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Abstract

In large multiagentgamespartial obsenability, coordination andcredit
assignmenpersistentlyplagueattemptsto designgood learningalgo-

rithms. We provide a simple and efficient algorithmthatin partusesa

linear systemto modelthe world from a singleagents limited perspec-
tive, andtakes advantageof Kalmanfiltering to allow anagentto con-

structa goodtraining signaland effectively learna nearoptimal policy

in awide variety of settings.

1 Intr oduction

Learningin a single-agenstationary-emironmentsettingcanbe a hard problem,but rel-
ative to the multi-agentlearningproblem,it is easy Whenmultiple learningagentsare
introducedinto the system,one of the key elementsof the usualreinforcementiearning
frameawork —the Markov propertyof the statespace- fails, becaus¢he changingoehavior
of the otheragentschangeshe dynamicsof the world. Thereare several differentap-
proachego overcomingthis problem,includingtools andconceptdrom gametheoryand
partially obsenable Markov decisionprocesseshut nonehave provento be effective in
general.We needa differentapproachandin this paper we presenta simpleabstraction
andrewardfiltering techniquethat allows computationallyefficient androbustlearningin
large multi-agentervironmentsvhereothermethodsmnayfail or becomentractable.

In mary multi-agentsettings,ourlearningagentdoesnot have afull view of theworld. At
theveryleast,it usuallydoesnot have a a completerepresentationf the internalstatesof
theotheragents Oftentimest cannotseetheworld stateof agentghatarefar away or oth-
erwiseobscuredThis partialobsenability createproblemsvhentheagenteginsto learn
abouttheworld, sinceit cannotseehow the otheragentsaremanipulatinghe ervironment
andthusit cannotascertairthe true world state. It may be appropriateto modelthe ob-
senableworld asa non-stationaryMarkov DecisionProcesgMDP). A separatg@roblem
ariseswhenwe train multiple agentsusinga global reward signal. This is oftenthe case
in cooperatie gamesin which all the agentscontritute towardsattainingsomecommon
goal. Evenwith full obsenability, the agentsvould needto overcomea creditassignment
problem,sinceit may be difficult to ascertainvhich agentswereresponsibldor creating
goodreward signals.If we cannotevenobsene whatthe otheragentsaredoing, how can

we begin to reasorabouttheir role in obtainingthe currentreward? Our solutionrelieson
its simplicity.



Consideranagentin an MDP, learningto maximizea rewardthatis a function of its ob-
senablestateand/oractions. Thereare mary well-studiedlearningtechniquedo do this
[SuttonandBarto, 1999. The effectsof non-stationaritypartial obsenability, andglobal
rewardscanbethoughtof asreplacingthis truerewardsignalwith analternatesignalthatis
anon-stationaryunction of the original reward. Think of the differencebetweerearning
with a personatoachandlearningin alarge classwherefeedbackis givenonly on collec-
tive performanceThis causeproblemsfor anagentthatis trying to usetherewardsignal
to learnanoptimal policy for this environment. Ideally the agentcanrecover the original
personatewardsignalandlearnusingthatsignalratherthanthe globalreward signal.

We shaw thatin mary naturallyarisingsituationsof this kind, an effective approachs for
anindividual agentto modelthe obsenedglobal reward signalasthe sumof its own con-
tribution (which is the personakreward signalon which it shouldbaseits learning)anda
randomMarkov procesgwhich is the amountof the obsenedreward dueto otheragents
or externalfactors).With sucha simplemodel,we canestimateboth of thesequantitiesef-
ficiently usinganonline Kalmanfiltering processMany externalsource®of reward(which
couldberegardedasnoise)canbe modeledasor approximatedy a randomMarkov pro-
cess,so this techniquepromisesbroadapplicability This approachis more robust than
trying to learndirectly from theglobalreward,allowing agentgo learnandcornvergefaster
to anoptimal or nearoptimal policy, sometimesvenin domainswherecorvergencewas
onceelusie.

