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Abstract— The Segmentation According to Natural Examples
(SANE) algorithm learns to segment objects in static images from
video training data. SANE uses background subtraction to find
the segmentation of moving objects in videos. This provides object
segmentation information for each video frame. The collection
of frames and segmentations forms a training set that SANE
uses to learn the image and shape properties of the observed
motion boundaries. When presented with new static images,
the trained model infers segmentations similar to the observed
motion segmentations.

SANE is a general method for learning environment-specific
segmentation models. Because it can automatically generate
training data from video, it can adapt to a new environment and
new objects with relative ease, an advantage over untrained seg-
mentation methods or those that require human-labeled training
data. By using the local shape information in the training data, it
outperforms a trained local boundary detector. Its performance
is competitive with a trained top-down segmentation algorithm
that uses global shape. The shape information it learns from one
class of objects can assist the segmentation of other classes.

Index Terms— segmentation, machine learning, motion, com-
puter vision, Markov random field

I. INTRODUCTION

APICTURE is worth a thousand words, but a pixel is nearly
worthless. Its brightness and color might be due to an object

surface, lighting conditions, or instrument sensitivity. Its value
may be corrupted by sensor noise. It provides no depth informa-
tion. There are few useful vision tasks that can be performed with
a single pixel. Therefore, optimally grouping pixels is a primary
challenge in computer vision. This paper describes Segmentation
According to Natural Examples (SANE), an algorithm that learns
to segment objects in still images by training on videos of moving
objects.

Many image segmentation algorithms have been developed in
the last 40 years, but the endeavor has always been troubled by
what David Marr called the “almost. . . philosophical problems”
of specifying a useful region definition [20]. Image properties
that might indicate a significant image boundary in one environ-
ment might be an unimportant local variation in another. If the
segmentation is a pre-processing step, the regions useful for one
algorithm might be useless to another. Learning approaches based
on human-labeled boundaries have been explored ([3], [14], [22]),
but acquiring the training data is expensive and the utility of these
subjectively defined segmentations is unclear.
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SANE addresses these concerns. It learns a model of region
boundaries by observing object motion in videos, and then
applies this model to segment new static images. It produces
segmentations with closed boundaries; uses an objective, useful,
region definition; and can be trained to segment new environments
with relatively low cost.

Motion provides a concrete, general-purpose region definition
for segmentation. Defining a region as a collection of elements
that undergo coherent motion corresponds well to intuition. All
the visually distinct elements of a car can be considered a single
region because they frequently move together, but a pile of leaves
is composed of many elements that move independently on a
windy day. This motion definition is clearly useful; for example,
a robot manipulator must know whether a collection of pixels
represents a single entity or something that will disintegrate at
the slightest touch.

Apart from their utility, motion-defined regions are desirable
because their test and training example sets can be automatically
generated. A video camera on a sidewalk can record hundreds
of moving cars, people, or animals every hour, and software can
use their motion to separate them from their surroundings. Thus
motion-defined regions combine utility and practicality.

SANE uses background subtraction to find the segmentation of
moving objects in videos. This provides segmentation information
for each video frame. The collection of frames and segmentations
forms a training set that SANE uses to learn the image and shape
properties that correspond to the observed motion boundaries.
Then, when presented with new static images, the model infers
segmentations similar to the observed motion segmentations.

SANE contributes a framework that uses video motion to
generate training data for new segmentation environments, and
learning and inference algorithms that translate the data’s shape
and image information into a useful still-image segmentation
algorithm. Because it does not require human-labeled training
data, SANE can adapt to a new environment and new objects
with relative ease. The large, automatically labeled training sets
also allow SANE to use simple learning algorithms that rely
on counting and non-parametric probability density estimates.
Comparisons to the well known normalized cuts segmentation
algorithm [35] and to the Martin et al. [22] learned edge detector
reveal performance advantages due to SANE’s adaptability and
shape modeling. SANE’s output is competitive with the output of
the top-down LOCUS segmentation algorithm [45], and it learns
useful shape information that generalizes well to the segmentation
of novel object classes and environments.
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II. RELATED WORK

A. Image segmentation

Modern scientific interest in image segmentation dates from
the work of Max Wertheimer and other Gestalt psychologists,
who studied the visual properties that cause humans to perceive
multiple image elements as unified groups. They identified group-
ing factors such as proximity, color, orientation, and common
motion [26]. Many of the features used in computer image
segmentation algorithms correspond to these classical principles.

The work of Spelke et al. on the development of image-
segmentation abilities in children is an inspiration for SANE.
They determined that the ability to distinguish object boundaries
by motion and depth perception developmentally precedes the
ability to segment based on cues such as color, brightness,
and texture [36]. These results suggest that segmentation with
these cues can be learned from the more primitive modes of
segmentation.

The multitude of approaches to image segmentation can be use-
fully described along many dimensions. One of the fundamental
differences is between methods that output edge maps and those
that output region labels. Edge map methods, such as the Canny
edge detector [5], typically do not constrain their output to only
contain closed contours, so it may not be possible to determine
the image regions from the edge map. Both the Shashua and
Ullman [34] and the Ren et al. [28] algorithms attempt to improve
edge map results by removing spurious edges and completing
broken contours, but still do not guarantee closed boundaries.
Segmentation algorithms, such as Shi and Malik’s normalized cuts
method [35], explicitly assign region labels to all image pixels,
eliminating this ambiguity. The Martin et al. [22] and Konishi et
al. [14] algorithms are two modern edge map methods, while Tu
and Zhu’s data-driven Markov chain Monte Carlo algorithm [39]
outputs image regions, as does SANE.

