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Abstract—Programming mobile robots can be a long,

time-consuming process. Specifying the low-level map-

ping from sensors to actuators is prone to programmer

misconceptions, and debugging such a mapping can be

tedious. The idea of having a robot learn how to ac-

complish a task, rather than being told explicitly is an

appealing one. It seems easier and much more intuitive

for the programmer to specify what the robot should be

doing, and to let it learn the fine details of how to do

it. In this paper, we introduce a framework for rein-

forcement learning on mobile robots and describe our

experiments using it to learn simple tasks.
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I. Introduction

Programming mobile robots can be a very time-
consuming process. It often takes many iterations to
fine-tune the low-level mapping from sensors to actua-
tors. It is often difficult for a programmer to translate
knowledge about how to complete a task into terms
that are useful for the robot. Robot sensors and ac-
tuators are very different from those of humans, and
misconceptions about how they operate can cause con-
trol code to fail. The idea of providing some high-level
specification of the task and using machine learning
techniques to “fill in the details” is an appealing one.
It seems like it would take less time to write this high-
level specification and the learned control policy, if it
uses empirical observations of the world, should less
prone to programmer bias than hand-written control
code would be.

In this paper we briefly survey reinforcement learn-
ing, a machine learning paradigm that is especially
well-suited to learning control policies for mobile
robots. We discuss some of its shortcomings, and
introduce a framework for effectively using reinforce-
ment learning on mobile robots. We then go on to give
experimental results of applying this framework to two
mobile robot control tasks.
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II. Reinforcement Learning

Reinforcement learning (RL) is a machine learning
paradigm that is particularly well-suited for use on
mobile robots. It assumes that the world can be de-
scribed by a set of states, S, and that the agent (the
robot in this case) can take one of a fixed number of
actions, A. Time is divided into discrete steps. At
each time step, the agent observes the state of the
world, st, (which might include the internal state of
the robot) and chooses an action, at to take. After tak-
ing the action, the agent is given a reward, rt+1 ∈

�
,

reflecting how good, in a very short-term sense, that
action was, and observes the new state of the world,
st+1. The goal of RL is to take these experience tuples,
(st, at, rt+1, st+1), and learn a mapping from states (or
states and actions, depending on the particular algo-
rithm used) to a measure of the long-term value of
being in that state, known as the optimal value func-
tion.
The particular reinforcement learning algorithm

that we use in this work is Q-learning [1]. The Q-
learning optimal value function is defined as

Q∗ (s, a) = E
[

R (s, a) + γmax
a′

Q∗ (s′, a′)
]

.

This represents the expected value of the reward for
taking action a from state s, ending up in state s′, and
then acting optimally from then on. The parameter γ
is known as the discount factor, and is a measure of
how much attention we pay to possible rewards that
we might get in the future. Once we have the opti-
mal Q-function, Q∗(s, a), it is easy to calculate the
optimal policy, π∗(s), by simply looking at all possible
actions from a given state and selecting the one with
the largest value,

π∗(s) = argmax
a

Q (s, a) .

The Q-function is typically stored in a table, indexed
by state and action. Starting with arbitrary values,
we can iteratively approximate the optimal Q-function
based on our observations of the world. Every time
that the robot takes an action, an experience tuple,
(st, at, rt+1, st+1), is generated. The table entry for
state s and action a is then updated according to

Q (st, at) ← (1− α)Q (st, at)+
α (rt+1 + γmaxa′ Q (st+1, a

′)) .



Under some reasonable conditions [1] this is guaran-
teed to converge to the optimal Q-function, Q∗(s, a).
One of the most important features of Q-learning is
that it is what is known as an off-policy algorithm.
This means that the distribution from which the train-
ing samples are drawn has no effect, in the limit, on
the policy that is learned. This will prove to be very
important for our algorithm, as discussed below.

This description of Q-learning has been necessarily
brief. For much more comprehensive coverage, see the
book by Sutton and Barto [2] or the survey by Kael-
bling, Littman and Moore [3].