2 RelatedWork

This type of problemhasbeenapproachedn the pastusinga variety of techniques.For
slowly varying ernvironments,Szitaet al. [2002] provide a specializatiorof Littman and
Szepes#ri's [1996] techniquegor generalizedMDPs, shaving that Q-learningwill con-
verge aslong asthe variation per time stepis small enough. In our case,we attemptto
tackle problemswherethe variationis muchlarger. Choi et al. [1999] investigatemodels
in which thereare“hidden modes”. Whenthe ernvironmentswitchesbetweenmodes all
therewardsmaybealtered.This worksif we havefairly detaileddomainknowledgeabout
thetypesof modeswe expectto encounterFor variationproducedoy the actionsof other
agentsn theworld, or for truly unobserableenvironmentalchangesthis techniquewvould
notwork aswell. Auer etal. [1995] shaw thatin arbitrarily varyingervironmentswe can
craftaregret-minimizingstratey for playingrepeatedjamesMannorandShimkin[2001]
extendtheseresultsto certainstochastiggames.Theseresultsarelargely theoreticain na-
tureandcanyield fairly looseperformancéounds especiallyin stochastigamesRather
thanfiltering therewardsaswe will do,Ng etal. [1999] show thata potentialfunctioncan
be usedto shapethe rewardswithout affecting the learnedpolicy while possiblyspeeding
up convergence.This assumeshatlearningwould corvergein thefirst place,thoughpos-
sibly takingaverylongtime. Moreover, it requiresdomainknowledgeto craft this shaping
function.

The innovative aspecbf our approachs to considerthe reward signalasmerelya signal
thatis correlatedwith our true learningsignal. We proposea model that capturesthe
relationshipbetweenthe true reward andthe noisy rewardsin a wide rangeof problems.
Thus,withoutassumingnuchadditionaldomainknowledge ,we canusefiltering methods
to recovertheunderlyingtrue rewardsignalfrom the noisy obsenedglobalrewards.

3 Mathematical model

The agentassumeshatthe world possessesne or moreunobserablestatevariablesthat
affecttheglobalrewardsignal. Theseunobserablestatesmayincludethepresencef other



agentsor changesn the environment.Eachagentmodelsthe effect of theseunobserable
statevariableson the globalreward asan additive noiseprocess; thatevolvesaccording
to b1 = by + 2, Wherez,; is a zero-mearGaussiamandomvariablewith varianceo,,.

The global reward that it obseresif it is in state: attime ¢ is g, = (i) + b;, wherer

is a vectorcontainingthe ideal training rewardsr(i) receved by the agentat statei. The
standardnodelthatdescribesuchalinearsystemis:

gt:C:r:t—i-vt, UtNN(O,ZQ)
Ty = Az +wi, we ~ N(0,%)

In our casewe desireestimatesf z; = [r]  b,]7. Weimpartour domainknowledgeinto

the modelby specifyingthe estimatedvarianceand covarianceof the component®f x;.

In our case,we set¥; = 0 sincewe assumeno obsenation noisewhenwe experience
rewards;X1(j,7) = 0,5 # |S| + 1, sincethe rewardsare fixed and do not evolve over
time; X, (]S|+1,|S]+1) = o sincethenoisetermevolveswith variancer,,. Thesystem
matrixis A = I, andthe obsenationmatrixisC = [0 0...1;...0 0 1] wherethel;

occursin thei*" positionwhenour obseredstates = i.

Kalmanfilters[Kalman,1960d areBayesoptimal,minimummean-squared-errestimators
for linear systemswith Gaussiamoise. The agentappliesthe following causalKalman
filtering equationsat eachtime stepto obtainmaximumlik elihoodestimatesor b andthe
individual rewardsr(¢) for eachstate; givenall previous obsenations.First, the estimate
2 andits covariancematrix P areupdatedn time basedn thelinearsystemmodel:

B o= Ab (1)
Pl = AP AT+, 2)
Thenthesea priori estimate@reupdatedisingthe currenttime period’s obsenation g, :
K, = P/CT(CPCT +%,)7 ! (3)
Ty = &+ Ki(ge — O) 4
P, = (I-KC)P (5)

As shown, the Kalmanfilter alsogivesusthe estimationerror covarianceP;, from which
we know the varianceof the estimatedor » andb. We canalso computethe likelihood
of observingg; giventhe modeland all the previous obsenations. This will be handy
for evaluatingthe fit of our model, if needed. We could also createmore complicated
modelsif ourdomainknowledgeshowsthatadifferentmodelwould bemoresuitable.For
example,if we wantedto capturethe effect of anupwardbiasin the evolution of the noise
procesgperhapsto modelthe fact that all the agentsare learningand achieving higher
rewards),we could addanothewvariablew, initialized suchthatuy > 0, modifying « to be
z=[rT b u]T, andchangingour noisetermupdateequationto b;, 1 = b; + u; + w;. In
othercaseswe might wish to usenon-lineammodelsthatwould requiremoresophisticated
techniquesuchasextendedKalmanfilters.

