
DRAFT: To Appear in Neural Information Processing Systems 16 (NIPS-2003)

Envelope-based Planning in Relational MDPs

Natalia H. Gardiol
MIT AI Lab

Cambridge, MA 02139
nhg@ai.mit.edu

Leslie Pack Kaelbling
MIT AI Lab

Cambridge, MA 02139
lpk@ai.mit.edu

Abstract

A mobile robot acting in the world is faced with a large amount of sen-
sory data and uncertainty in its action outcomes. Indeed, almost all in-
teresting sequential decision-making domains involve large state spaces
and large, stochastic action sets. We investigate a way to act intelli-
gently as quickly as possible in domains where finding a complete policy
would take a hopelessly long time. This approach, Relational Envelope-
based Planning (REBP) tackles large, noisy problems along two axes.
First, describing a domain as a relationalMDP (instead of as an atomic
or propositionally-factoredMDP) allows problem structure and dynam-
ics to be captured compactly with a small set of probabilistic, relational
rules. Second, an envelope-based approach to planning lets an agent be-
gin acting quickly within a restricted part of the full state space and to
judiciously expand its envelope as resources permit.

1 Introduction

Quickly generating generating usable plans when the world abounds with uncertainty is an
important and difficult enterprise. Consider the classic blocks world domain: the number
of ways to make a stack of a certain height grows exponentially with the number of blocks
on the table; and if the outcomes of actions are uncertain, the task becomes even more
daunting. We want planning techniques that can deal with large state spaces and large,
stochastic action sets since most compelling, realistic domains have these characteristics.
In this paper we propose a method for planning in very large domains by using expressive
rules to restrict attention to high-utility subsets of the state space.

Much of the work in traditional planning techniques centers on propositional, deterministic
domains. See Weld’s survey [12] for an overview of the extensive work in this area. Efforts
to extend classical planning approaches into stochastic domains include mainly techniques
that work with fully-ground state spaces [13, 2]. Conversely, efforts to move beyond propo-
sitionalSTRIPS-based planning involve work in mainly deterministic domains [6, 10].

But the world is not deterministic: for an agent to act robustly, it must handle uncertain dy-
namics as well as large state and action spaces. Markov decision theory provides techniques
for dealing with uncertain outcomes in atomic-state contexts, and much work has been
done in leveraging structured representations to solve very largeMDPs and somePOMDPs
[9, 3, 7]. While these techniques have movedMDP techniques from atomic-state represen-
tations to factored ones, they still operate in fully-ground state spaces.

In order to describe large stochastic domains compactly, we need relational structures that



can represent uncertainty in the dynamics. Relational representations allow the structure
of the domain to be expressed in terms of objectpropertiesrather than object identities
and thus yield a much more compact representation of a domain than the equivalent propo-
sitional version can. Efficient solutions for probabilistic, first-orderMDPs are difficult to
come by, however. Boutilieret al.[3] find policies for first-orderMDPs by solving for the
value-function of a first-order domain: the approach manipulates logical expressions that
stand for sets of underlying states, but keeping the value-function representation manage-
able requires complex theorem-proving. Other approaches in relationalMDPs represent the
value function as a decision-tree [5] or as a sum of local subfunctions [8]. Another recent
body of work avoids learning the value function and learns policies directly from example
policies [14]. These approaches all compute full policies over complete state and action
spaces, however, and so are of a different spirit than the work presented here.

The underlying message is nevertheless clear: the more an agent can compute logically and
the less it attends to particular domain objects, the more general its solutions will be. Since
fully-ground representations grow too big to be useful and purely logical representations
are as yet unwieldy, we propose a middle path: we agree to ground things out, but in a prin-
cipled, restricted way. We represent world dynamics by a compact set of relational rules,
and we extend the envelope method of Deanet al.[4] to use these structured dynamics. We
quickly come up with an initial trajectory (anenvelopeof states) to the goal and then to
refine the policy by gradually incorporating nearby states into the envelope. This approach
avoids the wild growth of purely propositional techniques by restricting attention to a use-
ful subset of states. Our approach strikes a balance along two axes: between fully ground
and purely logical representations, and between straight-line plans and fullMDP policies.