Early segmentation algorithms required human initializa-
tion [13] or assumed human-tuned model parameters. Most mod-
ern approaches to the segmentation problem use machine learning
techniques, but vary greatly in the type of training data they
require. The Martin [22] and Konishi [14] algorithms both learn
to detect edges from manually-labeled training data, as does the
Levin and Weiss [19] method. Several region algorithms, such as
Borenstein and Ullman [4] and Winn and Jojic’s LOCUS [45]
can learn from sets of images that each contain instances of a
particular object class. Some manual cropping, selection, or other
manipulation may be required, but not specific segmentation or
object localization. An earlier version of SANE introduced the
concept of learning to detect boundaries in static images by ob-
serving moving objects [30], [31]. The motion-learning approach
makes the generation of training data cheap and automatic, and
it does not rely on subjective human definitions of “object,”
“region,” or “boundary.” The Obj Cut algorithm [15] also learns
by automatically extracting motion regions in videos.

There is also considerable variance in the models used to
perform segmentation. Some segmentation algorithms, like nor-
malized cuts, are primarily “bottom-up”—they infer segmentation
from pixel values and local brightness and color gradients. Several
of the recent learning methods, such as LOCUS and Obj Cut rely
on very strong models of the objects’ global shape and are best
characterized as “top-down” methods. Levin and Weiss attempt
to merge both approaches, while others, such as Borenstein and
Ullman operate on mid-sized image chunks in an attempt to split

the difference. SANE operates between the extremes of “bottom-
up” and “top-down”. It learns local boundary likelihoods using
a simple set of features and combines that with a shape model
based on local neighborhoods. It demonstrates that the combi-
nation of two independently inadequate sources of segmentation
information can produce a successful segmentation algorithm.

A relatively small, but promising, category of algorithms at-
tempts to integrate segmentation with related processes, such as
object detection and classification. Leibe et al. [18] and Tu et
al. [38] are two examples of the integrated approach.

Preliminary results from an earlier version of SANE were
reported by Ross and Kaelbling [32].

B. Markov random fields

The segmentation models introduced in Section III are based on
Markov random fields (MRFs), a class of probabilistic graphical
models that encode the relationships between multiple variables.
Markov random fields have been popular in computer vision
since their use by Geman and Geman [10]. Recently, conditional
random fields, a related family of graphical models proposed
by Lafferty et al. [17] and applied to vision by Kumar and
Hebert [16], have become prominent because they allow the use
of more complex contextual features and avoid the overhead of
generative modeling. The SANE MRFs also make extensive use
of contextual image information.

A Markov random field is an undirected graph whose nodes
represent variables of interest. If a graph contains variables X,
and the neighbors of a particular variable Xi are denoted N(Xi),
the Markov property holds that P (Xi|X \Xi) = P (Xi|N(Xi));
a variable is independent of the remainder of the graph given the
values of its neighbors.

Unlike Bayesian networks, the joint distribution of the variables
in an MRF cannot be found by multiplying local conditional prob-
ability functions. Instead, the Hammersley-Clifford theorem [1]
states that every Markov random field is a Gibbs distribution,
in which P (X = x) = Z−1 Q

C Ψc(Xc = xc), where C is the
set of cliques, or mutual neighbors, in the graph; Ψc are positive-
valued clique potential functions; and Z =

P
X

Q
C Ψc(Xc = xc)

is a normalization constant called the “partition function.” For a
particular assignment to the variables in clique c, the larger the
value of Ψc, the more likely the combination.

The necessity of normalizing the Markov random field energy
function by Z makes inference in these models challenging. One
popular approximate inference method is based on the belief prop-
agation algorithm. Discovered by Pearl, belief propagation [27]
is a pair of related algorithms that allow for efficient calculation
of local marginal probabilities and global maximum a posteriori
(MAP) estimates in tree-structured MRFs and Bayesian networks.
Although their accuracy are only guaranteed for tree-structured
MRFs, the algorithms can be applied to graphs containing loops.
Commonly called “loopy belief propagation,” this approach has
found great favor among computer-vision researchers because it
often produces useful approximate inference [43]. To improve
the convergence of loopy belief propagation, researchers have
investigated altering its “step size.” Murphy et al. found that
using a linear combination of the old and new messages im-
proved convergence in some cases, but note that “in several
cases the beliefs to which the algorithm converged were quite
inaccurate” [25]. Heskes described “damping” the steps of loopy
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Fig. 1. An image and its segmentation are represented by patches representing local pixel, boundary, and segmentation values.

belief propagation by linearly combining the logarithms of new
and old messages [11].

Besag [2] described iterative conditional modes (ICM), a
simple hill-climbing method that produces adequate assignments
to MRFs in many instances. ICM takes an initial assignment
and scans through all the variables, making any local change
that increases the probability of the overall assignment. Because
each change only affects a few clique potentials, the algorithm
is extremely efficient, although it is most useful when the initial
assignment is nearly optimal.

Creating a Markov random field model for a set of variables
requires choosing values for the clique potential functions. There
is no simple translation between clique potential functions and the
joint probability distributions of the clique’s component variables
because the normalizing partition function Z is necessary to all
marginalizations and is influenced by all of the MRF’s potentials.
As a result, approximations are frequently used.