For the learningmechanismwe usea simple takular Q-learningalgorithm [Suttonand
Barto,1999, sincewewishto focusour attentionontherewardsignalproblem.Q-learning
keepsa“@Q-value”for eachstate-actiompair, andproceedsisingthefollowing updaterule:

Qt<8a a) = (]- - a)Qt71<55 a) + O‘(r + ’YH(lli,n Qt(sla al)) s (6)

where( < a < 1 is parametethatcontrolsthe learningrate,r is the reward signalused
for learningat time ¢ givens anda, 0 < v < 1 is the discountfactor ands, a, and s’
arethe currentstate action,andnext stateof the agent,respectrely. Underfairly general
conditions,in astationaryMDP, Q-learningcorvergesto the optimalpolicy, expresseds

7(s) = argmax, Q(s,a)
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Figurel: This shavs the dynamicsof our 5x5 grid world domain. The statescorrespond
to the grid locations,numberedt,2,3,4,...,24,25.Actions move the agentN,S,E, or W,
exceptin statess and16, whereary actiontakesthe agentto state10 and18, respectiely,
shavn by the curved arrows in the figure at left. The optimal policy is shavn at center
wheremultiple arrons at onestatedenotesndifferencebetweerthe possibilities.A policy
learnedby ourfiltering agentis shavn atright.

4 Thefiltering learning agent

Like any goodstudentthefiltering learningagentchoosego acceptwell-deseredpraise
fromits teacheandignoreover-effusiverewards.Thegoodstudentoesnot updatehis be-
havior ateverytime step,but only uponobservingelevantrewards.GettinganA in aclass
with aneasyprofessoshouldnot corvincemethatl have goodstudyhabits! Thequestion
remains:How doesanagentdecideupontherelevanceof therewardsit seesAVe have pro-
poseda modelin which undesered rewardsover time are capturedoy a Markov random
proces$. Usingobsenationsfrom previousstatesandactions,anagentcanapproachthis
guestionfrom two perspecties. In the first, eachtime the agentvisits a particularstates,
it shouldgaina bettersenseof the evolution of therandomvariableb betweents lastvisit
andits currentvisit. Secondlygivenanestimateof b, duringa visit to s attime ¢, it hasa
betterideaof thevalueof b;. ; whenit visits s’ attime ¢ + 1. Thesearetheideascaptured
by the causalkalmanfilter, which only usesthe history of paststatesandobsenationsto
providesestimate®f (i) andb.

Theagentfollows this simplealgorithm:

1. Frominitial statesq, take someactiona, transitionto statei, andreceve reward
signalgg. Initialize ¢ (io) = go andio(|S| + 1) = by = 0, sinceby = 0.

2. Performa Kalmanupdateusing equationsl-5 to computethe currentvector of
estimates:, which includesa componenthatis thereward estimate’(sq), which
will simply equalg thistime.

3. Fromthecurrentstatei attimet, take anothemctionwith somemix of exploration
andexploitation;transitionto statej, receving rewardsignalg;. If thisis thefirst
visit to statei, initialize & (i) = g+ — bi—1.

4. Performa Kalman updateusing equationsl-5 to computethe currentvector of
estimates:, which includesacomponenthatis the reward estimater (7).

