the current
observation plus some number of previous observations
and actions. The input layer to each network consists
of one node per possible action and observation feature
value; a given input vector is encoded by setting the
appropriate input nodes to one and the rest to zero.
The output of each network is the estimated Q-value
for that action in the state represented by the input
vector. As has been observed by others [14], we found
that sarsa led to more stable results than Q-learning
because of the partial observability of the domain.

3.2 Tree-Growing Algorithm

The G algorithm uses a tree structure to determine
which elements of the state space are important for
predicting reward. A leaf in the tree is the agent's
internal representation for a state, and it corresponds
to a series of perceptual distinctions useful for predict-
ing reward. Each leaf determines the agent's policy by
estimating Q-values for the possible outgoing actions.
The tree is initialized with a root node that makes no
state distinctions. The root has a fringe of nodes be-
neath it, where each fringe node represents a possible
further distinction. Statistics are kept in the root node
and the fringe nodes about reward received during the
agent's lifetime. A statistical test determines whether
any of the distinctions in the fringe are worth adding
permanently to the tree; that is, it looks for statistical
di�erences between the reward values of a parent node
and its fringe nodes. If a further distinction is found to
be statistically signi�cant, the fringe nodes under that
parent become oÆcial leaves, and a new fringe set is
created beneath each new leaf node.

At this level of description, the G algorithm is essen-
tially the same as U-Tree. The major distinction be-
tween them is that U-Tree requires much less expe-
rience with the world at the price of greater compu-
tational complexity: it remembers historical data and
uses it to estimate a model of the environment's tran-
sition dynamics, and then uses the model to choose a
state to split. The G algorithm makes each new split-
ting choice based on direct estimates of the Q values
from new data. U-Tree uses a non-parametric statis-
tical test (the Kolmogorov-Smirnov test) for splitting
nodes, which is more robust than the test used by the
original G. The G-based algorithm used in this work
extends G by using the Kolmogorov-Smirnov test and
by considering distinctions over a �nite history win-
dow (rather than just the current observation). See
the technical report [6] for a discussion of the di�er-
ences between G and U-Tree, and the way in which
the G algorithm of this paper di�ers from the original.

4 Experiment Outcomes

We conducted a set of learning experiments in the
blocks-world environments shown in Figure 2. The
task in both cases was to pick up the green block. The
agent received a reward whenever it succeeded at the
task, a penalty if it took an action that failed (e.g., at-
tempted to move its hand o� the edge of the world, or
attempted to pick up the table), and a smaller penalty
for each step otherwise. The agent used an �-greedy
exploration strategy, with � = 0:10.

The left plot in Figure 3 shows the results from running

the NDP algorithm in the blocks1 domain. The graph
shows the scaled total reward3 received in a testing
trial plotted against the number of training steps: at
the end of each set of 200 training steps, the state
of the learning algorithm was frozen and the agent
took a 100-step testing trial during which the total
accumulated reward was measured; exploration was
not turned o� during testing. Each curve for blocks1
is averaged over 10 experiments, and for blocks2 over
�ve experiments.

From the graph, we see that the deictic representations
did not immediately show the edge we anticipated. We
expected, then, to see them gain an advantage with the
addition of a distractor block, as in blocks2. The re-
sults are shown on the right side of Figure 3. Rather
than surpassing, or even approaching, the performance
of the full-propositional agent, the deictic agents per-
formed worse than before.

Clearly, by adding additional blocks yet retaining the
same observation space, we were aggravating the par-
tial observability for the deictic agents. Since selec-
tively using history is a way to manage partial observ-
ability, we tried it. Figure 4 shows the results of using
G in the two domains. While the deictic agents cer-
tainly learn faster than any of the agents learned using
NDP, the deictic agents with G never learn the task as
well as the full-propositional agent does with NDP.
Furthermore, the full-propositional agent was never
able to get o� the ground with G.

5 Discussion

Because the goal of our work was to understand the
characteristics of these learning approaches, rather
than to build a particular working demonstration, we
continued with a program of experimentation aimed
at elucidating our counter-intuitive results.