One parameter-fitting procedure is iterative proportional fitting
(IPF), which selects parameters that match the marginal probabili-
ties of the model to a set of observed marginal probabilities [12].
However, each IPF update requires inferring clique marginals,
which is intractable due to the partition function. One solution is
to use approximate inference to efficiently compute the necessary
marginals. Wainwright and Sudderth have proven that in an MRF
with single and pairwise clique potentials, Ψi(Xi) = P (Xi)

and Ψij(Xi, Xj) =
P (Xi,Xj)

P (Xi)P (Xj)
are fixed points of IPF using

belief propagation inference [42]. Subsequently, Wainwright et al.
demonstrated that these parameter settings are also approximate
maximum-likelihood estimates [41] and noted that they are exact
clique potential functions on a tree-structured MRF [40]. The two-
element clique potential functions have an intuitive interpretation.
If Xi and Xj are independent of each other, Ψij(Xi = xi, Xj =

xj) = 1 for all values xi and xj . Values for which Ψij > 1

are positively correlated and values for which Ψij < 1 are
negatively correlated. These approximations will be the bases for
the clique potential functions used in SANE. They have been used
in MRF models prior to Wainwright and Sudderth’s theoretical
justification. For example, they are equivalent to the conditional
probability potential functions used by Freeman et al. [8].

III. THE SANE ALGORITHM

A. Segmentation model

SANE models images and their segmentations by dividing them
into a grid of 5 pixel by 5 pixel, non-overlapping patches. The
segmentation between an isolated object and its surroundings can
be represented in each patch by the shape of the local boundary
and a parity bit indicating which of the two segmentation labels
(“0” and “1”) is on each side of the boundary (Figure 1). The

absence of a boundary in a patch is represented by a special
“empty edge” value. The segmentation of patch (i, j) is denoted
Si,j = (Ei,j , Pi,j), with Ei,j representing the local boundary (or
“edge”) and Pi,j indicating the parity.1 The corresponding image
patch is Ii,j . The use of patches rather than pixels as the basic
image unit is inspired by Freeman et al.’s [8] super-resolution
MRF model.

The parity bits might seem unnecessary because the detection
of closed boundaries are equivalent to the explicit labeling of
segmented regions. But errors produced by the use of loopy belief
propagation ([25], [44]) can result in the inference of broken
boundaries even if the clique potential functions require closed
boundaries. The parity bits, which enable labeling the pixels on
each side of every edge as belonging to group “0” or group “1”,
allow SANE to always output a segmentation.

Parities are binary and edge variables are discrete and range
over a parameterization of all possible boundary edges that can
pass through a 5 by 5 patch. The patch size was chosen so the edge
variables would represent significant local shape information, but
have few enough possible values to allow for discrete represen-
tation. Because region boundaries are closed, their constituent
edges cannot terminate in the middle of a patch. Therefore, local
edges are represented as an entry point on the border of the patch,
an optional inflection point inside the patch, and an exit point
on the border of the patch. The permitted coordinates for these
locations are the integer-valued pixel locations in the patch. Figure
1 shows an example segmentation and one of its constituent
edge values. Enumerating the possible combinations, ignoring
parameter settings that produce duplicate edges (such as swaps
of the entry and exit coordinates), and adding the empty edge as
a special case produces 2717 unique possible edge assignments.

Some local edge shapes cannot be exactly represented with
this parameterization. For example, any local shape containing
two or more inflections would be approximated by the nearest
single-inflection edge. The small size of the patches compared
to the object boundaries makes the representation an acceptable
approximation that appears to cause no significant problems.

Each image patch Ii,j is a real vector-valued variable repre-
senting useful local image features. In SANE, all models use the
average brightness of four patch regions as image features, as
shown in Figure 1. Color models also use the average red, green,
and blue values of all the patch’s pixels.

In a traditional MRF model, variables representing the underly-
ing image data are separate from the hidden variables whose value
is to be inferred. That arrangement is unsatisfactory for image
segmentation because it prevents the model from representing
certain useful relationships. For example, it might be desirable to

1Variables will be single-indexed when image location is unimportant.
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Fig. 2. Merging image and segmentation variables increases flexibility.

construct a segmentation model such that red and green pixels are
never combined in the same segment and in which red-blue and
green-blue transitions generally indicate boundaries. Consider the
example in Figure 2, in which these two properties conflict. The
compatibility between the neighboring assignments only depends
on the fact that they are neighboring boundaries that continue a
straight line. There is no clique potential function that prevents
the combination of red and green pixels. To counter this problem,
SANE combines the image and segmentation variables into the
same nodes, so the MRF for a particular segmentation consists
of nodes Xi,j = (Si,j , Ii,j). This is similar to the conditional
random field (CRF) models proposed by Lafferty et al. [17].

The nodes are connected to their neighbors in a first-
order neighborhood. The neighbors of Xi,j are N(Xi,j) =

{Xi+1,j , Xi−1,j , Xi,j−1, Xi,j+1}. As discussed in Section II-
B, two-element clique function values can be approximated by
the ratio between the neighbors’ joint marginal probability and
the product of their individual marginal probabilities. SANE
combines these potentials with a requirement that segmentation
assignments correctly continue their neighbors.

To produce valid segmentations, neighboring patches must be
assigned compatible values. Every possible local edge assignment
requires the edge to enter from one neighboring patch and exit
onto another and the assignments to these neighbors must have
entrances and exits that continue the boundary without any break.
The second requirement is that the parities of neighboring patches
must produce consistent label assignments. Pixels labeled “0”
cannot be next to pixels labeled “1” without an intervening edge
and vice-versa. Both requirements are enforced by the continuity
function C(Si, Sj), which returns 1 if the assignment to neighbors
Xi and Xj match, and 0 if they are incompatible. Edge continuity
is not enforced at patch corners because which neighboring patch
should continue the edge assignment is ambiguous, but the label
consistency requirements ensure a consistent assignment in those
cases.