5. Updatethe Q-tableusing#(i) in placeof r in equation6; returnto Step3.

Theadvantageof the Kalmanfilter is thatit requiresa constanamountof memory— atno

time doesit needafull historyof statesandobsenations.Insteadjt computesa sufficient

statisticduring eachupdatez and P, which consistsof the maximumlik elihoodestimate
of r andb, andthe covariancematrix of this estimate. Thus, we canrun this algorithm
onlineaswe learn,andits speeddoesnot deteriorateovertime.
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Figure2: (Left) Astheagents attemptingo learn,therewardsignalvalue(y-axis)changes
dramaticallyover time (x-axis) dueto the noiseterm. While the true rangeof rewardsin
this grid world domainonly falls between0 and 20, the noisy reward signalrangesfrom
-10to 250,asshawnin thegraphatleft. (Center)Giventhisnoisysignal,thefiltering agent
is still ableto learnthe true underlyingrewards,corverging to the correctrelative values
over time, asshavn in the middle graph. (Right) Thefiltering learningagent(bold line)
accruesigherrewardsover time thanthe ordinary Q-learner(thin line), sinceit is ableto
cornvergeto anoptimal policy whereaghe non-filtering@Q-learneremainsconfused.

5 Empirical results

If theworld dynamicsmatchthe linearmodelwe provide the Kalmanfilter, thencertainly
thismethodwill work well. Theinterestingquestiorconcernsituationsn whichtheactual
dynamicsare clearly differentfrom the model, andwhetherthis filtering agentwill still
learnthe good,or evenoptimal, policiesin suchcasesThis sectionexaminesthe efficacy
of the filtering learningagentin several differentdomains: (1) a single agentdomainin
whichthelinearsystemdescribeshe world perfectly (2) a singleagentdomainwherethe
noiseis manuallyadjustedwvithout following the model,(3) a multi-agentsettingin which
the noiseterm is meantto encapsulat@resenceof otheragentsin the ervironment,and
(4) a more complicatedmulti-agentsettingthat provides an abstractionof a mobile ad-
hocnetworking domainin which mobile agentnodesaretrying to maximizetotal network
performance.

For easeof exposition,all the domainswe usearevariantsof the basicgrid-world domain
shavn in Figure 1 anddescribedn variousreinforcementearningtexts suchas[Sutton
andBarto, 1999. Theagentis ableto move North, South,East,or Westfrom its present
position,and mosttransitionsgive the agentzeroreward, exceptall actionsfrom state6
move the agentdirectly to state10 with areward of 20, andall actionsfrom state16 move
theagentdirectly to state18 with areward of 10. Bumpsinto thewall costtheagent-1 in
rewardandmove theagentnowhere.We usea discountfactorof 0.9.

To demonstratéhe basicfeasibility of our filtering method,we first createa domainthat
follows the linear model of the world givenin Section3 perfectly Thatis, in eachtime
step,asingleagentrecevesits true reward plus somenoisetermthatevolvesasa Markov
randomprocess. To achieve this, we simply add a noiseterm to the grid world domain
givenin Figurel. As shavn in Figure2, anagentactingin thisdomainwill recevealarge
rangeof reward valuesdueto the evolving noiseterm. In the examplegiven, sometimes
this value rangesas high as 250 even thoughthe maximumreward in the grid world is
20 - the noiseterm contributes 230 to the reward signal! A standardQ-learningagent
doesnot standa chanceat learninganything usefulusingthis reward signal. However, the
filtering agentcanrecoverthetruerewardsignalfrom thisnoisysignalandusethatto learn.
Figure2 shaws thatthefiltering agentcanlearnthe underlyingreward signals,corverging
to thesevaluesrelatively quickly. The graphto the right compareghe performanceof the
filtering learnerto thenormalQ-learner shaving a clearperformancedwantage.



Figure 3: (Left) Filtering agentsare able to distinguishtheir personalrewardsfrom the
global reward noise,andthus able to learn optimal policies and maximizetheir average
rewardovertimein aten-agengrid-world domain.(Right) In contrastprdinary@-learning
agentglonotprocessheglobalrewardsignalandcanbecomeconfusedastheervironment
changesroundthem. Graphsshov averagerewards(y-axis) within 1000-periodvindows
for eachof the 10 agentdn atypical run of 10000time periods(x-axis).

The obsenant readermay note that the learnedrewards do not matchthe true rewards
specifiedby the grid world. Specifically they are offsetby about-4. Insteadof mostly
0 rewardsat eachstate,the agenthasconcludedthat most statesproducereward of -4.
Correspondinglystate6 now producesrewardof aboutl6insteacf 20. Since-learning
will still learnthecorrectoptimalpolicy subjectto scalingor translatiorof therewards this
is not a problem. This oddity is dueto the factthatour modelhasa degreeof freedomin
the noiseterm b. Dependingof the initial guesse®f our algorithm,the estimatedor the
rewardsmay be biased.If mostof initial guessesor the rewardsunderestimatethe true
reward, thenthelearnedvaluewill be correspondinglyower thanthe actualtruevalue.In
fact,all thelearnedvalueswill be correspondindpower by thesameamount.

