
Nearly Deterministic Abstractions of Markov Decision Processes

Terran Lane and Leslie Pack Kaelbling
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA 02139

{terran,lpk }@ai.mit.edu

Abstract

We examine scaling issues for a restricted class of compactly
representable Markov decision process planning problems.
For one stochastic mobile robotics package delivery problem
it is possible to decouple the stochastic local-navigation prob-
lem from the deterministic global-routing one and to solve
each with dedicated methods. Careful construction of macro
actions allows us to effectively “hide” navigational stochas-
ticity from the global routing problem and to approximate the
latter with off-the-shelf combinatorial optimization routines
for the traveling salesdroid problem, yielding a net exponen-
tial speedup in planning performance. We give analytic con-
ditions on when the macros are close enough to deterministic
for the approximation to be good and demonstrate the perfor-
mance of our method on small and large simulated navigation
problems.

Introduction
Imagine a robot that runs errands in a large office building.
At any given time, it has a set of pending requests to deliver
items, pick up printer output, and so on. Perhaps it also acts
as security guard, with the task of keeping certain areas un-
der surveillance by visiting them periodically. It must also
ensure that its batteries never completely run down by pe-
riodically visiting a charging station. If the robot’s actions
were entirely deterministic, the only uncertainty in the do-
main would be in the arrival of errand requests. However,
there is always a certain amount of unreliability in a robot’s
actions.

Markov decision processes (MDP) have been popular
models for uncertain planning problems, such as this one.
They handle uncertainty effectively, but are computationally
too complex for such large domains. While this domain can
be represented quite compactly, traditional solution meth-
ods are intractable for it. If we would like to solve such
large domains, we will have to give up complete optimal-
ity for a reduction in computation time. Many promising
approaches to doing so, via abstraction and factorization,
have been suggested in the literature. These techniques are
general-purpose and it is, therefore, difficult to character-
ize the degree to which the behavior they generate is sub-
optimal. Furthermore, recent complexity results indicate

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that even for compactly representable MDPs, the exact and
approximate planning problems for MDPs are intractable on
general domains (Littman 1997; Mundhenket al. 2000;
Lusena, Mundhenk, & Goldsmith 2001). Thus, no single
algorithm can be both efficient and accurate forall MDPs.

In this paper we argue that it may be useful to step back
from general purpose algorithms. Rather, we should seek
additional special structure in our MDP domains (beyond
the transition factorability that leads to compactly express-
ible models) and exploit it with special-purpose algorithms.
For the same reason that we do not, in practice, employ a
single, all-purpose graph algorithm or combinatorial opti-
mization algorithm, we believe that we can make significant
progress on MDP planning by examining restricted classes
of problems.

As an example of this approach, in this work we study a
particular, quite restricted, class of MDPs, and provide an
approximation method with bounded error. The problem
class includes a robot running errands in an office, though,
in its current form, it does not extend to problems of surveil-
lance or battery maintenance. We provide a formal descrip-
tion of the problem, a formulation of the domain in terms
of special-purpose macro actions, and an algorithm for ef-
ficiently deriving approximately optimal solutions to the re-
sulting semi-MDP. We give a bound on the error on the ap-
proximation as a function of properties of the domain and
conclude with empirical results in small and large simulated
delivery scenarios.

Formal Development
In this section, we give a brief background on Markov deci-
sion process theory, give our notation, and formally describe
the package delivery domain and our planning method.

Markov Decision Processes and Options
A Markov decision process is a model of a finite, discrete,
synchronous control process with noisy control actions (Put-
erman 1994). Formally an MDPM is specified by four
components: astate space, S = {s1, s2, . . . , sN}, of cardi-
nality |S| = N ; a set of primitive (or atomic)actions, A =
{a1, a2, . . . , am}; a transition function, T : S × A × S →
[0, 1]; and areward function, R : S → R. An agent acting in
an MDP is, at any time step, located at a single states ∈ S.
The agent chooses an actiona ∈ A and is relocated to a new

state,s′, determined by the transition probability distribution
T (s′|s, a), whereupon it receives rewardR(s′). In this pa-
per we are concerned withcost to moveframeworks in which
each atomic action incurs some movement costc < 0 and
there exists one or more zero-cost, absorbing “goal” states.
We will assume here thatR(s′) = c for all non-goal states.