III. Reinforcement Learning on Robots

Reinforcement learning, and Q-learning in particu-
lar, seems to be a natural choice for learning control
policies on mobile robots. Instead of designing a low-
level control policy, we can design a much higher-level
task description in the form of the reward function,
R(s, a). Designing a sparse reward function is gener-
ally easier than designing the low-level mapping from
observations to actions. Often, for robot tasks, re-
wards correspond to physical events in the world. This
makes is easy to come up with simple reward functions
for many tasks. For example, for an obstacle avoidance
task, the robot might get a reward of 1 for reaching
the goal, and -1 for hitting an obstacle. In theory, this
is all that is necessary for the robot to learn the opti-
mal policy. However, there are a number of problems
with simply using standard Q-learning techniques. We
will call this type of reward function sparse. Sparse re-
ward functions are zero everywhere, except for a few
places (the obstacles and goal in the above example).
The contrast with dense reward functions, which give
non-zero rewards most of the time. A dense reward
function for obstacle avoidance might be, for exam-
ple, the sum of distances to the obstacles divided by
the distance to the goal state. Dense reward functions
give more information after each action, but are much
more difficult to construct than sparse functions. In
this work, we will mostly be interested in sparse re-
ward functions, since they are generally much simpler
to design.

One problem with RL on mobile robots is that the
state space description of mobile robots is often best
expressed in terms of vectors of real values, Q-learning
requires discrete states and actions. One approach
to overcome this problem, known as value-function
approximation, replaces the tabular representation of
Q(s, a) with a general-purpose function approximator.
However, it has been shown that this will not work
for general function approximators, even in seemingly
benign situations [4]. In previous work [5], [6], we
presented an algorithm, Hedger, that addresses the

problems associated with value-function approxima-
tion. The algorithm is based on the observation by
Gordon [7] that a function approximator can safely be
used to replace the tabular value function represen-
tation if it never extrapolates from its training data.
He showed that locally weighted averaging (LWA) is
such a function approximator. Hedger uses a more
powerful function approximator, locally weighted re-
gression (LWR) [8], supplemented with extrapolation
checks, for value-function approximation. For every
query, it checks to make sure that the query point is
within the training data that it has already seen, and
that the predicted value is within reasonable limits
(given the rewards observed). If the query is outside of
the training data, or the prediction is not reasonable,
it returns a prediction using LWA (which is guaran-
teed safe). Otherwise, the prediction using LWR is re-
turned. This algorithm has been shown to learn faster
than one based only on LWA, and to be robust across
a number of test domains [6].

In all of the work presented here, we use Hedger

as part of our Q-learning implementation. Previous
work has generally solved this problem either by using
domain knowledge to create a good discretization of
the state space [9] or by hierarchically decomposing
the problem by hand to make the learning task easier
[10].

The other main problem is that of incorporating
prior knowledge into the learning system. The only
way that Q-learning can find out information about
its environment is to take actions and observe their ef-
fects. In the early stages of learning, the system knows
nothing about the environment, or how to act in it. It
is, therefore, forced to choose more-or-less arbitrary
actions. As more information, in the form of rewards,
R(s, a), arrives, Q-learning can iteratively improve its
approximation of the value function. However, if no
rewards are observed, the value function approxima-
tion will never change. This problem is compounded
by sparse reward functions. If there are only a few re-
wards, and the state-action space is large, the chances
of finding a reward by chance are very small indeed. In
section IV, we introduce a framework for RL on robots
that addresses this problem.

IV. The Learning Framework

One of the major hurdles to implementing RL sys-
tems on real robots is the inclusion of prior knowledge
in the learning system. Using a sparse reward function,
and without some prior knowledge of the environment,
the learning system is almost certainly doomed to fail.
Our solution to this problem is to supply example tra-
jectories to the learning system and split learning into
two phases.
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Fig. 1. The two learning phases.

In the first phase of learning, shown in figure 1(a),
the robot is being controlled by a supplied control pol-
icy. This can either be actual control code, or a human
directly controlling the robot with a joystick. During
this learning phase, the RL system is passively watch-
ing the states, actions and rewards that the supplied
policy is generating. It uses these rewards to bootstrap
information into its value-function approximation.

The key element of this phase is that the RL system
is not in control of the robot. At this point, we assume
that the value-function approximation is not complete
enough to adequately control the robot. The rôle of
the supplied control policy is to expose the RL sys-
tem to the “interesting” parts of the state space, those
parts where the reward is non-zero. It is important to
note that we are not trying to learn the trajectories
generated by the supplied policy, but simply using the
to generate experiences with which to bootstrap the
value-function approximation.