Adding the continuity requirement to the clique potential
functions discussed in Section II-B, the parameters of a SANE
MRF are estimated by

Ψ(Xi, Xj) = C(Si, Sj)
P (Xi, Xj)

P (Xi)P (Xj)
+ (1− C(Xi, Xj))ε,

where ε > 0 is a constant indicating low compatibility (ε =

10−10 in the experiments described in Section IV). Zero-valued
pairwise clique potentials are forbidden by the Hammersley-
Clifford theorem [1] and would prevent the use of the ICM
method to fix incompatible assignments that result from loopy
belief propagation, which is discussed in Section III-D.

The X variables consist of discrete edge assignments and
continuous image data. Therefore, it will be convenient to factor

Compatible multi-resolution assignments

full-res 
node

half-res 
node

Fig. 3. Multiresolution SANE links full-resolution and half-resolution nodes.

the probabilistic term in the clique potentials into

P (Xi, Xj)

P (Xi)P (Xj)
=

P (Ii, Ij |Si, Sj)

P (Ii|Si)P (Ij |Sj)

P (Si, Sj)

P (Si)P (Sj)

=
P (Ii, Ij |Ei, Ej)

P (Ii|Ei)P (Ij |Ej)

P (Ei, Ej)

P (Ei)P (Ej)
.

The second equality results because the parities of the pixels
are only used for continuity and interpreting the output as a
segmentation. One label does not represent “object” and the other
“background.” The factorization is aesthetically pleasing because
the edge factors represent the shape information learned from
the data, while the image factors represent the probability of the
image data given different shapes and the probability of inter-
patch regional properties, such as the grouping of red and green
pixels discussed earlier. It also divides the problem of estimating
the necessary marginal distributions into discrete and continuous
components.

Merging the image and segmentation variables into single
nodes does not increase the computational complexity of infer-
ence. Since the image values are observed, there is no increase in
the number of hidden variables or in their possible assignments.

Because the parities only affect the clique potentials between
neighbors, the model described above always has at least two
equivalent MAP assignments, both with the same edge assign-
ments, but with opposite parity bits at every node. Belief prop-
agation cannot resolve MAP ties [46], so SANE fixes the parity
of the upper-left node, which breaks the tie.

B. Multiresolution segmentation

Many computer vision algorithms use multiresolution rep-
resentations to combine the long-distance image relationships
best captured at a low resolution with the precision possible at
full resolution. Similarly, the multiresolution version of SANE
consists of two linked MRFs, one defined on the original image
and the other on the image at half resolution. Constructing them
requires two models, one trained on full-scale images and the
other trained on half-scale images.

As seen in Figure 3, the nodes of the two Markov random fields
are intraconnected within each level as described previously and,
additionally, each low resolution node is connected to the four full
resolution nodes that are responsible for the equivalent area of the
full-resolution image. The intralevel clique potential functions are
the same as they would be for two independent MRFs, and the
interlevel clique potentials enforce consistency between each low-
resolution assignment and the associated full-resolution assign-
ments for each of its four corners. For example, an assignment
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Fig. 4. Images and background subtraction masks from each of the four data
sets. From left to right: traffic, walking, mwalkA, and mwalkC.

to the full-resolution upper-left variable Sul implies a 5x5 array
of pixel labels Lul and it is attached to a half-resolution node
that assigns Lh to its pixels. Consistency demands that the sum
of the squared differences between overlapping full and half-
resolution labels, M(Lul, Lh) =

P
i,j(Lul(i, j)− Lh(i/2, j/2))2

is minimized. In order to avoid the complications of learning
this relationship, and to allow flexibility for the inevitable minor
variations between full and half-resolution assignments, multires-
olution SANE sets the clique potential between the Xul and Xh

to 1 if M(Lul, Lh) <= 4 and ε otherwise. The threshold of 4 was
determined by trial and error. The clique potential functions for
the other three multiresolution relationships, upper-right, lower-
left, and lower-right, are defined analogously.

C. Training

Training the segmentation model requires a video of moving
objects against a still background. The video is processed with
the Stauffer and Grimson or Migdal and Grimson background-
subtraction algorithms ([24], [37]), which produce a binary image
for every video frame in which “1” pixels indicate a moving object
and “0” pixels indicate background.

The background subtraction output only provides information
about moving objects, so it produces a partially labeled dataset.
For example, in a video of moving cars on a highway, the
segmentation of disabled cars along the roadside will not be
detected because static objects become part of the background.
Training could be negatively affected by presenting the boundaries
of such static objects as internal parts of a region. To alleviate
this, a bounding box containing the foreground pixels and their
immediate surroundings is computed and the remainder of the
image is excluded from the training set. If multiple moving
objects are present, a single bounding box containing all of them
is computed.2 Next, the regions inside the bounding box are
extracted from the original video frame and the binary background
subtraction image. The background subtraction image is converted
into a binary edge image by scanning every row and column and
labeling any transition between foreground and background as a
boundary point.

The segmentation model requires estimates of discrete and con-
tinuous probability functions. The edge values are discrete, with
2717 possible values, while the image data are continuous, with a
dimensionality and range dependent on the image features used.
The edge-value distributions are computed by counting observed
instances. The image-feature distributions are represented using
Gaussian kernel density estimates. The ease of generating motion-
labeled training data makes it possible to gather enough samples
to use these simple learning algorithms. The training data is
processed to make the model invariant to translation and rotation.

2In future applications to data sets that contain multiple moving objects
intermixed with many static objects, per-object bounding boxes may be more
appropriate.