In many useful domains, the state space is best expressed
as a product of state variablesS = V1 × . . . × Vm, and the
cardinality of the total state space is exponential inm. Such
MDPs can often be compactly represented by exploiting
structure in their transition and reward functions—writing
the former as a dynamic Bayes net (DBN) and the latter as a
decision tree (Boutilier, Dearden, & Goldszmidt 2000).

The output of an MDP planning algorithm is apolicy π :
S → A (or plan in this work) that specifies an action for
the agent to take for any state in the state space. Our goal
is to locate a plan that maximizes the expected aggregate
reward received by the agent over its lifetime. In addition,
because we are interested in plans for exponentially large
state spaces, we will seek implicitly represented plans that
specify actions only for subsets of the state space.

For our model of macro actions, we adopt theoptions
frameworkof Sutton, Precup, and Singh (Sutton, Precup,
& Singh 1999; Precup 2000). An option (ormacro in this
paper) is an abstraction that allows us to treat an entire MDP
policy as a single action. In this model, an optiono spec-
ifies three elements: a setI ⊆ S from which it can be
initiated, a probability mappingβ : S → [0, 1] giving the
probability that the macro terminates upon reaching states,
and a policyπ defining the agent’s actions while the option
is in force.1 An agent acting in an MDPM with option set
µ = {o1 . . . ok} at each step can take any applicable option
as a discrete action choice. Upon invocation of macrooi, the
agent executes actions according toπi until the option ter-
minates probabilistically according toβi. The combination
of such macros with an MDP yields a semi-Markov deci-
sion process (SMDP): a decision process in which actions
are considered to have temporal extent with stochastic dis-
tribution.

Domain Description
This work was motivated by navigational problems arising
in mobile robotics domains. We take as an example a sim-
ple package delivery problem in which an agent navigates
through a building with stochastic movement commands and
attempts to deliver packages to fixed locations.2 We encode
the robot’s state with the state variablesx and y, denot-
ing physical location in the world, andk “indicator” bits,
b1, . . . , bk, which record the delivery status of each ofk
packages (bi = 1 iff packagei has been successfully de-
livered). The goal of the agent is to attain a state in which
all packages have been delivered (bi = 1 for all i) in the
fewest steps possible. The robot has four primitive actions
available, corresponding to movement in the cardinal direc-

1Technically, we are using onlyflat, pure Markov optionshere.
2We may be able to address arbitrary locations by exploiting

Moore et al.’s equivalent of an all-pairs shortest-paths data structure
for MDPs (Moore, Baird, & Kaelbling 1999).

a

x

y

b 1

b i

a

x

y

b 1

b i

t t+1

Figure 1: DBN topology for the package delivery domain.
The nodes are the agent’s choice of action, itsx andy coor-
dinates, and the settings of the indicator bitsb1 . . . bk.

tions. The actions are stochastic with dynamics defined by a
dynamic Bayes net of the topology displayed in Figure 1.

The conditional probability table interrelating thex and
y variables describes the physical geography of the world—
locations of walls and doors—as well as the robot’s move-
ment dynamics. For this paper, we take a simple model in
which movement in the cardinal directions succeeds with
some fixed probabilityptrans < 1. When movement fails,
it returns the agent to its original〈x, y〉 location or deposits
it in one of the accessible adjacent grid cells with uniform
probability. Walls are impenetrable except at doorways,
which allow free movement. The relation between〈x, y〉
and bi defines the notion of package delivery—when the
robot reaches the delivery location for packagei, denoted
loc(i), the package is delivered andbi is set to 1 with proba-
bility 1. Thereafter,bi can never be reset to 0 (i.e., a package
cannot later be wrenched away from its recipient). Impor-
tantly, the package bits are independent of each other given
the robot’s location—delivery of one package does not pre-
vent delivery of another, nor does it change the dynamics of
the robot’s movement. This independence will later allow us
to decompose the model into sub-problems corresponding to
the tasks of delivering individual packages.