5.1 On Deictic and Full-Propositional

Representations in NDP

The optimal policy for the deictic agent is to start with
a focus-on(green) action, then to move the focus up
(until the top of the stack is reached), then to pick up
the top block and move it to the side. This sequence
should repeat until the green block is uncovered and
picked up. In both blocks-world setups, this requires a
sequence of nine actions. In the full-propositional case,
the optimal policy is tedious but generates shorter ac-
tion sequences. It goes roughly as follows: if block-1 is
green and clear, then the pick up block-1; otherwise, if

3For each of the three representations, the reward to-
tal was scaled by the maximum reward achievable by the
optimal policy.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks1" Domain in Millions

full propositional

focused deictic

wide deictic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NDP

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks2" Domain in Millions

full propositional

wide deictic

focused deictic

Figure 3: Learning curves for NDP in a) the blocks1 domain and b) the blocks2 domain.

block-2 is green and clear, then pick up block-2; etc. If
there is no block that is green and clear, then if block-1
is on top of a green block and is clear, pick up block-1;
etc. In both blocks-world setups, the optimal policy
requires a sequence of four actions. While the required
action sequence is short, the same ideas have to repre-
sented over and over for each assignment of names to
blocks.

We initially reasoned that the deictic agent had more
trouble learning an optimal policy because it appeared
to have a harder exploration problem. The depen-
dence of the pick-up(), marker-to-focus(marker), and
focus-to-marker(marker) actions on the focus location
means that it is very easy for the agent to lose its
place by executing an exploratory action that moves
the focus. The result is that the outcome of the above
actions can be wildly di�erent depending on where the
focus happened to land. This \distractability" reduces
the e�ectiveness of using exploration to make learning
progress.

In analyzing the causes of the exploration problem,
we did experiments that ruled out the longer optimal
action sequence and the number of actions in the ac-
tion set [6]. Our �nal step was to created a modi�ed
action set. In this new action set, the pick-up() ac-
tion automatically picks up the block at the top of
the stack pointed to by the focus, and the marker-
to-focus(marker) and focus-to-marker(marker) actions
were removed.4 Otherwise, the action set was the same
as the original action set. The implication of changing
the pick-up() action in this way is that the action is

4Interestingly, this modi�ed action set is similar to the
set used by McCallum in his blocks-world experiments [9].

now more likely to result in a successful pickup, since
the agent cannot even try to pick up blocks that are
not clear (i.e., the blocks in the middle of a tall stack).
In other words, the outcome of the all-important pick-
up() action loses its absolute dependence on the focus
location, resulting in more robustness in the face of a
moved focus. As we shall see, the modi�ed action set
rendered exploration much more e�ective in pointing
the agent towards the goal.

To compare the e�ects on exploration of the original
and modi�ed action sets, we measured, for each repre-
sentation, the number of steps required by a random
agent to stumble upon a solution. This metric, the
mean time-to-goal, is plotted as a function of the num-
ber of distractor blocks in Figure 5. It is clear from
the �gure that the modi�ed deictic action set makes
it much easier to achieve the goal via a random walk;
with the modi�ed actions, exploration in the deictic
system scales in the same way as in the propositional
system. Follow-up learning experiments with the mod-
i�ed action set in NDP show the deictic agents on aver-
age learn as fast the full-propositional agent in blocks1
and slightly faster than the full-propositional agent in
blocks2 [6].

However, it is important to note that, in general, nei-
ther the full-propositional nor the deictic agents with
the modi�ed action set learn an optimal policy here.
The full-propositional agent does not because it must
learn a policy for each way to name the blocks and
this takes a long time; the deictic agents do not be-
cause an optimal policy for this action set still has a
crucial dependence on past history. That is, the behav-
ior of the deictic agent's actions is dependent on the
focus location; yet, the none of the marker locations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G algorithm

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks1" Domain in Millions

focused deictic

wide deictic

full propositional

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G algorithm

T
ot

al
 R

ew
ar

d
pe

r
T

ria
l (

sc
al

ed
)

Number of Training Iterations in "blocks2" Domain in Millions

focused deictic

full propositional

wide deictic

Figure 4: Learning curves for G algorithm in both domains.

are observable by the agent|it must be recovered by
examining past history. An unfortunate exploratory
choice causes problems because the history that must
be used to recover the focus location now includes the
exploratory action. The reason the modi�ed action set
leads to better learning is because a plausible policy is
available that does not rely on history at all.5

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Additional Distractor Blocks

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

 to
 R

ea
ch

 G
oa

l w
ith

 R
an

do
m

 W
al

k

deictic
full propositional
modified deictic

Figure 5: The mean time-to-goal for di�erent action sets
plotted against the number of distractor blocks.