Once the value-function approximation is complete
enough to control the robot effectively, the second
learning phase starts. In this phase, shown in fig-
ure 1(b), the learned policy is in control of the robot,
as it would be in a standard RL implementation. If
the supplied control policy is a piece of software (as op-
posed to direct human control), it can be kept running
in the background to offer advice on control decisions
if needed.

By splitting the learning into two phases, we gain
the ability to bootstrap information into the value-
function approximation before committing to using the
learned policy to control the robot. This allows us
make sure that, once we move to the second learning
phase, the robot will be capable of finding reward-
giving states, and that learning will not stall. By ob-
serving the example trajectories, we remove the need
to know about the robot sensor and actuator systems
in detail. If phase one learning is done by direct con-
trol of the robot, the human controller does not need
to know anything about sensor systems, inverse kine-

matics or reinforcement learning. Lin [11] used a sim-
ilar method to bootstrap information into the value
function, but relied on hand-coded sequences of expe-
riences. This requires detailed knowledge about how
the robot moves and how the sensors work. If any of
this knowledge is incorrect, or based on faulty assump-
tions, the learning system will fail to produce the de-
sired results. By observing actual trajectories through
the state-action space, we are learning from empirical
data, and are not subject to our own biases.

This sort of learning by demonstration has become
quite popular recently [12], with the robots generally
trying to learn the inverse kinematics of a task by ob-
servation [13]. The closest work to that reported here
is by Lin [11], who used example trajectories to ac-
celerate learning. However, these trajectories were as-
sembled by hand and required a detailed knowledge of
the robot dynamics and sensor systems. Our approach
differs in the fact that we use the robot itself, under
human guidance, to create the example trajectories
from which the RL system learns.

V. Experimental Results

In this section, we present the results of using our
framework to learn control policies for two simple
robot tasks, corridor following and obstacle avoid-
ance. The experiments were carried out on a Real
World Interface B21r mobile robot. The robot has a
synchronous-drive locomotion system and can rotate
about its axis, and translate forwards and backwards.
In all of the experiments reported here, the translation
speed was either controlled by a fixed policy (for cor-
ridor following) or constant (for obstacle avoidance).
Our goal is to learn a good policy for setting the rota-
tion velocity of the robot.

The robot uses a scanning laser range-finder to iden-
tify walls and obstacles in the world. Higher-level fea-
tures, described below, are computed from the raw
laser information and used as inputs to the control
system.

Every five training runs, learning was temporarily
disabled, and the performance of the learned policy
was evaluated. These evaluation runs were started
from ten pre-specified starting poses. Our evaluation
metric is number of steps taken to reach the goal state.
The performance graphs below show the average num-
ber of steps to the goal, along with the 95% confidence
bound on this average. Training runs were also started
from a variety of poses similar to, but not the same as,
those used for evaluation.

In all of the experiments presented here, the RL
learning rate, α, is set to 0.2. In the corridor following
experiments, the discount factor, γ, is set to 0.99, and
in the obstacle avoidance experiments it is set to 0.9.
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A. Corridor Following

The corridor following task is shown in figure 2. The
translation speed, vt, of the robot is controlled by a
fixed policy that causes it to move quickly when it is
in the middle of the corridor and more slowly as it gets
closer to a wall. The state space of this problem has
three dimensions, the distance to the end of the corri-
dor, the distance from the left-hand wall as a fraction
of the total corridor width and the angle to a target
point, shown in figure 3. The angle to the target point,
θ is

θ = tan−1 20

d
+ φ−

π

2
.

We found that using the angle to a moving target point
like this resulted in much smoother behavior than us-
ing the angle that the robot heading made with the
corridor. The robot gets a reward of 10 for reaching
the end of the corridor, and a reward of zero in all
other situations.
Figure 4 shows the performance of the framework

using a simple control policy for phase one learning.
The supplied policy was a simple proportional con-
troller

vr = αθ.

The value of the gain, α, was varied from run to run
in order to generate a wider range of experiences for
the learning system. As can be seen from the figure,
the performance of the learned policy improves with
more experience. After 30 phase one training runs, the
performance is significantly better (at the 95% level)
than that of the shortest phase one training run (la-
belled “best example” in the figure).
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Fig. 4. Corridor following performance with simple policy ex-
amples.