2 Planning with an Envelope in Relational Domains

The envelope method was initially designed for planning in atomic-stateMDPs. Goals of
achievement are encoded as reward functions, and planning now becomes finding a policy
that maximizes a long-term measure of reward. Extending the approach to a relational
setting lets us cast the problem of planning in stochastic, relational domains in terms of
finding a policy for a restricted Markovian state space.

2.1 Encoding Markovian dynamics with rules

The first step to extending the envelope method to relational domains is to encode the
world dynamics relationally. We use a compact set of rules, as in Figure 1. Each rule, or
operator, is denoted by an action symbol and a parameterized argument list. Its behavior
is defined by a precondition and a set of outcomes, together called the rule schema. Each
precondition and outcome is a conjunction of domain predicates. A rule applies in a state
if its precondition can be matched against some subset of the state ground predicates. Each
outcome then describes the set of possible resulting ground states. Given this structured
representation of action dynamics, we define a relationalMDP as a tuple〈P,Z,O, T ,R〉:
States:The set of states is defined by a finite setP of relational predicates, representing
the properties and relations that can hold among the finite set of domain objects,O. Each
RMDP state is a ground interpretation of the domain predicates over the domain objects.

Actions: The set of ground actions depends on the set of rulesZ and the objects in the
world. For example,move(A,B) can be bound to the table arrangement in Figure 2(a) by
bindingA to block1 andB to block4 to yield the ground actionmove(1, 4).

Transition Dynamics:For each action, the distribution over next states is given com-
pactly by the distribution over outcomes encoded in the schema. For example, executing
move(1, 4) yields a0.3 chance of landing in a state where block1 falls on the table, and



move(A,B)
pre: (clear(B , t), hold(nil), height(B ,H ), incr(H ,H ′), clear(A,t),on(A,C ),broke(f))

eff : [ 0.70 ] (on(A, B ), height(A, H ), clear(A, t), clear(B , f), hold(nil), clear(C , t))
[ 0.30 ] (on(A, table), clear(A, t), height(A,H ), hold(nil), clear(C, t), broke(t))

fix()
pre: (broke(t))

eff : [ 0.97 ] (broke(f))
[ 0.03 ] (broke(t))

stackon(B)
pre: ( clear(B , t), hold(A), height(B ,H ), incr(H,H ′), broke(f))

eff : [ .97 ] (on(A, B ), height(A, H ), clear(A, t), clear(B, f),hold(nil))
[ .03 ] (on(A, table), clear(A, t), height(A,H’), hold(nil), broke(t))

stackon(table)
pre: (clear(table, t), hold(A), broke(f))
eff : [ 1.00 ] (on(A, table), height(A, 0), clear(A, t), hold(nil))

pickup(A)
pre: (clear(A, t), hold(nil), on(A, B ),broke(f))
eff : [ 1.00 ] (hold(A), clear(A, f), on(A, nil), clear(B , t), height(A,-1))

Figure 1:The set of relational rules,Z, for blocks-world dynamics.2 Each rule schema contains the
action name, precondition, and a set of effects.

a 0.7 chance of landing in a state where block1 is correctly put on block4. The rule
outcomes themselves usually only specify a subset of the domain predicates, effectively
describing a set of possible ground states. We assume a static frame: state predicates not
directly changed by the rule are assumed to remain the same.

Rewards:A state is deterministically mapped to a scalar reward according to functionR(s).

2.2 Initial trajectory planning

The next step is finding an initial path. In a relational setting, when the underlyingMDP
space implied by the full instantiation of the representation is potentially huge, a good
initial envelope is crucial. It determines the quality of the early envelope policies and sets
the stage for more elaborate policies later on.

For planning in traditionalSTRIPSdomains, the Graphplan algorithm is known to be effec-
tive [1]. Graphplan finds the shortest straight-line plan by iteratively growing a forward-
chaining structure called aplangraphand testing for the presence of goal conditions at each
step. Blum and Langford [2] describe a probabilistic extension called TGraphplan (TGP)
that works by returning a plan’s a probability of success rather than a just a boolean flag.
TGP can find straight-line plans fairly quickly from start to goal that satisfy a minimum
probability. GivenTGP’s success in probabilisticSTRIPSdomains, a straightforward idea
is to use the trajectory found byTGP to populate our initial envelope.