The reward function encodes our notion of goals for the
robot. Here we consider only the simplest possible reward
function: we reward the agent only for successfully complet-
ing the entire task (i.e., delivering all the packages) and we
wish to minimize the total number of steps taken. This can
be modeled in a infinite-horizon undiscounted model with
the reward and value functions:

R(s) = c < 0 iff somebi = 0 in states

R(s) = 0 otherwise

V π(s) = E

[
final delivery∑

t=0

R(st)

]
(1)

This is a negative model whose optimal value function is fi-
nite (Puterman 1994). Extension to prioritized goals is not
difficult, but yields a more complex deterministic optimiza-
tion problem (the minimum latency path problem (Goemans
& Kleinberg 1996; Arora & Karakostas 1999)). We discuss
this case fully in the extended version of this paper.

Optimality Criterion
While the general optimality criterion for MDPs is ex-
tremely expressive, we gain a great deal of leverage in the
package delivery domain by observing that the structure of
its reward function leads to a special form of optimality cri-
terion. In particular, we can rewrite the value function of
Equation 1 to reflect the underlying optimization problem:

V π(s) = E [c(# steps to deliver all packages)]

= c E

[
k∑

i=1

n(i− 1, i)

]

= c

k∑

i=1

E[n(i− 1, i)]

= c

k∑

i=1

dτ(i)(τ(i− 1)) (2)

where the expectation is over trajectories throughM un-
der policyπ andn(i, j) is the random variable representing
the number of steps taken between the deliveries of theith

and jth previously undeliveredpackages on the trajectory
(delivery of package 0 is taken to be the start state of the
robot). The step from the third to fourth line removes the
“previously undelivered” caveat from the distance function
into an ordering variable,τ . τ is a permutation of locations:
τ(i) = j indicates that packagej is theith delivered. The
variabledi(j) gives the expected number of atomic steps be-
tween the location of packagej and the location of package
i (regardless of whether either has yet been delivered).

Thus, there are two quantities that we must address simul-
taneously to achieve an optimal policy: the number of steps
between delivery locations and the order in which to move
among locations. The independence of movement dynamics
(x andy variables) from the settings of the package indi-
cator bits ensures that we can optimize the two quantities
separately. We can optimize paths between locations (di(j))
without regard to the settings of the bits, and we locate the
best ordering of package deliveries (τ) without considering
how to get from one location to another. We will address
each of these in the next section, but the reader may ob-
serve that the first quantity can be represented with carefully
constructed macros while the second (given by the sum in
Equation 2) is simply the traveling salesdroid problem (TSP)
optimization criterion.

Planning with Semi-Stochastic Macros
Figure 2 summarizes our decomposition and planning ap-
proach. We proceed in two phases. In the first, off-line,
phase, we develop macros for achieving limited sub-goals
and characterize their performance in terms of their ex-
pected accrued rewards for invocation and their transition
distributions. Formally, we construct thek sub-MDPsMi,
i = 1 . . . k, on the state spacesSi = 〈x, y, bi〉 by remov-
ing the extraneous variables from the transition DBN of Fig-
ure 1. In doing so, we violate no dependencies betweenx, y,
andbi and the resulting model is a valid MDP correspond-
ing to the task of delivering packagei in isolation. Si is

1. Preprocessing (Macro construction):

(a) Decompose full modelM into sub-modelsM1, . . . ,Mk

corresponding to individual sub-goals
(b) Solve sub-models using, e.g., value iteration
(c) Construct macroso1, . . . , ok for sub-goals
(d) Solve for macro rewards and transition distribution

2. Per-Episode (Macro integration):

(a) Construct goal graph from episode package set,s0, and
(fixed) macro characteristics

(b) Solve deterministic graph problem (via TSP solver)

(c) Convert graph solution to macro policy in originalcM
(d) Execute macro plan

Figure 2: Summary of decomposition and planning method.

exponentially smaller thanS and, for the purposes of this
paper, we will assume that it is tractable for classical MDP
planning techniques.3 This yields a policyπi that expresses
the best way to deliver packagei alone from any〈x, y〉 co-
ordinate. We now construct the optionoi = 〈Ii, π

′
i, βi〉

whereIi = {s ∈ S : bi = 0}, π′i(s
′) = πi(s) when-

ever 〈x′, y′, b′i〉 = 〈x, y, bi〉, and βi(s) = 1 whenever
〈x, y〉 = loc(j) for anyj such thatbj = 0. This option ex-
presses the notion “whenever packagei is undelivered, you
can deliver it by followingπi until you reachanydelivery lo-
cation for an undelivered package.” Each macro terminates
with probability one at one of at mostk 〈x, y〉 locations.

