
Learning Planning Rules in Noisy Stochastic Worlds

Luke S. Zettlemoyer
MIT CSAIL

lsz@csail.mit.edu

Hanna M. Pasula
MIT CSAIL

pasula@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL

lpk@csail.mit.edu

Abstract

We present an algorithm for learning a model of the ef-
fects of actions in noisy stochastic worlds. We consider
learning in a 3D simulated blocks world with realistic
physics. To model this world, we develop a planning
representation with explicit mechanisms for expressing
object reference and noise. We then present a learn-
ing algorithm that can create rules while also learning
derived predicates, and evaluate this algorithm in the
blocks world simulator, demonstrating that we can learn
rules that effectively model the world dynamics.

Introduction

One of the goals of artificial intelligence is to build systems
that can act in complex environments as effectively as hu-
mans do: to perform everyday human tasks, like making
breakfast or unpacking and putting away the contents of an
office. Any robot that hopes to solve these tasks must be an
integrated system that perceives the world, understands it in
an, at least naively, human manner, and commands motors
to effect changes to it. Unfortunately, the current state of the
art in reasoning, planning, learning, perception, locomotion,
and manipulation is so far removed from human-level abil-
ities that we cannot even contemplate working in an actual
domain of interest. Instead, we choose to work in domains
that are its almost ridiculously simplified proxies.

One popular such proxy, used since the beginning of work
in AI planning (Fikes & Nilsson 1971) is a world of stack-
ing blocks. Thisblocks world is typically formalized in
some version of logic, using predicates such ason(a, b) and
clear(a) to describe the relationships of the blocks to one an-
other. Blocks are always very neatly stacked; they don’t fall
into jumbles. In this paper, we will work in a slightly less
ridiculous version of the blocks world, one constructed using
a three-dimensional rigid-body dynamics simulator (ODE
2004). An example domain configuration is shown in Fig-
ure 1. In this simulated blocks world, blocks are not always
in tidy piles; blocks sometimes slip out of the gripper; and
piles sometimes fall over. We would like to learn models
that enable effective action in this world.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Unfortunately, previous approaches to action model learn-
ing cannot solve this problem. The algorithms that learn de-
terministic rule descriptions (Shen & Simon 1989; Gil 1994;
Wang 1995) have limited applicability in a stochastic world.
One approach (Pasula, Zettlemoyer, & Kaelbling 2004) has
extended those methods to learn probabilistic STRIPS rules,
but this representation cannot cope with the complexity of
the simulated blocks world. The work of Benson (1996),
which extends a deterministic ILP (Lavrač & Džeroski
1994) learning algorithm that is robust to noise in the train-
ing set, would, perhaps, come the closest, but it lacks the
ability to handle complex action effects such as piles of
blocks falling over. We address this challenge by develop-
ing a more flexible algorithm that creates models that in-
clude mechanisms for referring to objects and abstracting
away rare or highly complex action outcomes, and also in-
vents new concepts that help determine when actions will
have different effects.

When learning these models, we assume that the learner
has access to training examples that show how the world
changes when an action is executed. The learning problem
is then one of density estimation. The learner must estimate
the distribution over next states of the world that executing
an action will cause.

In the rest of this paper, we first present our representa-
tion, showing how these extensions are added to probabilis-
tic STRIPS rules. Then, we develop a learning algorithm for
these rules. Finally, we evaluate these learned rules in the
simulated blocks world.

Representation
This section describes representations for the setS of pos-
sible states of the world, the setA of possible actions the
agent can take, and the probabilistic transition dynamics
Pr(s′|s, a), wheres, s′ ∈ S anda ∈ A. In each case, we use
a subset of a relatively standard first-order logic with equal-
ity. States and actions are ground; the rules used to express
the transition dynamics quantify over variables.

We begin by defining a language that includes a set of
predicatesΦ and a set of functionsΩ. There are three types
of functions inΩ: traditional functions, which range over
objects; discrete-valued functions, which range over a pre-
defined discrete set of values; and integer-valued functions,
which range over a finite subset of the integers.

Figure 1: A screen capture of the simulated blocks world. The
blocks come in various sizes, visible here, and various colors. The
gripper can perform two macro actions:pickup, which centers the
gripper above a block, lowers it until it hits something, closes it,
and raises the gripper; andputon, which centers the gripper above
a block, lowers until it encounters pressure, opens it, and raises it.

State Representation
In this work, we assume that the environment is completely
observable; that is, that the agent is able to perceive an
unambiguous and correct description of the current state.1

Each state consists of a particular configuration of the prop-
erties of and relations between objects for all of the objects
in the world, where those individual objects are denoted us-
ing constants. State descriptions are conjunctive sentences
that list the truth values for all of the possible groundings of
the predicates and functions with the constants. When writ-
ing them down, we will make the closed world assumption
and omit the negative literals.