Nevertheless, this should give us pause: we have just said that our relationalMDP describes
a large underlyingMDP. TGP and other Graphplan descendants work by grounding out
the rules and chaining them forward to construct the plangraph. Large numbers of ac-
tions cause severe problems for Graphplan-based planners [11] since the branching factor
quickly chokes the forward-chaining plangraph construction. So how do we cope?



on(3,2)
clear(3,t)
height(3,1)
color(3,blue)
on(2,table)
clear(2,f)
color(2,green)
...
hold(nil)
clear(table,t)
broke(f)
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(a)

A B H H ′ C

1 4 0 1 table
1 5 0 1 table
4 1 0 1 table
4 5 0 1 table
5 4 0 1 table
5 1 0 1 table
3 1 1 1 2
3 4 1 1 2
3 5 1 1 2
1 3 1 2 table
4 3 1 2 table
5 3 1 2 table

(b)

}
}on(b1,table)

color(b1,g)

height(b1,0)

hold(nil)

clear(table, t)

broke(f)

clear(b1, t)

on(b2,table)

color(b2,r)

height(b2,0)

clear(b2, t)

move(b1,b2)

on(b1,b2)

height(b1,1)

clear(table, t)

clear(b2,f)

height(b1,0)

broke(t)

on(b1,table)

.7

.3

(c)

Figure 2: (a) Given this world configuration, themove action produces three types of effects. (b)
12 different groundings for the argument variables, but not all produce different groundings for the
derived variables. (c) A plangraph fragment with a particular instance ofmove chained forward.

2.3 Equivalence-class sampling: reducing the planning action apace

STRIPSrules require every variable in the rule schema to appear in the argument list, so
move(A,B) becomesmove(A,B,H, H ′, C). The meaning of the operator shifts from
“moveA ontoB ” to “ moveA at heightH ′ ontoB at heightH from C ”. Not only is this
awkward, but specifying all the variables in the argument list yields an exponential number
of ground actions as the number of domain objects grows. In contrast, the operators we
defined above have argument lists containing only those variables that arefreeparameters.
That is, when the operatormove(A,B) takes two arguments,A andB , it means that the
other variables (such asC , the block underA) are derivable from the relations in the rule
schema. Guided by this observation, one can generalize among bindings that produce
equivalent effects on the derivable properties.

Consider executing themove(A,B) rule in the world configuration in Figure 2. This cre-
ates 12 fully-ground actions. However examining the bindings reveals only three types of
action-effects. There is one group of actions that move a block from one block and onto
another; a group that moves a block from the table and onto a block of height zero; and
another group that moves a block off the table and onto a block of height one.

Except for the identities of the argument blocksA andB , the actions in each class produce
equivalent groundings for the properties of the related domain objects. Rather than using
all the actions, then, the plangraph can be constructed chaining forward only a sampled
action from each class. We call thisequivalence-class sampling; the sampled action is
representativeof the effects of any action from that class. Sampling reduces the branching
factor at each step in the plangraph, so significantly larger domains can be handled.

3 From a Planning Problem to a Policy

Now we describe the approach in detail. We define a planning problem as containing:

Rules: These are the relational operators that describe the action effects. In our system,
they are designed by hand and the probabilities are specified by the programmer.

Initial World State: The set of ground predicates that describes the starting state.REBP
does not make the closed world assumption, so all predicates and objects required in the
planning task must appear in the initial state.

Goal Condition:A conjunction of relational predicates. The goal may contain variables —
it does not need to be fully ground.
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Figure 3:An initial envelope corresponding to the plangraph segment of Figure 2(c) followed fringe
sampling and envelope expansion.

Rewards:A list of conjunctions mapping matching states to a scalar reward value. If a state
in the currentMDP does not match a reward condition, the default value is0. Additionally,
there must be a penalty associated with falling out of the envelope. This penalty is an
estimate of the cost of having to recover from falling out (such as having to replan back to
the envelope, for example).