To furthertestour filtering technique we next evaluateits performancen a domainthat
doesnot conformto our noisemodel perfectly but which is still a single agentsystem.
Insteadof a externalreward term that evolvesaccordingto a Gaussiamoiseprocesswe
adjustthe noisemanually introducing positive and negative swingsin the reward signal
valuesat arbitrarytimes. Theresultsaresimilar to thosein the perfectlymodeleddomain,
shaving thatthefiltering methodis fairly robust.

Themostinterestingcaseoccurswhenthedomainnoiseis actuallycausedy otheragents
learningin the ernvironment. This noisewill not evolve accordingto a Gaussiarprocess,
but sincethefiltering methodis fairly robust, we might still expectit to work. If thereare
enoughotheragentsin the world, thenthe noisethey collectively generatenay actually
tend towards Gaussiamoise. Here we focus on smallercaseswvherethereare 6 or 10

agentoperatingn the environment.We modify the grid world domainto includemultiple

simultaneously-actinggentswhoseactionsdo not interferewith eachother, but whose
reward signalnow consistsof the sumof all the agents’personarewards,asgivenin the

basicsingleagentgrid world of Figurel.

We againcomparethe performancef thefiltering learnerto the ordinary@-learningalgo-
rithm. As shavn in Figure3, mostof thefiltering learnersquickly corvergeto the optimal
policy. Threeof the 10 agentsconvergeto a suboptimalpolicy thatproducesslightly lower
averagerewards. However, this artifactis largely dueto our choiceof explorationrate,
ratherthanalargeerrorin theestimatedewardvalues.Thestandard)-learningalgorithm
alsoproducesiecentresultsatfirst. Approximatelyhalf of the agentdind the optimal pol-

icy, while theotherhalf arestill exploringandlearning.An interestingphenomenowccurs
whentheseotheragentdinally find the optimalpolicy andbegin receving higherrewards.
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Figure4: (Left) A snapshobf the4x4 adhoc-netwrkingdomain.S denoteshesourcesR

is therecever, andthe dotsarethelearningagentswhich actasrelaynodes.Linesdenote
currentconnections Note thatnodesmay overlap. (Right) Graphshows averagerewards
(y-axis)in 1000-periodvindows asfiltering (bold line) andordinary(thin line) agentgry

to learngood policiesfor actingasnetwork nodes. The filtering agentis ableto learna
betterpolicy, resultingin highernetwork performancegglobal reward). Graphshaws the
averagefor eachtype of agentover 10trial runsof 100000time periods(x-axis) each.

Suddenlythe performancalropsdrasticallyfor the agentsvho hadfoundthe optimal pol-
icy first. Thoughseeminglystrange this providesa perfectexampleof the behavior that
motivatesthis paper Whenthe otheragentdearnan optimal policy, they begin affecting
the global reward, contributing somepositve amountratherthana consistentzero. This
changesheworld dynamicsfor theagentavho hadalreadylearnedhe optimalpolicy and
causeshemto “unlearn” their goodbehaior.

Theunstabledynamicsof theQ-learnercouldbesolvedif theagenthadfull obsenability,
andwe could learn usingthe joint actionsof all the agentsasin the work of Clausand
Boutilier [1998]. However, sinceour premiseis that agentshave only a limited view of
theworld, the Q-learningagentswill only exhibit convergenceto theoptimalpolicy if they
corvergeto the optimal policy simultaneously This may take a prohibitively long time,
especiallyasthe numberof agentggrows.