As an example, let us consider representing the state of
a simple blocks world, using a language that contains the
predicateson, table, clear, inhand, andinhand-nil. The ob-
jects in this world include two blocks,c1 andc2, a tablet,
and a gripper. The sentence

on(c1, c2) ∧ on(c2, t) ∧ inhand-nil∧ clear(c1) ∧ table(t) (1)

represents a blocks world where the gripper holds nothing
and the two blocks are in a single stack on the table.

Action Representation
Actions are represented as positive literals whose predicates
are drawn from a special set,α, and whose terms are drawn
from the set of constants C associated with the worlds where
the action is to be executed.

For example, in the simulated blocks world,α contains
pickup/1, an action for picking up blocks, andputon/1, an
action for putting down blocks. The action literalpickup(c1)
could represent the action where the gripper attempts to
pickup the blockc1 in the state represented in Sentence 1.

1This is a very strong, and ultimately indefensible assumption;
one of our highest priorities for future work is to extend this to the
case when the environment is partially observable.

World Dynamics Representation
We begin by defining probabilistic STRIPS rules (Blum &
Langford 1999). Next, we describe the changes we have
made to the rules to enable them to model more complex
worlds. Then, we explain how the representation language
is extended to allow for the construction of additional pred-
icates and functions. Finally, we show how to use a set of
rules to provide a model of world dynamics.

Probabilistic STRIPS rules Each probabilistic STRIPS
rule specifies the conditions under which it applies, as
well as a small number of simple actionoutcomes—sets of
changes that might occur in tandem. More formally, a rule
for actionz has the form

∀x̄.Ψ(x̄) ∧ z(x̄) → •

{
p1 Ψ′

1(x̄)
.
pn Ψ′

n(x̄)
,

wherex̄ is a vector of variables,Ψ is thecontext, a formula
that might hold of them at the current time step,Ψ′1 . . .Ψ′n
areoutcomes, formulas that might hold in the next step, and
p1 . . . pn are positive numbers summing to 1, representing a
probability distribution over the outcomes. Traditionally, the
actionz(x̄) must contain everyxi ∈ x̄. We constrainΨ and
Ψ′ to be conjunctions of literals constructed from the predi-
cates inΦ and the variables̄x as well as equality statements
comparing a function (taken fromΩ) of these variables to
a value in its range. In addition,Ψ is allowed to contain
greater-than and less-than statements.

We say that a rulecoversa stateΓ(C) and actiona(C) if
there exists an action substitutionσ mapping the variables
in x̄ to C (note that there may be fewer variables inx̄ than
constants in C) such thatΓ(C) |= Ψ(σ(x̄)) and a(C) =
z(σ(x̄)). That is, if there exists a substitution of constants
for variables that, when applied to antecedent, grounds it so
that it is entailed by the state and, when applied to the rule
action, makes it equal the action the rule covers.

Here is an example using the language of Sentence 1:

pickup(X, Y) :

on(X, Y), inhand-nil

→

.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, t), clear(Y)

.10 : no change

The context of this rule states thatX is on Y, and there is
nothing in the gripper. The rule covers the world of Sen-
tence 1 and actionpickup(c1, c2) under the action substitu-
tion {X → c1, Y → c2}. The first outcome describes the
situation where the gripper successfully picks up the block
X, and the second indicates thatX falls onto the table.

Let us now consider what a rule that covers the state and
action can tell us about the possible subsequent states. Each
outcome directly specifies thatΨ′(σ(x̄)) holds at the next
step, but this may be only an incomplete specification of the
state. We use the frame assumption to fill in the rest; every
literal that would be needed to make a complete description
of the state that is not included inΨ′(σ(x̄)) is retrieved, with
its associated truth value or equality assignment, fromΓ(C).

Thus, each outcomeΨ′i can be used to construct a new
states′i, which will occur with probabilitypi. The proba-
bility that a ruler assigns to moving from states to states′
when actiona is taken,P (s′|s, a, r), can be calculated as:

P (s′|s, a, r) =

n∑
i=1

P (s′, Ψ′
i|s, a, r)

=

n∑
i=1

P (s′|Ψ′
i, s, a, r)P (Ψ′

i|s, a, r) (2)

where P (Ψ′i|s, a, r) is pi, and the outcome distribution
P (s′|Ψ′i, s, a, r) is a deterministic distribution that assigns
all of its mass to the relevants′. If P (s′|Ψ′i, s, a, r) = 1.0,
that is, ifs′ is the state that would be constructed given that
rule and outcome, we say that the outcomeΨ′i coverss′.