The set of optionsµ = {o1, . . . , ok} represents a set of
actions for a semi-Markov decision procesŝM over the re-
duced state spacêS = {loc(i)}×b1× . . .×bk. In principle,
this process can be solved exactly with standard techniques,
but it is still exponentially large ink. In the second, per-
episode planning phase, we treat this instead as a determin-
istic graph and solve it with a TSP planner. To do so, we
need estimates of the mean reward (cost) accrued by each
macro and its distribution over next states. The first quan-
tity, di, is related to the mean absorption time of the chain
induced byπi onMi, while the second is just the probabil-
ity of absorption into each goal location (Kemeny & Snell
1976). Both can be calculated from the macros and sub-
models in time polynomial in|x| and |y|. We will use the
latter quantity to determine whether the macro can be rea-
sonably approximated as deterministic.

AlthoughM̂ is technically a semi-MDP, it can be treated
as an MDP because we are working in an undiscounted
model. This means that the transit times from state to state
affect the reward received on the transition, but have no ef-
fect on the future value of the resulting state. Thus, if we
let the reward depend on both the start and end states of a
transition, we can stay within the MDP framework. We will
definec(s, s′|a) to be the expected cost of making a transi-
tion from states to s′ under macro actiona.

3If the remaining spatial problem is itself too large for direct
solution, we can resort to further decompositions, such as hierar-
chical spatial partitioning, or to other scaling techniques.

On each planning episode, we are presented with a set of
packages to be delivered, represented as a configuration of
package delivery bitsbi, and a starting states0. We construct
a deterministic graphG that approximateŝM under the as-
sumptions that every macro reaches its nominal goal (i.e.,
thatoi terminates at〈x, y〉 = loc(i)) and that it takes exactly
its expected duration in doing so. Formally,G = 〈V, E〉
whereV = {loc(i) : bi = 0 in the episode description} ∪
loc(0) ande(i, j) = dj(i) whereloc(0) is the location of
the starting state. (We omit goals irrelevant to the current
episode from the graph.) Given a starting states0, the mini-
mal tourτ overG is the basis for the implicit policy for this
episode.4 Findingτ is, of course, still NP-hard, but there are
very effective practical heuristic methods; good approxima-
tions for systems with hundreds of thousands of nodes can
often be found in seconds (Johnson & McGeoch 2001).

Finally, we mapτ back into a policy over macros in
M̂. At any s ∈ Ŝ, the agent chooses optionoτ(i) for
i = min

j
{j : bτ(j) = 0} (i.e., it attempts to deliver the first

as-yet-undelivered package on tourτ). This is an implicit
representation of a total policy—it is defined at all states of
Ŝ—but it was not created to deal with circumstances such
as the agent accidentally wandering into an unexpected de-
livery location. In the next section we will give bounds on
when this willful ignorance still yields acceptable plans.

Analysis of Algorithm
In this formulation of the problem, we are making two ap-
proximation steps. The first is the move from the underly-
ing MDPM to the semi-MDPM̂, induced by the macro
actions. In doing so, we are likely to introduce some er-
ror, with the macros no longer allowing us to express the
true optimal policy forM. We are currently unable to ar-
gue formally that this loss is small; however, we expect
that it is, for the intuitive reason that the macros are de-
rived expressly for the purpose of achieving subgoals that
arestrictly required in order to achieve the overall goal of
the domain. However, using the macros forces the agent to
choose an ordering on the subgoals (or at least, to choose
a first subgoal), and does not allow it to be “agnostic”—
taking a few actions to see what happens, then pursuing
the subgoal that turns out to be nearer, for example. Al-
though we cannot guarantee that such a situation does not
occur in our target problems, Parr has developed a test that
can discriminate whether a specific, fixed set of macros is
sufficient to express a nearly optimal policy (Parr 1998a;
1998b). In practice, we could test a set of “goal-seeking”
macros for near-optimality offline before proceeding to the
SMDP solution phase.