After 30 phase one training runs, the learned pol-
icy was deemed to be competent enough to take over
control of the robot. The first evaluation, after five
phase two training runs, is worse than the last phase
one evaluation. After this, however, the performance
of the learned policy continues to improve. We have
noticed this behavior in many domains, just after the
change in learning phases. During phase one learning,
the experiences generated by the example trajectories
are likely to be fairly predictable. Thus, the number
of novel experiences per run that he learning system
must cope with is relatively small. However, after the
phase transition, when the learned policy is in con-
trol, a greater number of novel experiences seem to be
generated. This causes a temporary decrease in perfor-
mance until the learning system has time to integrate
the new data properly.

After 35 phase two training runs, the performance
of the learned policy is indistinguishable (at the 95%
level) from the best that one of the authors could
achieve by directly controlling the robot with a joy-
stick (labelled “optimal” in the figure). The confidence
bounds on the average performance also narrow with
more training. This corresponds to the performance of
the robot becoming more predictable across different
starting poses.

Figure 5 shows the performance of the framework on
a another corridor following task. This time, however,
phase one training was done by directly controlling the
robot with a joystick, instead of using an hand-coded
example policy. The corridor used in this experiment
is longer than in the previous one, so the best pos-
sible performance will be different. Again, the graph
shows the average and shortest training runs used dur-
ing phase one, and the best one of the authors could
do. The phase one training runs are all longer than
this “optimal” value because no attempt was made to
make them “good” examples. In fact, the robot was
driven quite sloppily during phase one and, although
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Fig. 5. Corridor following performance with direct control ex-
amples.

it eventually reached the goal the path was often far
from the shortest possible.

The basic profile of the performance is similar to
that shown in figure 4, with two notable exceptions.
There are fewer phase one training runs, and the per-
formance improvement in phase one is much more
rapid than in phase two. These are caused by the na-
ture of the training data generated. The experiences
generated by a human driving the robot are much more
varied than those generated by an example control
policy. This variety of training data means that our
framework is able to generalize more effectively, which
tends to lead to better performance in new situations.

As with the previous set of experiments, the slight
performance decrease just after the learning phase
change is evident. The final performance is, again, in-
distinguishable from the best that one of the authors
could do by directly controlling the robot.

To see how effective phase one training is, in terms of
time spent, we also ran some simulations of the corri-
dor following task. Since we are dealing with a sparse
reward function, learning time is dominated by the
time taken to reach a reward-giving state for the first
time. We simulated a robot in a corridor 10m long,
approximately the length of the corridor in the first
set of experiments described above, and timed how
long it took to get to the reward states at the end
of the corridor. The simulated robot had the same
translation speed policy as in the real experiments,
and used the idealized forward model for synchronous-
drive systems. For each set of experiments, we started
the robot in the middle of the corridor, pointing in a
random direction in the half-circle towards the goal.
In each set of experiments, we limited the magnitude
of the rotation velocity, vr (in the real robot exper-
iments, −1 ≤ vr ≤ 1). Actions were chosen from a
uniform distribution over the appropriate range. Fig-
ure 6 shows the results from these simulations. The
fastest that the simulation was able to reach the goal
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Fig. 6. Performance on the simulated corridor following task.
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was slightly over two hours. Although it can be argued
that a more informed action selection policy could do
better, we are assuming that a standard RL approach
will not have such domain-specific knowledge. In this
case we are forced to take more-or-less arbitrary ac-
tions. In both of the real robot experiments reported
above, all of the training was accomplished in approx-
imately two hours. Since figure 6 shows the time until
the first reward is found, it is clear that using phase
one learning offers a huge time saving for this task.

B. Obstacle Avoidance

The obstacle avoidance task that we used is shown
in figure 7. The translation speed, vt, of the robot is
fixed, and we are trying to learn a policy for the ro-
tation speed, vr. The goal is to have the robot drive
to the goal state, while avoiding the obstacles in the
environment. A reward of 1 is given for reaching the
goal, a reward of -1 is given for colliding with an obsta-
cle and a zero reward is given in all other situations.
An experimental run terminates when the robot either
reaches the goal, or hits an obstacle. The inputs to the
learning system are the direction and distance to the
goal state and the obstacles, as shown in figure 8. The
robot is started in a random pose approximately three
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Fig. 9. Successful runs (out of 10) for the obstacle avoidance
task.

meters from the goal point for each experimental run.
Our performance metric is the number of time steps
needed to reach the goal state. In all of the experi-
ments reported in this section, one obstacle was used
and example trajectories were generated by direct joy-
stick control of the robot.