Noisy Deictic Rules We extend probabilistic STRIPS
rules in two ways: by permitting them to refer to objects not
mentioned in the action description, and by adding a noise
outcome.

Deictic References Relational planning representations
use a list of action variables to abstract over the objects in
the world. For example,pickup(X, Y) abstracts the iden-
tity of the blockX to be picked up and the blockY that X
will be picked up from. This abstraction allows the rules to
compactly encode actions that affect many different objects.
Part of the challenge of creating effective rules is to deter-
mine what to abstract over. Traditionally, this is done when
defining the set of actions, since abstraction can occur only
in the action argument list.

We have developeddeictic references, an extension of a
mechanism originally introduced by Benson (1996), as a
way of introducing additional variables to the rules. Our rule
learning algorithm uses them to learn useful abstractions that
were not initially included in the action arguments.

We extend probabilistic STRIPS rules as follows. Each
rule is augmented with a list,D, of deictic references. A
reference consists of a variablevi and a restrictionρi, which
is a set of literals that definevi with respect to the variables
x̄ in the action and the othervj such thatj < i.

For example, thepickup(X, Y) rule we saw earlier can be
rewritten to use deictic references as follows:

pickup(X) :
{

Y : on(X, Y), Z : table(Z)
}

inhand-nil

→

.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, Z), clear(Y)

.10 : no change

whereY is now defined as a deictic reference that names
that unique thing thatX is on. In many ways, this is a more
natural encoding because it makes explicit the fact that the
only block thatY should ever name is the one thatX is on.
This reduces the number of arguments to the action, which
can greatly increase planning efficiency (Gardiol & Kael-
bling 2003). Note also that, in this representation, different
rules for the same action can abstract over different sets of
objects.

To use rules with deictic references, we must extend our
procedure for computing rule coverage to ensure that all of
the deictic references can be resolved. The deictic variables
are bound by starting with bindings for̄x and working se-
quentially through the deictic referencesD, using their re-
strictions to determine their unique bindings. If a deictic
variable does not have a unique binding—if it has either no
possible bindings, or several—it fails to refer, and the rule
fails to cover the state and action.

The Noise Outcome Probability models of the type we
have seen thus far, ones with a small set of possible out-
comes, are not sufficiently flexible to handle noisy domains
where there may be a large number of possible action effects
that are highly unlikely and yet hard to model—such as all
the configurations that may result when a tall stack of blocks
topples. It would be inappropriate to model such effects as
impossible, and yet we don’t have the space or inclination to
model each of them as an individual outcome.

We handle this issue by augmenting each rule with an ad-
ditional noise outcome. This outcome has the probability
pnoise = 1−

∑n
1 pi, but no associatedΨ′; we are declining

to model in detail what happens to the world in such cases.
As an example, consider the rule

pickup(X) :
{

Y : on(X, Y), Z : table(Z)
}

inhand-nil

→

.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, Z), clear(Y)

.05 : no change

.05 : noise

where noise can happen with a probability of0.05. Here, the
noise outcome might model the fact that towers sometimes
fall over when you are picking up a block.

Since we are not explicitly modeling the effects of
noise, we can no longer calculate the transition probability
Pr(s′|s, a, r) using Equation 2: we lack the distribution over
next states given the noise outcome,P (s′|noise, s, a, r). In-
stead, we substitute a worst case constant boundpmin ≤
P (s′|noise, s, a, r) everywhere this distribution would be
required, and bound the transition probability as

P̂ (s′|s, a, r) = pnoisepmin +
n∑

i=1

P (s′|Ψ′i, s, a, r)pi

≤ P (s′|s, a, r).

In this way, we create a partial model that allows us to
ignore unlikely or overly complex state transitions while still
learning and acting effectively.2

2P (s′|noise, s, a, r) could alternately be any well-defined
probability distribution that models the noise of the world. How-
ever, we would have to ensure that this distribution does not as-
sign probability to worlds that are impossible (for example, blocks
worlds where blocks are floating in midair), because this would
complicate planning. We will leave the exploration of this alterna-
tive approach to future work.

Background knowledge

In the rule semantics as described so far, the same set of
primitive predicates has been used to construct all the ele-
ments of the rule. However, it is often useful to divide the
predicates and functions of the language into two sets: a set
of primitives whose values are observed directly, and repre-
sented within a state, and a set of additional predicates and
functions that can be derived from these primitives, and so
do not need to be represented directly. The derived predi-
cates and functions can then be used in the antecedents, but
not in the outcomes—a good thing, since it can be difficult
to describe how the values of the derived predicates change
directly. (The predicateabove, the transitive closure ofon,
is an example of a hard-to-update predicate.) This has been
found to be essential for representing certain advanced plan-
ning domains (Edelkamp & Hoffman 2004).