The second approximation step is treatinĝM as if it were
the deterministic modelG. We can provide a bound on the
loss due to this approximation, given in the following the-
orem. The bound will depend on the degree of determin-
ism of the original model, characterized by the parameterp.

4Strictly speaking, we are not seeking a full tour, as we do not
require return toloc(0), but we can add synthetic, zero-cost “return
to start” arcs toG and find a full tour over the resulting graph.

Let p be the minimum, over all statess ∈ Ŝ and actions
a ∈ µ of the maximum, over alls′ ∈ Ŝ, of Pr(s′|s, a),
and let δ = 1 − p. In addition, the bound depends on
∆c = cmax − cmin, the difference between the largest and
smallest transition costs in̂M.

Theorem 1 For every stationary policyπ defined on state
spaceŜ and macro action spaceµ, if the non-determinism
of the macro actions is bounded by

δ ≤
k −

√
k2 + 2ε

∆c
(1− k)

k2 − k

then at every states ∈ Ŝ, the value of states under policy
π in M̂, Vπ(s), differs from the value ofs underπ in G,
Dπ(s), by at mostε.

Proof: First note that, by construction, each macro termi-
nates only upon deliveringsomepackage — its “intended
package”, with probability≥ p, or any of the other previ-
ously undelivered packages, with total probability≤ δ =
1 − p. Thus, an agent started ats0 with k packages out-
standing reaches the terminal state of the episode in exactly
k macro actions. A policyπ onM̂ can be coupled toG to
produce some deterministic tour of costDπ(s0) ≥ kcmin

(corresponding to the path of “expected outcomes” in̂M).
We will call the trajectory of “expected outcome” states in
M̂ thenominal path, havingexpectedcost equal toDπ(s0).
The agent, acting according toπ in M̂, will complete the
nominal path with probabilitypk. If some macro terminates
at an unexpected state (total probability1−pk), the agent can
still complete the task with, at worst,kcmax cost. Thus, the
true value ofs0 underπ, Vπ(s0), differs from the determin-
istic approximation,Dπ(s0) by at mostε = (1 − pk)k∆c.
Rearranging and noting that, for smallδ, a second-order ap-
proximation to the binomial expansion of(1 − δ)k gives a
good upper bound topk, yields the desired polynomial rela-
tion betweenε andδ. 2

Finally, we note that every policy on̂M yields a nominal
path (because every macro action has an expected outcome)
and every nominal path has a corresponding path inG. Thus,
given “reasonably deterministic” macros, the optimal policy
for the approximate modelG will have value withinε of the
truly optimal policy forM̂.

Empirical Investigation

We have implemented this planner for the package delivery
domain and examined its performance in a number of syn-
thetic floorplan scenarios: a set of small, randomly gener-
ated maps and one larger map roughly corresponding to one
floor of a real office building. The random floorplans are, by
design, small enough that exact solution is feasible, allow-
ing direct comparison between hybrid and optimal solutions,
while the office building simulation is large enough to be in-
tractable to direct solution (230–255 states) and serves to
demonstrate the scalability of our method.

Figure 3: Office building floorplan. Asterisks mark the goal
locations and small squares denote doorways.

Comparison to Exact Solution
In our first experiment, we generated a number of small
delivery problems populated with randomly selected walls,
doors, and goals (for an example of a similar, but non-
random, floorplan, see Figure 3). The movement dynam-
ics are those described in the “Domain Description” section,
with ptrans = 0.9. We constructed floorplans varying in size
between 400 and 900 locations with between 4 and 6 deliv-
ery locations, yielding MDPs with between 6400 (400 · 24)
and 57,600 (900 · 26) states, the latter near the limit of our
ability to solve the system directly. In these worlds we could
find the optimal TSP path directly with brute-force search,
so the only sources of suboptimality are from the use of
macro rather than atomic actions and the deterministic ap-
proximation ofM̂.

For each of 54 such maps, we constructed both the exact
atomic policy and the atomic expansion of the TSP+macro
policy and evaluated both policies analytically. To strictly
adhere to the terms of Theorem 1, we should evaluate a
macro policy that takes the best TSP tour fromeverySMDP
state (i.e., replans the TSP tour from everys in M̂), but
that code was not ready at the time of submission. We will
present those results in the extended version of this work, but
for this paper we evaluated the policy consisting of asingle
TSP tour—this policy does not try to replan when it falls off
the tour, but simply attempts to return to the tour.