The first task is estimating the edge probabilities P (Ei) and
P (Ei, Ej) from the examples. The video processing steps de-
scribed above result in a binary edge image. Dividing any edge
image into 5x5 patches produces a set of edge and edge-pair
samples. Shifting the patch boundaries right or down by 1–4
pixels produces an additional set of samples from the same image.
Rotating each example patch and its immediate surroundings
through 360 degrees (by 22.5 degree increments) further increases
the number of sample edge and edge pairs harvested from each
edge image and imparts rotational invariance to the resulting
model.

To make the model translationally invariant, the individual
edge samples are pooled into a single set without regard to
their image locations. The edge pairs can be similarly pooled
without regard to location, but they divide into two separate sets—
vertical and horizontal neighbors. Assuming rotational invariance,
a -90◦ rotation maps any horizontal pair into an equivalent
vertical pair. Transforming all of the horizontal pairs in this
manner represents all the pair samples as vertical relationships,
concentrating them into fewer categories and making efficient use
of their information.

After marshaling the training examples into their proper ori-
entations, the problem of matching them to the appropriate
edge parameterization remains. A 5x5 binary image patch can
represent 225 possible values, but the parameterization described
in Section III-A only contains 2717 distinct edges. Therefore,
each raw binary edge sample is represented by the most similar
parameterized edge. The best match is found by comparing a
rendered version of each parameterized edge to the binary image
patch in question. The rendering of edge E is a 5x5 matrix S(E)

where location S(E)(i, j) = exp(−d(E, (i, j))) and d(E, (i, j))

is the distance between location (i, j) and the nearest location
on edge E. For these calculations, the integer pixel and edge
coordinates are considered to be in the center of pixels. For
example, (0, 0) represents the center of the top-left pixel in
the patch. Given a binary edge image patch, B, the error for
parameterized edge E is

P
i,j(S(E)(i, j) − B(i, j))2. In order

to discourage bending the local boundary to slightly reduce the
error, an edge containing an inflection point is only considered
best if its error is at least a 30% improvement over the lowest-
error uninflected edge.

In some cases, a 5x5 binary image patch provides too little
support to select the correct parameterized edge. Because edges
must be continuous with their neighbors in inference, all edge-
fittings occur in pairs, choosing the pair of continuous neighboring
edges that best fit the binary edge image data. At each location
the software finds the lowest-scoring continuous matches for that
location and each of its four neighboring patches, provided they
are not off the edge of the image. Each pair is stored as an
example of neighboring edge assignments and each element as
a single edge sample. Any overcounting that results should be
almost evenly distributed and is not a cause for concern.

Given sets of sample individual edges, the next step is to
estimate the probability distributions P (Ei) and P (Ei, Ej). These
probabilities are estimated by counting observed edges and edge
pairs, initializing each count to 1. This is equivalent to finding
a MAP posterior estimate of the edge probabilities, assuming a
Dirichlet prior that makes every edge and edge pair equiprob-
able [9]. This prevents zero probabilities, which are forbidden
by the Hammersley-Clifford theorem and often cause inference
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Fig. 5. The four best and worst color, multiresolution SANE results on the four data sets, computed using the step-size search (bp,ss) method.

problems. Edge values that are never observed in training are
discarded from both the edge and edge-pair possible values.

The image probabilities, P (Ii|Ei) and P (Ii, Ij |Ei, Ej) are con-
tinuous and also estimated by collecting samples. The number of
available samples is enhanced by observing multiple rotations of
the underlying image data at each image location and by making
the probabilities invariant to horizontal and vertical reflection.
The single and pair distributions are related by P (Ii|Ei) =P

Ej

R
Ij
P (Ii, Ij |Ei, Ej)P (Ej |Ei), therefore SANE builds an

estimate for the pair distribution and uses it to compute the single
distribution. It would be more computationally efficient to learn
a separate estimate of the single distribution, but experience has
demonstrated that the quality of the output is degraded by any
inconsistencies between the two distributions.

Although collecting enough image patches to provide a con-
ditional image distribution for every edge pair is difficult, in
some cases there is too much data rather than too little. For
example, the empty-edge assignment appears far more often than
any other value because it is used to label all non-boundary
image regions. SANE solves this problem by adaptively lowering
the patch sampling rate for these edge assignments. The image-
pair probabilities are represented by Gaussian kernel density
estimates [33]. For each edge pair, the variance of the kernels of
its density estimate is selected by randomly dividing the collected
samples in half and searching for a variance that maximizes the
probability of one half when the remainder is used as the kernel
means. The final estimator uses this kernel variance and all the
samples as kernel means.

D. Inference

Once all the appropriate probability functions have been es-
timated from training data, the segmentation of new images
can be performed by constructing an MRF and using the belief
propagation inference algorithm.

Given an input image, the algorithm divides it into a grid of
non-overlapping 5x5 patches. Each patch is assigned to a node
Xi = (Si, Ii) as described previously. The computational costs

of the belief propagation inference algorithm are O(|e|2) where
|e| is the maximum number of possible edge assignments at
each node. Therefore, using the full set of 2717 possible edge
assignments is impractical and each node is instead given a
set of the locally most likely edge assignments. For each node
Xi, the algorithm selects the empty edge and 19 other edge
assignments that maximize P (Ei = ei|Ii). After these initial sets
of possible assignments are selected at each node, the assignments
at every neighbor and every pair of neighbors are examined to
discover neighboring edge assignments that cannot be continued
correctly by any currently available assignment at Xi. For each
uncontinuable neighbor or paired-neighbor assignment, the most
locally likely edge that continues it is added to the set of possible
edges. Unlike the C function, continuity of edges that enter and
exit through patch corners is considered because it is necessary to
provide completing possible assignments at both of the bordering
neighbors. This enhancement process is repeated until it converges
and no more edges are added at any node. The local edge sets
are also extended with edges corresponding to the patches’ sides
and corners to help close segmentation boundaries. Finally, the
edges (except at X0, see Section III-A) are paired with each of the
two parity values, doubling the number of possible assignments
at each node.