We define such background knowledge using aconcept
languagethat includes existential quantification, universal
quantification, transitive closure, and counting. Consider
the situation where the only primitive predicates areon and
table. Quantification is used for defining predicates such
as inhand. Transitive closure is included in the language
via the Kleene star and plus and defines predicates such as
above. Finally, counting is included using a special quan-
tifier # which returns the number of objects for which a
formula is true. It is useful for defining integer-valued func-
tions such asheight. The derived predicates can be used in
the context and deictic reference restrictions.

As an example, here is a deictic noisy rule for attempting
to pick up blockX together with the background knowledge
used by this rule:

pickup(X) :

{
Y : topstack(Y, X),
Z : on(Y, Z),
T : table(T)

}
(3)

inhand-nil, height(Y) < 9

→

.80 : ¬on(Y, Z)
.10 : ¬on(Y, Z), on(Y, T)
.05 : no change
.05 : noise

clear(V1) := ¬∃V2.on(V2, V1)

inhand(V1) := ¬∃V2.on(V1, V2)

inhand-nil := ¬∃V2inhand(V2)

above(V1, V2) := on∗(V1, V2)

topstack(V1, V2) := clear(V1) ∧ above(V1, V2)

height(V1) := #V2.above(V1, V2))

The rule is far more complicated than our running exam-
ple: it deals with the situation when the block to be picked
up,X, is in the middle of a stack. It is now useful to abstract
over even more objects: the deictic variableY identifies the
(unique) block on top of the stack, and the deictic variable
Z—the block underY . As might be expected, the gripper
succeeds in liftingY with a high probability.

LearnRuleSet(E)
Inputs:

Training examplesE
Computation:

Initialize rule setR to contain only the default rule
While better rules sets are found

For each search operatorO
Create new rule sets withO, RO = O(R,E)
For each rule setR′ ∈ RO

If the score improves (S(R′) > S(R))
Update the new best rule set,R = R′

Output:
The final rule setR

Figure 2: LearnRuleSetPseudocode. This algorithm performs
greedy search through the space of rule sets. At each step a set of
search operators each propose a set of new rule sets. The highest
scoring rule set is selected and used in the next iteration.

Action Models
Individual rules define the world dynamics only in specific
situations; a general description is provided by anaction
model, which consists of some background knowledge and
a set of rulesR that, together, define the action dynamics
of a world. Given an actiona and states, the ruler ∈ R
that coverss anda is used to predict the effects ofa in s.
When no such rule exists, we use thedefault rule. This rule
has an empty context and two outcomes: a no-change out-
come (which, in combination with the frame assumption,
models the situations where nothing changes), and, again, a
noise outcome (modeling all other situations). This rule al-
lows noise to occur in situations where no single non-default
rule applies; the probability assigned to the noise outcome in
the default rule specifies a kind of “background noise” level.
The default rule is also used when more than one rule cov-
erss anda. However, in general, we hope to learn rule sets
where the rules are mutually exclusive.

Learning
In this section, we describe an algorithm for learning action
models from training examples that describe action effects.
More formally, each training exampleE ∈ E is a state, ac-
tion, next state triple(s, a, s′) where states are described in
terms of primitive functions and predicates.

We divide the problem of learning action models into two
parts: learning background knowledge, and learning a rule
setR. First, we describe how to learn a rule set given some
background knowledge. Then, we show how to derive new
useful concepts.

Learning Rule Sets
TheLearnRuleSetalgorithm takes a set of examplesE and
a fixed language of primitive and derived predicates. It then
performs a greedy search through the space of possible rule
sets as described in the pseudocode in Figure 2.

The search starts with a rule set that contains only the
noisy default rule. At every step, we take the current rule set
and apply all our search operators to it to obtain a set of new

rule sets. We then select the rule setR that maximizes the
scoring metric

S(R) =
∑

(s,a,s′)∈E

log(P̂ (s′|s, a, r(s,a)))− α
∑
r∈R

PEN(r)

wherer(s,a) is the rule that covers(s, a), α is a scaling pa-
rameter, and the penaltyPEN(r) is the number of literals
in the ruler. Ties inS(R) are broken randomly.

As a greedy search through the space of rule sets,Learn-
RuleSetis similar in spirit to previous work (Pasula, Zettle-
moyer, & Kaelbling 2004). However, adapting that work to
handle our representation extensions involved substantial re-
design of the algorithm, including changing the initial rule
set, the scoring metric, and the search operators.