At the states corresponding to the semi-MDP states on
the optimal tour, the TSP+macro planner achieved a value
within 5.8% of the optimal on average. In states substan-
tially off of the tour (e.g., non-SMDP states across the grid
from loc(0) with all packages undelivered), the TSP plan
deviates substantially from the optimal—over 70% in some
cases—but this is not unexpected, as the TSP system has ex-
plicitly neglected such states under the assumption that they
are reached with very low probability. This assumption is
validated by the small net influence that these states have on
the values at the on-tour states. We expect replanning at off-
tour SMDP states to dramatically improve these values, as
will careful early termination of macros (Precup 2000).

Scaling to Large Scenarios
Our larger simulation is a set of delivery scenarios in the
floorplan pictured in Figure 3, roughly modeled on one floor
of a large office building. This map is quantized into 75x
and 25y coordinates and contains 45 delivery locations in
offices (and one near the elevator shafts in the center of the

map) for a total of roughly255 states. The dynamics of the
world are the same as those of the floorplans of the previous
section; the larger map differs only in scale and geography.

In this world, we performed thirty “delivery episodes”
with different random subsets of between 20 and and all
45 of the potential delivery locations. These scenarios yield
MDPs with far too many states for explicit tabular solution,
but the corresponding TSP instances are trivial to approxi-
mate. In a preprocessing step, we constructed and cached 45
goal-seeking macros corresponding to the 45 potential goal
locations in the world. For each episode, we generated the
TSP macro solution using a minimum-spanning-tree heuris-
tic TSP planner5 and evaluated the plan’s performance by
averaging over twenty sampled trajectories from the atomic
model. Over the thirty episodes, the mean deviation be-
tween the projected and sampled trajectory lengths was only
0.38% and the projected length was always within one stan-
dard deviation of the mean sampled length. Furthermore, in
the tours selected by the TSP planner,1 − p is on the order
of 10−6, so the probability of failing to correctly complete
the tour is1 − pk ≈ 10−5. Unsurprisingly, all of the the
six hundred sampled trajectories successfully completed the
projected TSP tour without encountering an unexpected de-
livery location. Together, we take these results to indicate
that the deterministic graph is a good approximation of the
true semi-MDP in this domain.

Related Work
Our planning method is perhaps closest in spirit to envelope
methods (Deanet al. 1995; Baum & Nicholson 1998) which
attempt to restrict the planner’s attention to only a highly
probable subset of the state space, either by discarding states
or by suppressing dimensions. Our approach can be thought
of as a two-phase envelope method: in the first phase, we
use structural knowledge about the transition function to dis-
card most dimensions and apply classical stochastic plan-
ning techniques. In the second phase, the envelope consists
of only the previously discarded dimensions and we employ
a deterministic planner to handle the scalability question. In
general, this can be dangerous, as it explicitly assumes that
the agentwon’t leave the envelope, but we provide analytic
sufficient conditions (available after the first phase) on when
it is reasonable to make this assumption.

A closely related class of techniques clusters groups of
similar or related states together according to their behavior
under the global value function (Boutilier, Dearden, & Gold-
szmidt 2000) or their transition distributions (Dean & Givan
1997). Planning takes place on a model constructed from
the “meta states.” These approaches typically begin with a
coarse clustering of the state space and successively split it
when necessary to maintain homogeneity within state clus-
ters. These methods are extremely general and can converge
to exact or bounded approximations of the optimal plan, but
the state partitioning may, in the worst case, explode to an
exponentially large set of singleton clusters. Function ap-

5Much more sophisticated TSP heuristics are available, but our
interest is in the applicability of deterministic planning in general
rather than in the quality of the TSP solution per se.

proximation methods (Koller & Parr 2000), on the other
hand, use a bounded space representation for the MDP’s
value function and, thus, policy, but do not necessarily yield
near-optimal plans. Both classes of methods are intended to
address general compact MDPs. We instead seek to provide
compact and near-optimal policies for only a restricted class
of compact MDPs by exploiting additional structure in the
model beyond that used to factor the transition function.