The deictic state and action sets not only fail to exhibit
the advantages we expected to �nd, but introduce new
challenges to learning that must be overcome in order
to make e�ective use of such representations. We con-
clude that it is possible to tailor the action set to the
task so that a deictic representation is more feasible,
but the exibility of such an action set is obviously

5Namely: look at the green block; pick up the block at
the top of the stack (if the green block was clear, this leads
to the goal); if my hand is full, look at the table; if I'm
looking at the table, put the block down at the top of this
stack.

more limited. An action set that includes the abil-
ity for the agent to control its own attentional focus
inherently increases the diÆculty of the exploration
problem because of the information about the domain
stored implicitly in the location of the focus (and po-
tentially the markers). Thus, any exploratory actions
that move the focus at random make it very hard for
the agent to learn a useful policy. McCallum [9], in his
blocks-world task with the more carefully-tuned action
representation, also found that learning was much im-
proved when the exploration was guided by a human.
The implications of the dependence of the optimal pol-
icy on history is examined in the next section.

5.2 On NDP and G

The common wisdom is that function approximators
like neural nets are appropriate for problems in which
all of the input attributes are relevant to some small
degree, and that decision trees are appropriate when
the function is well represented in terms of an unknown
subset of the input features. In the full-propositional
representation, any of the bits could be important, so
it seems reasonable that NDP worked well. In the de-
ictic representation, we included many historical ob-
servations into the input vector, not knowing which
ones might be relevant to the problem. In this sit-
uation, we might expect the tree-growing algorithms
to be better: they should build a representation that
reveals only enough of the hidden state to do the job.

Our poor results with the G algorithm seem to be pri-
marily caused by the trees growing much larger than
expected; they grew without reaching a natural limit-
ing state. To avoid running out of memory, we had to

add an arbitrary cap on the size of the trees.

While the deictic agents initially learn faster with G
than with NDP, they stopped making progress upon
reaching the tree-size cap, and therefore never com-
pletely learn the task. Similarly, the full-propositional
agent made no progress at all before the tree reached
its maximum size. In the process of determining the
cause behind the trees' seemingly unnecessarily large
size, we discovered the true root of the problem that
was preventing our deictic agents from learning e�ec-
tively.

5.2.1 Unlimited Tree Growth

Given the ability to characterize the current state in
terms of past actions and observations, the learning al-
gorithm frequently comes up with multiple perceptual
characterizations that correspond to the same under-
lying world state. For instance, the set of states de-
scribed by the focus was on a green block and then I
looked up is the same as those described by the fo-
cus was on a green block and then I looked down, then
up, then up, etc. In isolation, these redundant leaves
do not seem to pose much of a problem|one solution
would be an algorithm that grows a graph rather than
a tree, allowing for information states that represent
the same underlying state to be merged. However, in
a tree, the impact of these redundant nodes can be
severe.

Once the tree contains multiple leaves for the same
state based on historical distinctions, the agent may
now learn to have a di�erent policy in this state, de-
pending on its previous actions. This complicated pol-
icy now requires still more splits to fully learn the
value function. There is, fundamentally, a kind of
\arms race," in which a complex tree is required to
adequately explain the Q values of the current pol-
icy. But the new complex tree allows an even more
complex policy to be represented, creating a vicious
cycle. The basic problem is that the tree is trying
to grow enough leaves to learn the value function for
every policy followed during the learning process.

5.2.2 Incurable Partial Observability

In investigating the problem of the very large trees, we
attempted to build a tree by hand that would allow the
agent to learn the optimal policy while containing as
few leaves as possible. What we discovered instead
was that it is not possible for any amount of history
to make the domain Markov. This is because not all
history sequences allow the agent to disambiguate oth-
erwise identical-looking states. Consider the example
given at the beginning of Section 2, where the agent is
looking at the red block. Clearly the two history se-

quences described in that section allow the agent to
determine whether it has already cleared the green
block or not. However, if the agent was looking at
the table, performed a focus color(red), and is now
looking at the red block, we have no idea which of
these two possible states we are in. Thus, the tree will
always contain leaves that are ambiguous with respect
to the true underlying state, and no amount of further
splitting will remedy this.

Thus, no matter how large the trees get, the agent is
still trying to learn in a partially observable domain.
In fact, this problem is present regardless of which
learning algorithm is used; the problem is simply not
Markovian, no matter how much history is added to
the agent's observation.

6 Conclusion

In the end, none of the approaches for converting an
inherently relational problem into a propositional one
seems like it can be successful in the long run. The
na��ve propositionalization grows exponentially in the
number of objects in the environment; even worse, it is
severely redundant due to the arbitrariness of assign-
ment of names to objects. The deictic approach has a
seemingly fatal aw: the inherent dramatic partial ob-
servability poses problems for model-free value-based
reinforcement learning algorithms. The fundamental
problem with using short-term history in a POMDP
is this: the ability to disambiguate underlying states is
necessary for learning a good policy, but past actions
and observations are not useful data until a good pol-
icy is available.