Given a planning problem, there are now three main components toREBP: finding an initial
plan, converting the plan into anMDP, and envelope manipulation. A running example to
illustrate the approach will be the tiny task of making a two-block stack in a domain with
two blocks. Figure 3 illustrates output produced by a run of the algorithm.

3.1 Finding an initial plan

The process for making the initial trajectory essentially follows theTGP algorithm de-
scribed by Blum and Langford [2]. TheTGP algorithm starts with the initial world state as
the first layer in the graph, a minimum probability cutoff for the plan, and a maximum plan
depth. We use the equivalence-class sampling technique discussed above to prune actions
from the plangraph. Figure 2(c) shows one step of a plangraph construction.

3.2 Turning the initial plan into an MDP

The TGP algorithm produces a sequence of actions. The next step is to turn the sequence
of action-effects into a well-defined envelopeMDP; that is, we must compute the set of
states and the transitions. Usually, the sequence of action-effects alone leaves many state
predicates unspecified. Currently, we assume a static frame, which implies that the value
of a predicate remains the same unless it is known to have explicitly changed.

The set ofRMDP states are computed iteratively: first, the envelope is initialized with the
initial world state; then, the next state in the envelope is found by applying the plan action to
the previous state and “filling in” any missing predicates with their previous values; when
the state containing the goal condition is reached, the set of states is complete. To compute
the set of actions,REBP loops through the list of operators and accumulates all the ground
actions whose preconditions bind to any state in the envelope. Transitions that initiate in an
envelope state but do not land in an envelope state are redirected toOUT. The leftmostMDP
in Figure 3 shows the initial envelope corresponding to the one-step plan of Figure 2(c).

3.3 Envelope Expansion

Envelope expansion, ordeliberation, involves adding to the subset of world states under
consideration. The decision of when and how long to deliberate must compaare the ex-
pected utility of further thinking against the cost of doing so. Deanet al. [4] discuss this
complex issue in depth. As a first step, we considered the simpleprecursordeliberation
model, in which deliberation occurs for some numberr times and is completed before
execution takes place.



A round of deliberation involves sampling from the current policy to estimate whichfringe
states — states one step outside of the envelope — are likely. In each round,REBP draws
d · M samples (drawing from an exploratory action with probabilityε) and keeps counts
of which fringe states are reached. Thef · M most likely fringes are added to the enve-
lope, whereM is number of states in the current envelope andd andf are scalars. After
expansion, we recompute the set of actions and compute a new policy.

Figure 3 shows a sequence of fringe sampling and envelope expansion. We see the incor-
poration of the fringe state in which the hand breaks as a result ofmove. With the new
envelope, the policy is re-computed to include thefix action. This is a conditional plan that
a straight-line planner could not find.

4 Experimental Domain

To illustrate the behavior ofREBP, we show preliminary results in a stochastic blocks world.
While simple, blocks world is a reasonably interesting first domain because, with enough
blocks, it exposes the weaknesses of purely propositional approaches. Its regular dynamics,
on other hand, lend themselves to relational descriptions. This domain demonstrates the
type of scaling that can be achieved with theREBPapproach.

The task at hand is to build a stack containing all the blocks on the table. In this domain,
blocks are stackedon one another, with the top block in a stack beingclear. Each block
has acolor and is at someheight in the stack. There is a gripper that may or may not
be broken. Thepickup(A) action is deterministic and puts a clear block into the empty
hand; a block in the hand is no longer clear, and its height and and on-ness are no longer
defined. Thefix() action takes a broken hand and fixes it with some probability. The
stackon() action comes in two flavors: first,stackon(B), takes a block from the hand and
puts it on blockB , which may be dropped onto the table with a small probability; second,
stackon(table), always puts the block from the hand onto the table. Themove(A,B) and
stackon(B) actions also have some chance of breaking the hand. If the hand is broken, it
must be fixed before any further actions can apply. The domain is formalized as follows:3

P : on(Block, Block), clear(Block, TorF ), color(Block, Color),
height(Block, Num), hold(Block), clear(table, T orF ), broke(TorF ).