The approximate MAP estimates of the S variables are cal-
culated via the max-product algorithm. There is no guarantee of
convergence for loopy MRFs, so SANE stops belief propagation
after 200 iterations and takes the approximate MAP estimate
available at that point. Results can sometimes be improved by
using Besag’s iterative conditional modes (ICM) algorithm [2]
to improve parity assignments as a post-processing step. Another
approach is to try ten Heskes [11] belief propagation step sizes
ranging from 0.1 to 1 and choose the result with the maximum
MRF configuration value. More details of the development and
implementation of the SANE algorithm can be found in Ross’s
doctoral dissertation [29].
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Fig. 6. The f-measures, precisions, and recalls of SANE models and inference methods on the data sets.

IV. EXPERIMENTS

A. Data sets

The experiments in this section illuminate the performance of
different SANE models and algorithms on four data sets. They
demonstrate its advantages over the standard normalized cuts
segmentation algorithm [35] and the Martin trained boundary
detection algorithm [22]. The experiments also find that SANE’s
output on two of the data sets is competitive with the results
of the LOCUS [45] top-down segmentation approach. Finally,
additional experiments measure SANE’s ability to generalize to
other environments and lighting conditions, and show that the
shape information it learns is surprisingly general and can be
applied to object classes significantly different than those in the
training set.

SANE was tested on four data sets (Figure 4). The traffic data
consists of a single video recording of cars traveling down two
roads. The original video was spatially divided to produce two
videos, each covering traffic on a different road. The walking
video shows one of the authors walking back and forth in front
of a whiteboard. Two other videos of many people individually
walking across a room form the mwalkA and mwalkC data sets.
These sequences were both filmed in the same room, with the
same camera position and nearly the same subjects, but each has
different lighting conditions.

Each data set was divided into training and testing examples.

On the traffic data, the video of the left road became the training
set, and the video of the right road became the testing set. The
other videos were split temporally into training and testing sets—
all frames prior to a certain time index were for training and the
remainder for testing. In the traffic and mwalk data sets, the test
sets contain some objects that do not appear in the training sets,
so success requires generalization.

Discarding the frames in which background subtraction de-
tected no moving objects, the traffic data contains 1432 training
frames and 2285 testing frames, the walking data contains 401
training and 200 testing frames, and both the mwalkA and
mwalkC data sets contain 1201 training and 1200 testing frames.
After discarding image areas devoid of moving objects, the
average image size across all data sets was approximately 13,000
pixels.

Segmentation performance on each data set was measured
by randomly selecting three training and testing subsets. Every
training subset contained 200 images and every testing subset
contained 40 images. Performance was measured by averaging
the results across the subsets. For example, on the traffic data, a
SANE model was trained on the first training subset and tested
on the first testing subset, another SANE model was trained on
the second training subset and tested on the second testing subset,
and so on. Performance statistics were computed for each testing
subset and the averages are reported in the graphs of this section,
along with error bars indicating the standard error.
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Although the motion segmentation pixels are all labeled either
“0,” indicating background, or “1,” indicating moving object,
multiple moving objects can be represented. Two non-overlapping
moving objects in a frame will produce two groups of intra-
connected “1” pixels, separated from one another by surrounding
“0” pixels, each of which should be represented by a unique
connected component in the inferred segmentation. Two pixels are
in the same connected component if they are horizontal or vertical
neighbors and have the same label. For comparison to an inferred
segmentation, the pixels of each connected component are given
a unique label. The surrounding “0” pixels are left unmodified.

Similarly, the output of SANE can contain multiple connected
components. Because the “0” and “1” labels carry no meaning,
all pixels are relabeled by connected component. An accurate
segmentation should match one SANE component to each motion
component and all the remaining SANE components should
correspond to the non-moving pixels. There is no penalty for
subdividing the background because there is no information
available for judging the true segmentation of static parts of the
scene.

For an image, consider an assignment such that each motion
object component is paired with a single unique SANE component
or else with no SANE component. Precision (P) is the fraction
of all the matched SANE component pixels that cover the
same image locations as pixels from their corresponding motion
component. Recall (R) is the fraction of all motion component
pixels that are covered by pixels from their corresponding motion
component, also known as the true positive rate. The f-measure,
F = 2PR/(P + R), is a harmonic average of both factors. A
perfect segmentation produces a precision, recall, and f-measure
of 1, the worst possible values are 0s. There are many possible
pairings of SANE and motion components; the segmentation
quality is measured using the combination that maximizes the
f-measure. The background subtraction process is imperfect, so
even an apparently perfect segmentation might not score perfectly.
The precision, recall, and f-measure are calculated for each image
and then averaged to produce values for each data subset.

B. SANE results

After taking advantage of all the rotational and reflection
invariances, the mwalkA and mwalkC SANE models averaged
10,700 edge pairs and averaged 187 patches per pair. Traffic
averaged 32,201 pairs and 63 patches per pair. Walking averaged
26,332 pairs and 115 patches per pair. Naturally, each model has
a large number of edge combinations that were only observed
once or twice during training, but because they were infrequently
observed, these pairs have a low prior probability of appearing in
a finished segmentation and the inability to adequately represent
their associated patch distributions is unlikely to affect perfor-
mance.