Finally, we apply our filtering methodto a morerealisticdomain. Mobilized ad-hocnet-
working providesan interestingreal-world ervironmentthat illustratesthe importanceof
rewardfiltering dueto its high degreeof partial obsenability anda reward signalthatde-
pendson the global state.In this domain,therearea numberof mobile nodeswhosetask
is to move in sucha way asto optimize the connectvity (performancepf the network.
Changet al. [2003] castthis as a reinforcementearning problem. As the nodesmove
around,connectiongorm betweemodesthatarewithin rangeof oneanother Thesecon-
nectionsallow pacletsto be transmittedbetweernvarioussourcesandreceversscattered
amongthenodes.Thenodesarelimited to having only local knowledgeof theirimmediate
neighboringgrid locations(ratherthanthe numberedstatelocationsasin the original grid
world), andthusdo not know their absolutelocationon the grid. They aretrainedusing
a global reward signalthatis a measureof total network performanceandtheir actions
arelimited functionsthat maptheir local stateto N, S, E, W movements.We also limit
their transmissiomangeto a distanceof onegrid block. For simplicity, the singlerecever
is stationaryandalwaysoccupiesthe grid location(1,1). Sourcenodesmove aroundran-
domly, andin our examplehere,therearetwo sourcesand eight mobile agentnodesin a
4x4grid. This setupis shavn in Figure4, andthegraphshonvsacomparisorof anordinary
Q-learnerandthefiltering learner plotting the increasean global rewardsover time asthe
agentdearnto performtheir taskasintermediatenetwork nodes.The graphplotsaverage
performancever 10 runs,shaving the benefitof thefiltering process.



6 Limitations and extensions

TheKalmanfiltering framewnork handlesnary domainsheautifully, aswe have seen How-
ever, therearesomecasesvherewe may needto apply moresophisticatedechniquesin
all of thework above, we have assumedhattherewardsignalis deterministic- eachstate,
action pair canonly producea single reward value, andwill always producethat same
value. Therearesomedomainsn whichwe’d lik e to modeltherewardasbeingstochastic.
For example,the multi-armedbanditproblemis a casein which the rewardsarestochas-
tically relatedto the actiontaken. When the stochasticityof the rewardsapproximates
Gaussiamoise,we canusethe Kalmanframework directly. In equationl, v wassetto ex-
hibit zeromeanandzerovariance However, allowing somevariancewould give the model
anobsenationnoisetermthatcouldreflectthestochasticityof therewardsignal. Thereare
somecasesvhich cannotbe finessedso easily though. Therearetwo potentialremedies
in this situation,which arediscussedn detail in the extendedversionof this paper One
solution modifiesthe systemequationsso that the vectorto be estimatedrepresentshe
averagerewardover atime window, ratherthanasingledeterministicvalue. Anotheralter
native makestwo passe®ver a historywindow . In thefirst passwe do exactly the same
asbefore,exceptthatwe alsonotethelog-likelihoodof eachof our obsenations,basecn
theKalmanfilter statistics.During thesecondoassfor eachstatethatconsistentlyexhibits
unlikely obsenations,we split the stateinto one or more states,gachcorrespondindo a
differentrewardlevel. We thenexaminethe averagelog-likelihoodunderthis nev model,
andif it representa significantimprovementoverthe old model,we keepthe split states.

Finally, in most casesthe Kalman filtering methodprovides a very good estimateof r
overtime. Usuallythe estimateswill asymptoticallyapproachhe actualvalues.However,
onecanimaginecasesn which the optimal policy relieson the choiceof oneactionover
another wherethe @Q-value for the state-actiorpair are quite closetogether Sincewe
cannotguarante@n exactestimateof the rewardvalues,andhencethe statevaluesand/or
Q-values,the agentmay make the wrong decision. However, evenif the policy is sub-
optimal, the errorin our derivedvaluefunctionis at leastboundedby 157, aslong asthe
|r(i)—7(i)| < e Vi,andyisagainthediscountrate.In themajority of casestheestimates
aregoodenoughto leadtheagentto learninga goodpolicy, if nottheoptimalone.

Conclusionand futur ework. This papermprovidesthe generaframework for a new ap-
proachto solvinglarge multi-agentproblemsusinga simplemodelthatallows for efficient
androbustlearningusing well-studiedtools suchas Kalmanfiltering. As a practicalap-
plication, this work canbe directly appliedto a morerealistic mobile ad-hocnetworking
domain. More work could do doneinvestigatingthe benefitsof differentvariationsof this
modelin varioussettings. This work was supportedn partby a GraduateResearchrel-
lowshipfrom the NationalScience~oundation.
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