One possible direction to consider before abandoning
this approach altogether would be to adopt Perkins'
provably convergent algorithm for Monte Carlo learn-
ing in a partially observable domain [13]. While this
algorithm is known to converge, it is not yet known
whether it will converge to a desirable answer in this
case.

Alternatively, one could change the approach more
fundamentally. There are three strategies to consider,
two of which work with the deictic propositional repre-
sentation but forgo direct, value-based reinforcement
learning.

One alternative to value-based learning is direct pol-
icy search [17, 7], which is less a�ected by problems of
partial observability but inherits all the problems that
come with local search. It has been applied to learn-
ing policies that are expressed as stochastic �nite-state
controllers [11], which might work well in the blocks-
world domain. These methods are appropriate when
the parametric form of the policy is reasonably well-

known a priori, but probably do not scale to very large,
open-ended environments.

Another strategy is to apply the pomdp framework
more directly and learn a model of the world dynam-
ics that includes the evolution of the hidden state.
Then, we might use reinforcement-learning algorithms
to more successfully learn to map this mental state to
actions.

A more drastic approach is to give up on proposi-
tional representations (though we might well want to
use deictic expressions for naming individual objects),
and use real relational representations for learning in
blocks world. Some important early work has been
done in relational reinforcement learning [5], showing
that relational representations can be used to get ap-
propriate generalization in complex completely observ-
able environments.

Acknowledgments

This work was funded by the OÆce of Naval Research
contract N00014-00-1-0298, by the Nippon Telegraph
& Telephone Corporation as part of the NTT/MIT
Collaboration Agreement, and by a National Science
Foundation Graduate Research Fellowship.

References

[1] Philip E. Agre and David Chapman. Pengi: An im-
plementation of a theory of activity. In Sixth National
Conference on Arti�cial Intelligence, 1987.

[2] Dana H. Ballard, Mary M. Hayhoe, Polly K. Pook,
and Rajesh P.N. Rao. Deictic codes for the embodi-
ment of cognition. Behavioral and Brain Sciences, 20,
1997.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scienti�c, Belmont,
MA, 1996.

[4] David Chapman and Leslie Pack Kaelbling. Input
generalization in delayed reinforcement learning: An
algorithm and performance comparisons. 1991.

[5] Saso Dzeroski, Luc De Raedt, and Kurt Driessens.
Relational reinforcement learning. Machine Learning,
43, 2001.

[6] Sarah Finney, Natalia H. Gardiol, Leslie Pack Kael-
bling, and Tim Oates. Learning with deictic repre-
sentations. Technical Report AIM-2002-006, MIT AI
Lab, Cambridge, MA, 2002.

[7] Tommi Jaakkola, Satinder Singh, and Michael Jor-
dan. Reinforcement learning algorithm for partially
observable Markov decision problems. In Advances in
Neural Information Processing Systems 7, 1994.

[8] Henry A. Kautz and Bart Selman. Planning as sat-
is�ability. In 10th European Conference on Arti�cial
Intelligence, 1992.

[9] Andrew K. McCallum. Instance-based utile distinc-
tions for reinforcement learning with hidden state. In
12th International Conference on Machine Learning,
1995.

[10] Andrew K. McCallum. Reinforcement Learning with
Selective Perception and Hidden State. PhD thesis,
University of Rochester, Rochester, New York, 1995.

[11] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and
Leslie Pack Kaelbling. Learning �nite-state controllers
for partially observable environments. In 15th Confer-
ence on Uncertainty in Arti�cial Intelligence, 1999.

[12] Stephen Muggleton and Luc De Raedt. Inductive logic
programming: Theory and methods. Journal of Logic
Programming, 1994.

[13] Theodore J Perkins. Reinforcement learning for
POMDPs based on action values and stochastic op-
timization. In 18th National Conference on Arti�cial
Intelligence, 2002.

[14] John N. Tsitsiklis and Benjamin Van Roy. An analysis
of temporal-di�erence learning with function approx-
imation. IEEE Transactions on Automatic Control,
1997.

[15] Shimon Ullman. Visual routines. Cognition, 18, 1984.

[16] Steven Whitehead and Dana H. Ballard. Learning to
perceive and act by trial and error. Machine Learning,
7, 1991.

[17] Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8, 1992.