Our use of options for macros puts this method into the
class oftemporal abstractionsas well (Sutton, Precup, &
Singh 1999; Precup 2000). Macros have previously been
used to speed up MDP planning and reinforcement learn-
ing (McGovern, Sutton, & Fagg 1997) and for knowledge
reuse; our contribution is using them to “hide” stochastic-
ity and render the semi-MDP nearly deterministic. Simi-
lar macro formulations can be used to partition state vari-
ables (rather than suppressing entire dimensions as we do),
for example, to hierarchically decompose a physical space
into regions such as Voronoi regions or rooms and corridors
(Kaelbling 1993; Hauskrechtet al. 1998; Parr 1998a; 1998b;
Guestrin & Ormoneit 2001). Macro integration again in-
volves a meta-planning process which treats macros as prim-
itive actions. The difficulty is in constructing a complete
basis set of macros sufficient to respond to all possible re-
ward scenarios—how you choose to act in one region may
depend on apparent rewards in adjacent regions. In general,
an exponential number of macros may be required even for
a single fixed region.

Our approach, however, need not be exclusive of these
other methods for scaling MDP planning. The sub-problems
Mi resulting from the initial model decomposition (or any
nondeterministic component of the original MDP in general)
could still be intractably large and it may be profitable to
apply one of these other techniques to them.

The analysis of our algorithm was inspired by the MDP
Simulation Lemma (Kearns & Koller 1999) which demon-
strates a notion of similarity between two MDPs. We de-
velop such a similarity between stochastic and deterministic
semi-MDPs (i.e., distance graphs), using the finite horizon
model and bounded branching factor in place of mixing time
and model parameter cardinality.

Conclusions
In this paper, we have demonstrated a method for efficient
planning in a restricted class of mixed, “semi-stochastic,
semi-deterministic” MDPs. By carefully selecting macros
to “hide” the stochasticity of the navigational component
of our package delivery problem, we are able to attack the
deterministic routing problem directly with special-purpose
methods. The combination of macros with the atomic MDP
yields a semi-MDP corresponding to the routing problem,
and we have given a tractable evaluable relation between the
optimal plans for the semi-MDP and its deterministic ap-
proximation. Finally, we demonstrated that the two models
are close on a large simulated domain and that the value of
the optimal deterministic plan is close to that of the optimal
atomic solution on some small domains.

In general, we believe that thistype of approach holds
great promise for stochastic planning. MDPs can encapsu-

late a wide variety of deterministic optimization problems
for which good solutions are available; by carefully exploit-
ing the structure of such MDPs and constructing appropri-
ate macro actions, we could harness those solutions directly
into the stochastic planning framework. While we have
presented our techniques in terms of the TSP optimization
problem for mobile robot navigation domains, we believe
that this work will extend to related problems like shortest-
path, location monitoring, battery maintenance, or vehicle
routing. In the extended version of this paper, we address
the prioritized packages version of package delivery which
yields the more complexprize-collecting minimum latency
path optimization problem (Goemans & Kleinberg 1996;
Arora & Karakostas 1999).

We have assumed here that all macros run to termina-
tion (i.e., encountering a delivery location), but it is known
that policies can be improved by terminating macros prema-
turely (Precup 2000). In general this requires knowing the
true value of the currentfull state with respect to each avail-
able macro. We have avoided computing this term, but we
can give sufficient conditions for premature termination of
macros given only thelocal information of the agent’s cur-
rent value with respect to each macro’s individual sub-goal.

In this work we have employed extensive domain knowl-
edge to decompose the model and identify the underlying
optimization problem. One of the most interesting outstand-
ing question is how to automatically identify these quanti-
ties, especially for model-free systems. We believe these
questions to be difficult, but recent advances in model struc-
ture identification and algorithm identification may provide
useful insights.

Acknowledgements
The authors would like to thank Luke Zettlemoyer, Natalia
H. Gardiol, and Mike Benjamin for valuable discussions on
the analysis of the algorithm and comments on early drafts
of this paper, and David Karger and Maria Minkoff, for in-
sights on the underlying optimization problem. This work
was supported in part by DARPA contract #DABT63-99-1-
0012 and in part by NASA award #NCC2-1237.