There are four types of SANE model and four inference
algorithms. Figure 6 shows the f-measure, precision, and re-
call for each combination on each of the four data sets.
The four model types are brightness-only, single resolution
(bright); brightness-only, multiresolution (bright,mres); color,
single-resolution (color); and color, multiresolution (color,mres).
The four inference algorithms are standard belief propagation
(bp), belief propagation followed by parity-flipping iterative
conditional modes (bp,picm), belief propagation using step-
size search (bp,ss), and the combination of all three methods
(bp,ss,picm). The bp,ss algorithms choose the best step size by
maximizing each MRF’s configuration value, not by comparing
its outputs to ground truth.

The SANE algorithm was more successful at segmenting
the walking and traffic data sets than the mwalk sets. This is
not surprising since the walking and traffic sets feature objects
against relatively uncluttered, untextured backgrounds. The cars
demonstrate less internal variation than walking people, and it’s
easier to learn to segment a single walking person (walking) than
multiple people (mwalk), some of whom do not appear in the
training data. The highest average per-image f-measure on each
data set ranged from 0.690 (mwalkA) to 0.825 (traffic). Adding
color information typically boosted precision. Figure 5 contains
several of the best and worst color, multiresolution results on each
data set.

Multiresolution models using only brightness features almost
universally underperformed their single resolution counterparts,
trading too much precision for increased recall. The half-
resolution layers’ patches cover greater image area, and perhaps
that reduced the effectiveness of the brightness features, since
their average distances from an object boundary will subsequently
increase. On the walking and mwalk data sets, the color mul-
tiresolution models were roughly equal to or slightly better than
color single resolution models on the same data, while they were
slightly worse than single-resolution color on traffic data. Figure
7 contains several examples in which multiresolution modeling
or the addition of color features corrected a checkerboard seg-
mentation pattern, which can be produced by belief propagation
divergence.

None of the four inference algorithms dominated the others.
Step-size search improved all the walking results, but did not
always help on other data sets. It never appears to make results
significantly worse, so it can be considered the best inference
algorithm. The parity-flipping ICM step, which was originally
added to fix the checkerboard patterns, almost never made a sub-
stantial difference. This is not surprising, since it can easily make
a checkerboard worse by making a half-wrong area completely
mislabeled if it picks the wrong square for its first flip.

Figure 5 presents the four best and four worst results for the
color, multiresolution models of each data set, inferred using the
step-search method. Unsurprisingly, clear foreground-background
separations, such as a single dark car or an individual surrounded
by white pixels, appear in the best collection, while multiple
objects and greater clutter produced some of the poorer output.
In the mwalk data, many of the bad examples contain objects at
the edge of the frame, or only small object pieces, such as an
arm or leg. These cases might indicate that the absence of part
of the object boundary makes inference difficult, perhaps because
that situation is not well-represented by the learned shape model
or because a small input image makes the creation of the half-
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Fig. 8. The f-measures of SANE and normalized cuts set for 2-10 segments.

resolution MRF level difficult. Weiss analyzed the performance
of loopy belief propagation by considering the number of times
evidence is over-counted [43]; perhaps the different distribution of
message over-counting at the image boundary might cause some
of these problems. Only the traffic data contains multiple moving
objects in some example frames, and the three worst examples
contain two full or partial cars. Because there are only two labels,
segmenting multiple objects correctly requires an unforgiving
alternation between foreground and background labels. Failing
to close the boundary of one car may make it extremely difficult
to correctly label the other. Increasing the number of available
segmentation labels may alleviate this problem.

Discarding ICM, which did not affect the results, the color,
multiresolution and step-size search variations all fixed some
checkerboard patterns, the most visible effect of belief propa-
gation non-convergence. In Figure 7, all but one of the three
most improved examples from each technique contain examples
of fixed checkerboards. In other cases, the changes improved
the detection of object boundaries and the ability to distinguish
them from internal borders. The model might benefit from more
sophisticated local features, which could reduce reliance on belief
propagation accuracy, or a higher-level shape model, which could
use stronger priors to overcome uncertain image information.

C. Comparing SANE and normalized cuts

Comparing SANE to normalized cuts reveals that a trained
segmentation algorithm can outperform a good general-purpose
segmentation algorithm. Although normalized cuts is an excellent
generic image segmentation algorithm, SANE offers comparable
performance on the traffic, mwalkA, and mwalkC data sets, and
greatly outperforms it on the walking data.

Normalized cuts [35] is a well known general-purpose seg-
mentation algorithm. It computes a matrix that represents the
similarity between all pairs of image pixels and then segments
the image by solving a related eigenproblem. The implementation
used for these experiments, developed by Cour, Yu, and Shi [6],
measures the difference between image pixels by searching for
the presence of brightness contours found by the Canny edge
detector [5] between every pair of pixels. It was not trained or
parameter-tuned for the test data set.

Normalized cuts uses a user-specified number of region labels.
Just as the binary SANE outputs were processed into connected
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Fig. 9. Walking examples in which SANE most outperformed two and five-
region normalized cuts and vice-versa.

components, so are the normalized cuts region labels, so both
algorithms are judged by how well they cover the moving objects
and how well they separate them from their surroundings and
each other. The assignments between normalized cuts and motion
components with the best f-measures were used.

Because the normalized cuts code only uses grayscale images,
for comparison, SANE was also restricted to brightness features.
Since multiresolution only harms the performance of brightness-
only models, only comparisons to the single-resolution brightness
SANE are presented. Color features improved SANE’s output on
all the data sets, but it would have been unfair to graft crude
color features onto the publicly available normalized cuts code
for the purposes of this comparison. Presumably color features
could improve normalized cuts’ performance too, but those are
best added by researchers with expertise in that code, since badly-
designed color features could unfairly favor SANE.