Search Operators Each search operatorO takes as input
a rule setR and a set of training examplesE, and creates a
set of new rule setsRO to be evaluated by the greedy search
loop. There are eight search operators. We first describe
the most complex operator,ExplainExamples, and then the
most simple one,DropRules. Finally, we present the remain-
ing six operators which all share a common computational
framework, outlined in Figure 4.

• ExplainExamplestakes as input a training setE and a rule
set R and creates new rule sets that contain additional
rules modeling the training examples that were covered
by the default rule inR. Figure 3 shows the pseudocode
for this algorithm, which considers each training example
E that was covered by the default rule inR, and executes
a three-step procedure. The first step builds a large and
specific ruler′ that describes this example; the second
step attempts to trim this rule, and so generalize it so as to
maximize its score, while still ensuring that it coversE;
and the third step creates a new rule setR′ by copyingR
and integrating the new ruler′ into this new rule set.

As an illustration, let us consider how steps 1 and 2 ofEx-
plainExamplesmight be applied to the training example
(s, a, s′) = ({on(a, t), on(b, a)}, pickup(b), {on(a, t)}),
when the background knowledge is as defined for Rule 4.
Step 1 builds a ruler. It creates a new variableX to
represent the objectb in the action; then, the action
substitution becomesσ = {X → b}, and the action of
r is set topickup(X). The context ofr is set to the con-
junction inhand-nil,¬inhand(X), clear(X), height(X) =
2,¬on(X, X),¬above(X, X),¬topstack(X, X) Then, in
Step 1.2, ExplainExamplesattempts to create deictic
references that name the constants whose properties
changed in the example. In this case, the only changed
literal is on(b, a), so C = {a}; a new deictic variable
Y is created and restricted, andσ is extended to be
{X→ b, Y→ a}. The resulting ruler′ looks as follows:

pickup(X) :

Y :

¬inhand(Y),¬clear(Y), on(X, Y),
above(X, Y), topstack(X, Y),
¬above(Y, Y),¬topstack(Y, Y),
¬on(Y, Y), height(Y) = 1

inhand-nil,¬inhand(X), clear(X), height(X) = 2,¬on(X, X),
¬above(X, X),¬topstack(X, X)

→
{

1.0 : ¬on(X, Y)

ExplainExamples(R,E)
Inputs:

A rule setR
A training setE

Computation:
For each example(s, a, s′) ∈ E covered by the default

rule inR
Step 1: Create a new ruler

Step 1.1:Create an action and context forr
Create new variables to represent the arguments ofa
Use them to create a new action substitutionσ
Setr’s action to beσ−1(a)
Setr’s context to be the conjunction of boolean

and equality literals that can be formed using the
variables and the available functions and predicates
(primitive and derived) and that are entailed bys

Step 1.2:Create deictic references forr
Collect the set of constantsC whose properties changed

from s to s′, but which are not ina
For eachc ∈ C

Create a new variablev and extendσ to mapv to c
Createρ, the conjunction of literals containingv

that can be formed using the available variables,
functions, and predicates, and that are entailed bys

Create deictic referenced with variablev and
restrictionσ−1(ρ)

If d uniquely refers toc in s, add it tor
Step 2: Trim literals fromr

Create a rule setR′ containingr and the default rule
Greedily trim literals fromr while r still covers(s, a, s′)

andR′’s score improves
Step 3: Create a new rule set containingr

Create a new rule setR′ = R
Add r to R′ and remove any rules inR′ that

cover any examplesr covers
Recompute the set of examples that the default rule inR′

covers and the parameters of this default rule
Add R′ to the return rule setsRO

Output:
A set of rule sets,RO

Figure 3:ExplainExamplesPseudocode. This algorithm attempts
to augment the rule set with new rules covering examples currently
handled by the default rule.

In Step 2,ExplainExamplestrims this rule to remove the
invariably true literals, like¬on(X, X), and the redundant
ones, like¬inhand() and¬clear(Y), to give

pickup(X) :
{

Y : on(X, Y), height(Y) = 0
}

inhand-nil, clear(X), height(X) = 1

→
{

1.0 : ¬on(X, Y)

which is then integrated into the rule set.

• DropRulescycles through all the rules in the current rule
set, and removes each one in turn from the set. It returns
a set of rule sets, each one missing a different rule.