The obstacle avoidance task is somewhat more dif-
ficult than corridor following. The robot is contained
by the walls of the corridor and constrained by the
dynamics of the robot. It is relatively difficult for it
to get seriously lost, and to start driving down the
corridor in the wrong direction. This means that it
will (eventually) reach the reward-giving state at the
end of the corridor in most experiments. However,
in the obstacle avoidance task, there is no such help
from the environment. In fact, policies that are almost
perfect might just miss the goal state, and be unable
to recover. This is reflected in figure 9, which shows
the number of evaluation runs (out of ten) that actu-
ally manage to reach the goal state. Notice that th
framework must see fifteen phase one example trajec-
tories before it is capable of reaching the goal on its
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Fig. 10. Performance on the obstacle avoidance task.

Starting distance
1m 2m 3m

Successful 46.2% 25.0% 18.7%
Time (hours) 2.03 6.24 6.54

TABLE I

Performance on the simulated obstacle avoidance task.

own. However, once it can find the goal state from
one evaluation starting position, it quickly learns to
reach it from all of them. As before, notice the slight
performance decrease just after the change in learning
phases.

For those evaluation runs that were able to reach
the goal, figure 10 shows the average number of steps
taken. The performance increase in the first learn-
ing phase is much more dramatic than in the second
phase. This is similar to the previous task when di-
rect control is used for phase one training. Again, the
final performance is not significantly different (at the
95% level) from the best that the authors could achieve
with direct control of the robot. As with the corridor
following task, the total time to reach the final perfor-
mance level shown in figure 10 was approximately two
hours.

As before, we ran a simulation of this task to see how
long it would take the robot to reach the goal state
without the benefit of phase one training. The robot
was started at various distances from the goal state,
pointing straight at it. No obstacles were present and
rotation velocity, vt, was chosen according to a normal
distribution with mean zero and variance 0.05. Ta-
ble I shows the number of runs that reached the goal
within one week of simulated time, and the average
time that these successful runs took. When starting



at the same point as the real robot, less than one run in
five was able to reach the goal state. Even those that
did took an average of approximately six and a half
hours. This is longer than the battery life of our robot.
This demonstrates the necessity of example trajecto-
ries and phase one training when using reinforcement
learning on a real robot.

VI. Conclusions

In this paper we have presented a framework for
using reinforcement learning on mobile robots. The
main feature of the system described in the paper is
the use of example trajectories to bootstrap the value-
function approximation, and the splitting learning into
two phases. In the first learning phase, the robot is un-
der the control of an example solution for the task, or
is controlled directly by a human. The reinforcement
learning system passively observes the states, actions
and rewards encountered by the robot, and uses this
information to bootstrap its value-function approxi-
mation. Once the learned policy is good enough to
control the robot, the second phase of learning begins.
The RL system is in control of the robot, and learning
progresses as in the standard Q-learning framework.

Using example trajectories through the space allows
us to easily incorporate human knowledge about how
to perform a task in the learning system. The hu-
man guiding the robot does not need to know about
the sensor and effector systems, or about reinforce-
ment learning. They do not even have to show the
robot the best solution for the task. In the experi-
ments presented here, the final performance levels for
both of the tasks are significantly better than any of
the example trajectories used during phase one train-
ing. This underlines the point that we are not learning
the trajectories that we are shown but are simply us-
ing them to generate experience that is then used by
the reinforcement learning system.

Finally, the framework is capable of learning good
control policies more quickly than moderately experi-
enced programmers can hand-code them, at least for
the tasks that we looked at. Anecdotally, we have ob-
served that novice programmers can take up to a week
to write a good wall-following program. In the exper-
iments above, we managed to learn a good policy in
approximately two hours.

We believe that our framework shows the promise of
using RL techniques on real robots. However, there are
still many open questions. How complex a task can be
learned with sparse reward functions? How does the
balance of “good” and “bad” phase one trajectories
affect the speed of learning? Can we automatically
determine when to change learning phases? We are
addressing these questions in our current work.
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