References
Arora, S., and Karakostas, G. 1999. Approximation
schemes for minimum latency problems. InACM Sympo-
sium on Theory of Computing, 688–693.
Baum, J., and Nicholson, A. E. 1998. Dynamic non-
uniform abstractions for approximate planning in large
structured stochastic domains. InProceedings of the 5th
Pacific Rim International Conference on Artificial Intelli-
gence, 587–598.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations.Artificial Intelligence121(1–2):49–107.
Dean, T., and Givan, R. 1997. Model minimization
in Markov decision processes. InProceedings of the
Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 106–111. Providence, RI: AAAI Press/MIT
Press.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains.Artificial Intelligence76.
Goemans, M., and Kleinberg, J. 1996. An improved ap-
proximation ratio for the minimum latency problem. In
SODA: Proceedings of the Seventh ACM-SIAM Symposium
on Discrete Algorithms.

Guestrin, C., and Ormoneit, D. 2001. Robust combina-
tion of local controllers. In Breese, J., and Koller, D., eds.,
Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence (UAI-01), 178–185. Seattle, WA:
Morgan Kaufmann.

Hauskrecht, M.; Meuleau, N.; Boutilier, C.; Kaelbling,
L. P.; and Dean, T. 1998. Hierarchical solution of Markov
decision processes using macro-actions. In Cooper, G. F.,
and Moral, S., eds.,Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI-98).
Morgan Kaufmann.
Johnson, D. S., and McGeoch, L. A. 2001.The Traveling
Salesman Problem and its Variations. Kluwer Academic
Publishers. chapter Experimental Analysis of Heuristics
for the STSP. To appear.

Kaelbling, L. P. 1993. Hierarchical learning in stochastic
domains: Preliminary results. InProceedings of the Tenth
International Conference on Machine Learning, 167–173.

Kearns, M., and Koller, D. 1999. Efficient reinforcement
learning in factored MDPs. In Dean, T., ed.,Proceedings
of the Sixteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-99), 740–747. Stockholm, Swe-
den: Morgan Kaufmann.

Kemeny, J. G., and Snell, J. L. 1976.Finite Markov Chains.
Undergraduate Texts in Mathematics. New York: Springer-
Verlag.
Koller, D., and Parr, R. 2000. Policy iteration for fac-
tored MDPs. InUncertainty in Artificial Intelligence: Pro-
ceedings of the Sixteenth Conference (UAI 2000). Morgan
Kaufmann.

Littman, M. 1997. Probabilisitic propositional planning:
Representations and complexity. InProceedings of the
Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 748–754. Providence, RI: AAAI Press/MIT
Press.

Lusena, C.; Mundhenk, M.; and Goldsmith, J. 2001. Non-
approximability results for partially observable Markov de-
cision processes. Journal of Artificial Intelligence Re-
search14:83–103.
McGovern, A.; Sutton, R. S.; and Fagg, A. H. 1997. Roles
of macro-actions in accelerating reinforcement learning.
In Proceedings of the 1997 Grace Hopper Celebration of
Women in Computing, 13–18.

Moore, A. W.; Baird, L. C.; and Kaelbling, L. 1999. Multi-
value-functions: Efficient automatic action hierarchies for
multiple goal MDPs. In Dean, T., ed.,Proceedings of the
Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI-99). Stockholm, Sweden: Morgan Kauf-
mann.

Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender,
E. 2000. Complexity of finite-horizon markov decision
process problems.Journal of the ACM47(4):681–720.
Parr, R. 1998a. Flexible decomposition algorithms for
weakly coupled Markov decision problems. In Cooper,
G. F., and Moral, S., eds.,Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence (UAI-
98). Morgan Kaufmann.
Parr, R. E. 1998b.Hierarchical Control and Learning for
Markov Decision Processes. Ph.D. Dissertation, University
of California at Berkeley.
Precup, D. 2000.Temporal Abstraction in Reinforcement
Learning. Ph.D. Dissertation, University of Massachusetts,
Amherst, Department of Computer Science.
Puterman, M. L. 1994.Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York: John
Wiley & Sons.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning.Artificial Intelligence
112:181–211.