The remaining six operators create new rule sets from the
input rule setR by repeatedly choosing a ruler ∈ R and
making changes to it to create one or more new rules. These
new rules are then integrated intoR, just as inExplainEx-
amples, to create a new rule setR′. Figure 4 shows the

OperatorTemplate(R,E)
Inputs:

Rule setR
Training examplesE

Computation:
Repeatedly select a ruler ∈ R

Create a copy of the input rule setR′ = R
Create a new set of rules,N , by making changes tor
For each new ruler′ ∈ N

Estimate new outcomes forr′ with theInduceOutcomes
algorithm described by Pasula et al (2004)

Add r′ to R′ and remove and rules inR′ that
cover any examplesr′ covers

Recompute the set of examples that the default rule inR′

covers and the parameters of this default rule
Add R′ to the return rule setsRO

Output:
The set of rules sets,RO

Figure 4: OperatorTemplatePseudocode. This algorithm is the
basic framework that is used by six different search operators. Each
operator repeatedly selects a rule, uses it to maken new rules, and
integrates those rules into the original rule set to create a new rule
set.

the general pseudocode for how this is done. The operators
vary in the way they select rules and the changes they make
to them. These variations are described for each operator
below:

• DropLits selects every ruler ∈ R n times, wheren is
the number of literals in the context ofr; in other words,
it selects eachr once for each literal in its context. It
then creates a new ruler′ by removing that literal from
r’s context;N of Figure 4 is simply the set containingr′.

• DropRefsselects each ruler ∈ R once for each deictic
reference inr. It then creates a new ruler′ by removing
that deictic reference fromr.

• ChangeRangesselects each ruler ∈ R n times for each
equality or inequality literal in the context, wheren is
the total number of values in the range of each literal.
Each time it selectsr it creates a new ruler′ by replac-
ing the numeric value of the chosen (in)equality with an-
other other possible value from the range. Thus, iff()
ranges over[1 . . . n], ChangeRangewould, when applied
to a rule containing the inequalityf() < i, construct rule
sets in whichi is replaced by all other integers in[1 . . . n].

• SplitOnLitsselects each ruler ∈ R n times, wheren
is the number of literals that are absent from the rule’s
context. (The set of absent literals is obtained by apply-
ing the available predicates and functions—both primitive
and derived—to the variables defined in the rule, and re-
moving those already present.) It then constructs a set of
new rules. In the case of predicate and inequality literals,
it creates one rule in which the positive version of the lit-
eral is inserted into the context, and one in which it is the
negative version. In the case of equality literals, it con-
structs a rule for every possible value the equality could
take. This time,N contains all these rules.

• AddLitsselects each ruler ∈ R n times, wheren is the
number of predicate-based literals that are absent from the
rule’s antecedent. It constructs a new rule by inserting that
literal into the earliest place in which the its variables are
all well-defined. If the literal contains no deictic variables,
this will be the context, otherwise this will be the restric-
tion of the last deictic variable mentioned in the literal.
(If V1 andV2 are deictic variables andV1 appears first,
p(V1, V2) would be inserted into the restriction ofV2.)

• AddRefsselects each ruler ∈ R n times, wheren is the
number of literals that can be constructed from variables
in r and a new variablev. It then creates a new rule by
adding a deictic reference with the variablev and a re-
striction defined by one of the literals.

We have found that all of these types of operators are con-
sistently used during learning. While this set of operators is
heuristic, it is complete in the sense that every rule set can
be constructed from the initial rule set—although, of course,
there is no guarantee that the scoring metric will lead the
greedy search to the global maximum.

Learning Background Knowledge
We learn background knowledge using an algorithm which
iteratively constructs increasingly complex concepts, then
tests their usefulness by runningLearnRuleSetand check-
ing whether they appear in the learned rules. The first set is
created by applying the operators in Figure 5 to literals built
with the original language. Subsequent sets of concepts are
constructed using the literals that proved useful on the latest
run; concepts that have been tried before, or that are always
true or always false across all examples, are discarded. The
search ends when none of the new concepts prove useful.

Since our concept language is quite rich, overfitting (e.g.,
by learning concepts that can be used to identify individual
examples) can be a serious problem. We handle this in the
expected way: by introducing a penalty term,α′c(R), to
create a new scoring metric

S′(R) = S(R)− α′c(R)

wherec(R) is the number of distinct concepts used in the
rule setR andα′ is a scaling parameter. This new metricS′

is now used byLearnRuleSet; it avoids overfitting by favor-
ing rule sets that use fewer derived predicates.

Evaluation
In this section, we demonstrate that noise outcomes and de-
rived predicates are necessary to learn good action models
for the physics-based blocks world simulator of Figure 1,
and also that our algorithm is capable of discovering the rel-
evant background knowledge. We accomplish this by learn-
ing a variety of action models and then comparing their per-
formance on a simple planning task.