Z, T : The rules are shown in Figure 1.
O : A set ofn differently colored (red, green, blue) blocks.
R(s) : If ∃A height(A, n− 1), then1; if broke(t), then−2; if OUT, then−1.

5 Empirical Results

We compared the quality of the policies generated by the following algorithms:REBP;
envelope expansion starting from empty initial plan (i.e., the initial envelope containing
only the initial world state); and policy iteration on the fully groundMDP.4

In all cases, the policy was computed by simple policy iteration with a discount of0.9 and
a stopping threshold of0.1. In the case ofREBP, the number of deliberation roundsr was
10,d was 10,f was0.3, andε was 0.2. In the case of the deliberation-only envelope, ther
was increased to 35. The runs were averaged over at least 7 trials in each case.

We show numerical results for domains with 5 and 6 blocks. The size of the fullMDP
in each case is, respectively, 768 and 5,228 states, with 351 and 733 ground actions. A

3The predicates behave like functions in the sense that thenth argument represents the value of
the relation for the firstn− 1 arguments. Thus, we sayclear(block5, f) instead of¬clear(block5).

4Starting with the initial state, the set of states is generated by exhaustively applying our operators
until no more new states are found; this yields the true set of reachable states.



Figure 4:Results for the block-stacking tasks. The top plots show policy value against computation
time for REBP and the fullMDP. The bottom plots show policy value against number of states for
REBPand deliberation only (empty initial plan).

domain of 7 blocks results in anMDP of over 37,000 states with 1,191 actions, a combined
state and action space is too overwhelming for the fullMDP solution. TheREBPagent, on
the other hand, is able to find plans for making stacks in domains of more than 12 blocks,
which corresponds to anMDP of about 88,000 states and 3,000 ground actions.

The plots in Figure 4 show intuitive results. The top row shows the value of the policy
against execution time (as measured by a monitoring package) showing that theREBP al-
gorithm produces good quality plans quickly. ForREBP, we start measuring the value of
the policy at the point when initial trajectory finding ends and deliberation begins; for the
full MDP solution, we measure the value of the policy at the end of each round of policy
iteration. The fullMDP takes a long time to find a policy, but eventually converges. Without
the equivalence-class sampling, plangraph construction takes on the order of a couple of
hours; with it, it takes a couple of minutes. The bottom row shows the value of the policy
against the number of states in the envelope so far and shows that the a good initial envelope
is key for behaving well with fewer states.

6 Discussion and Conclusions

Using the relational envelope method, we can take real advantage of relational general-
ization to produce good initial plans efficiently, and use envelope-growing techniques to
improve the robustness of our plans incrementally as time permits.REBP is a planning sys-
tem that tries to dynamically reformulate an apparently intractable problem into a small,
easily handled problem at run time.

However, there is plenty remaining to be done. The first thing needed is a more rigorous
analysis of the equivalence-class sampling. Currently, the action sampling is a purely local
decision made at each step of the plangraph. This works in the current setup because
object identities do not matter and properties not mentioned in the operator outcomes are
never part of the goal condition. If, on the other hand, the goal was to make a stack of



heightn− 1 with a green block on top, it could be problematic to construct the plangraph
without considering block color in the sampled actions. We are currently investigating what
conditions are necessary for making general guarantees about the sampling approach.

Furthermore, the current envelope-extension method is relatively undirected; it might be
possible to diagnose more effectively which fringe states would be most profitable to add.
In addition, techniques such as those used by Deanet al. [4] could be employed to decide
when to stop envelope growth, and to manage the eventual interleaving of envelope-growth
and execution. Currently the states in the envelope are essentially atomic; it ought to be
possible to exploit the factored nature of relational representations to allow abstraction in
the MDP model, with aggregate “states” in theMDP actually representing sets of states in
the underlying world.

In summary, theREBPmethod provides a way to restrict attention to a small, useful subset
of a largeMDP space. It produces an initial plan quickly by taking advantage of general-
ization among action effects, and as a result behaves smarter in a large space much sooner
than it could by waiting for a full solution.
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