All the experiments are set in a world containing twenty
blocks. The observed, primitive predicates includeon(X, Y)
(which is true if blockX exerts a downward force onY),
size(X), color(X), and the typing predicatetable(X). There
were five sizes and five colors, both uniformly distributed.
The color attribute is a distractor. The sizes complicate the

p(X) → n := QY.p(Y)

p(X1, X2) → n(Y2) := QY1.p(Y1, Y2)

p(X1, X2) → n(Y1) := QY2.p(Y1, Y2)

p(X1, X2) → n(Y1, Y2) := p
∗
(Y1, Y2)

p(X1, X2) → n(Y1, Y2) := p
+

(Y1, Y2)

p1(X1), p2(X2) → n(Y1) := p1(Y1) ∧ p2(Y1)

p1(X1), p2(X2, X3) → n(Y1, Y2) := p1(Y1) ∧ p2(Y1, Y2)

p1(X1), p2(X2, X3) → n(Y1, Y2) := p1(Y1) ∧ p2(Y2, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y1, Y2)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y2, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y1, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y2, Y2)

f(X) = c → n() := #Y.f(Y) = c

f(X) ≤ c → n() := #Y.f(Y) ≤ c

f(X) ≥ c → n() := #Y.f(Y) ≥ c

Figure 5: Operators used to invent a new predicaten. Each op-
erator takes as input one or more literals, listed on the left. Theps
represent old predicates;f represents an old function;Q can refer
to ∀ or ∃; andc is a numerical constant. Each operator takes a lit-
eral and returns a concept definition. These operators are applied to
all of the literals used in rules in a rule set to create new predicates.

action dynamics, both because they influence stack stabil-
ity, and because the gripper does best with blocks of average
size, and is unable to grasp giant blocks at all. The train-
ing data were generated by repeatedly attempting to perform
random actions in random simulator states and noting the re-
sult. The random starting states were generated by randomly
placing blocks on each other, or on the table. The last block
was sometimes placed in the gripper.

Planning
Since we have no true model to compare the rule sets
to, we evaluate them by using them to plan. We imple-
mented a simple planner based on the sparse sampling al-
gorithm (Kearns, Mansour, & Ng 2002), which treats the
domain as a Markov Decision Problem (MDP) (Puterman
1999). Given a states, it creates a tree of states (of prede-
fined depth and branching factor) by sampling forward us-
ing a transition model, computes the value of each node us-
ing the Bellman equation, and selects the action that has the
highest value. In our implementation, the transition function
is defined using an action model and the reward function is
defined by hand.

We adapt the algorithm to handle noisy outcomes, which
do not predict the next state, by estimating the value of the
unknown next state as a fraction of the value of staying in
the same state: i.e., we sample forward as if we had stayed
in the same state and then scale down the value we obtain.
Our scaling factor was0.75, our depth was three, and our
branching factor was five.

This scaling method is only a guess at what the value of
the unknown next state might be; because noisy rules are

 6

 8

 10

 12

 14

 16

 18

 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

ew
ar

d

Training set size

Learning in the Simulated Blocksworld

learned concepts
hand-engineered concepts

without noise outcomes
with a restricted language

Figure 6:The performance of various action model variants as a
function of the number of training examples. All data points were
averaged over five runs each of three rule sets learned on different
training data sets. For comparison, the average reward for per-
forming no actions is 9.2, and the reward obtained when a human
directed the gripper averaged 16.2.

partial models, there is no way to compute the value explic-
itly. In the future, we would like to explore methods that
learn to associate values with noise outcomes. For example,
the value of the outcome where a tower of blocks falls over
is different if the goal is to build a tall stack of blocks than if
the goal is to put all of the blocks on the table.

Experiments

We set our planner the task of building tall stacks: our re-
ward function was the average height of the blocks in the
world. The plans were executed for ten time steps. The scal-
ing parametersα and α′ (associated respectively with the
rule complexity penalty term, and the background knowl-
edge complexity penalty term) were set to1.0 and5.0. The
noise probability boundpmin was set to0.00001.

To evaluate the overall quality of the learned rules, we
did an informal experiment to measure the reward achieved
when a human domain expert directed the robot arm. (Note
that humans have an advantage over the planner, since they
can view the entire 3D world while the planner only has ac-
cess to the information encoded in theon, height, andsize
relations.)

Results We tested four action model variants, varying the
training set size; the results are shown in Figure 6. The curve
labeled ‘learned concepts’ represents the full algorithm as
presented in this paper. Its performance approaches that ob-
tained by a human expert, and is comparable to that of the
algorithm labeled ‘hand-engineered concepts’ that did not
do concept learning, but was, instead, provided with hand-
coded versions of the conceptsclear, inhand, inhand-nil,
above, topstack, and height. The concept learner discov-
ered all of these, as well as other useful predicates, e.g.,
p(X, Y) := clear(Y) ∧ on(Y, X), which we will callonclear.

This could be why its action models outperformed the hand-
engineered ones slightly on small training sets. In domains
less well-studied than the blocks world, it might be less ob-
vious what the useful concepts are; the concept-discovery
technique presented here should prove helpful.

The remaining two model variants obtained rewards com-
parable to the reward for doing nothing at all. (The plan-
ner did attempt to act during these experiments, it just did
a poor job.) In one variant, we used the same full set of
predefined concepts but the rules could not have noise out-
comes. The requirement that they explain every action ef-
fect led to significant overfitting and a decrease in perfor-
mance. The other rule set was given the traditional blocks
world language, which does not includeabove, topstack, or
height, and allowed to learn rules with noise outcomes. We
also tried a full-language variant where noise outcomes were
allowed, but deictic references were not: the resulting rule
sets contained only a few very noisy rules, and the planner
did not attempt to act at all. The poor performance of these
ablated versions of our representation shows that all three
of our extensions are essential for modeling the simulated
blocks world domain.

Example Learned Rules To get a better feel for the types
of rules learned, here are two interesting rules learned by the
full algorithm.

pickup(X) :

{
Y : onclear(X, Y), Z : on(Y, Z),
T : table(T)

}
inhand-nil, size(X) < 2

→

{
.80 : ¬on(Y, Z)
.10 : ¬on(X, Y)
.10 : ¬on(X, Y), on(Y, T),¬on(Y, Z)

This rule applies when the empty gripper is asked to pick
up a small blockX that sits on top of another blockY. The
gripper grabs both with a high probability.

puton(X) :

{
Y : topstack(Y, X), Z : inhand(Z),
T : table(T)

}
size(Y) < 2

→

.62 : on(Z, Y)
.12 : on(Z, T)
.04 : on(Z, T), on(Y, T),¬on(Y, X)
.22 : noise

This rule applies when the gripper is asked to put its con-
tents,Z, on a blockX which is inside a stack topped by a
small blockY. Because placing things on a small block is
chancy, there is a reasonable probability thatZ will fall to
the table, and a small probability thatY will follow.

Discussion and Future Work
In this paper, we developed a probabilistic action model rep-
resentation that is rich enough to be used to learn models for
planning in the simulated blocks world. This is a first step
towards defining representations and algorithms that will en-
able learning in more complex worlds.

There remains much work to be done in the context of
learning probabilistic planning rules. We plan to expand our

approach to handle partial observability, possibly incorpo-
rating some of the techniques from work on deterministic
learning (Amir 2005). We also plan to learn probabilis-
tic operators in an incremental, online manner, similar to
the learning setup in the deterministic case (Shen & Simon
1989; Gil 1994; Wang 1995), which has the potential to help
scale this approach to larger domains. Finally, we plan to
explore the learning of parallel planning rules.

Acknowledgments
This material is based upon work supported in part by the
Defense Advanced Research Projects Agency (DARPA),
through the Department of the Interior, NBC, Acquisition
Services Division, under Contract No. NBCHD030010; and
in part by DARPA Grant No. HR0011-04-1-0012 .

References
Amir, E. 2005. Learning partially observable deterministic ac-
tion models. InProceedings of the Nineteenth International Joint
Conference on Artificial Intelligence.
Benson, S. 1996.Learning Action Models for Reactive Au-
tonomous Agents. Ph.D. Dissertation, Stanford University.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
graphplan framework. InProceedings of the Fifth European Con-
ference on Planning.
Edelkamp, S., and Hoffman, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Albert-Ludwigs-Universität,
Freiburg, Germany.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving.Artificial
Intelligence2(2).
Gardiol, N., and Kaelbling, L. 2003. Envelope-based planning in
relational MDPs. InAdvances in Neural Information Processing
Systems 16.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. InProceedings of the
Eleventh International Conference on Machine Learning.
Kearns, M.; Mansour, Y.; and Ng, A. 2002. A sparse sampling al-
gorithm for near-optimal planning in large Markov decision pro-
cesses.Machine Learning49(2).
Lavrǎc, N., and Ďzeroski, S. 1994.Inductive Logic Programming
Techniques and Applications. Ellis Horwood.
ODE. 2004. Open dynamics engine toolkit.
http://opende.sourceforge.net.
Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules. InProceedings of the
Fourteenth International Conference on Automated Planning and
Scheduling.
Puterman, M. L. 1999.Markov Decision Processes. John Wiley
and Sons, New York.
Shen, W.-M., and Simon, H. A. 1989. Rule creation and rule
learning through environmental exploration. InProceedings of
the Eleventh International Joint Conference on Artificial Intelli-
gence.
Wang, X. 1995. Learning by observation and practice: An incre-
mental approach for planning operator acquisition. InProceed-
ings of the Twelfth International Conference on Machine Learn-
ing.