In Figure 8, it is clear that normalized cuts closely matches
SANE’s performance on the traffic and the two mwalk data sets
over a range of user-specified label-set sizes. But on the walking
data, no normalized cuts setting matched SANE’s performance.
Figure 9 makes it clear that normalized cuts does a poor job on
many examples because it considers the external boundaries of the
person to be less significant than his internal visual contrasts, or
because it fails to detect pieces of the boundary, perhaps due to the
saturation of the pixels bordering the whiteboard. This highlights
the advantage of a segmentation algorithm that can automatically
adjust to a particular visual environment and that has a strong
shape model to compensate for weak local information.

D. Comparing SANE and Martin’s edge detector

Martin et al.’s learned boundary detector [22] is a good contrast
to the SANE approach. Like SANE, the Martin algorithm can
be trained on a database of example segmentations, but unlike
SANE it attempts to discover the best local boundary detector
without learning a shape model or propagating information to
neighboring sites. Martin detectors attempt to classify each point
as “boundary” or “non-boundary” based only on the local image
data. Thus the trained Martin detectors, which outperform many
standard edge detection algorithms on the Berkeley Segmentation
Database [23], rely on a strong local detection model, while
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Fig. 10. The f-measures of color, multiresolution SANE and Martin et al. models for different match radii.

SANE uses weak local detectors and relies on shape information
for joint boundary determination.

The comparison is difficult because the Martin algorithm out-
puts a map of boundary detections, not a segmentation. Each pixel
in the boundary map has a value between 0 and 1 that indicates
the probability of it being a boundary pixel; the map must be
thresholded to produce a binary boundary detection. For these
comparisons, SANE outputs are converted to binary boundary
images by labeling all horizontal and vertical transitions between
“0” and “1” segment labels as boundary locations.

The Martin and Fowlkes implementation of the edge detection
training and testing algorithms [21] was used to compare the
Martin detectors to SANE. Five detector classes were trained on
the SANE data sets: brightness gradient (bg), color gradient (cg),
texture gradient (tg), brightness and texture gradient (bgtg), and
color and texture gradient (cgtg). The cg detector contains no
brightness features, but the cgtg detector does. Each detector uses
image data from a fixed, prespecified radius around the location
to be classified.

For these experiments, the Martin detectors were trained on
each SANE training subset, just as the SANE models were,
and tested on the corresponding testing subsets. In the original
implementation, the detector radius varied according to the size
of the input image. In the Berkeley Segmentation Database, the
image size indicates the scale of the image boundaries. This is not
consistently true in the SANE data sets, and fixed radii performed
better in early trials. The bg, cg, and tg detectors were trained and
tested with radii ranging from 1 to 10 pixels. The original Martin

and Fowlkes code used a 1:2 ratio of bg radius to tg radius in the
bgtg detector, so these detectors ranged from 1:2 to 10:20 pixels.
For the same reason, the brightness, color, and texture radii in the
cgtg detector ranged from 1:2:2 to 10:20:20 pixels.

Comparing boundary images is a difficult task. Simply over-
lapping two binary boundary maps and counting matches is
not useful because a small misalignment can cause a complete
mismatch, and the resulting score could indicate that two very
similar boundaries are extremely different from one another.
Martin et al. compared boundaries by solving a bipartite graph
matching problem. Given a binary detected boundary image and
binary ground-truth boundary image, each boundary pixel in each
image is considered as a graph node. The goal is to match each
detected node to a unique ground-truth node. In turn, each ground-
truth node can match at most one detected node. If a detected node
matches a ground-truth node, it is considered to be an accurate
detection. If it cannot be matched, it is inaccurate. The distance
between two matched nodes cannot exceed a specified maximum.
As with the detector radii, the original implementation varied
these match distances relative to image size, but the modified
implementation does not. Again, the reason is that the sizes of
our images do not indicate the scale of the boundaries.

In order to transform the soft boundary maps of the detec-
tors into binary boundary maps, the Martin and Fowlkes error-
measurement code chooses the threshold that maximizes the f-
measure across the testing set. In a deployed application that
required binary boundary detection, this threshold would need to
be chosen during training. This extra degree of freedom benefits
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Fig. 11. The examples for which color, multiresolution SANE most outperformed cgtg Martin with features radius 5 using match distance 3 and vice-versa.

the Martin detectors in any comparison to SANE.
The results in Figure 10 make it clear that SANE outperforms

Martin on these data sets. The examples in Figure 11 illustrate that
SANE’s advantage lies in its higher precision. While the Martin
detectors have little trouble finding object boundaries, they also
detect many other non-object boundaries in the process. In all four
data sets, the color, multiresolution SANE f-measures outperform
all Martin detectors at all feature radii using the strict matching
distance of 1. As the match maximum distance relaxes to 3 and 5,
the Martin results improve, especially their recall. At radius 3, the
best Martin results only match SANE on the traffic data. At radius
5, the best results match or slightly surpass SANE on traffic, and
match mwalkA and mwalkC, but still lag behind on the walking
data. Figure 11 contains examples in which SANE’s performance
was superior to cgtg with feature radius 5 (one of the overall best-
performing Martin detectors) using match maximum distance 3.
Most of the Martin results are riddled with non-object boundaries
compared to the SANE output. The examples for which Martin
performed better demonstrate that extreme SANE recall failures
are responsible for several of the cases in which cgtg is superior.

Much of the performance disparity could derive from the data
sets that each algorithm was originally designed for. Although
the Martin detectors were retrained on the SANE data sets,
the Berkeley Segmentation Database contains low-noise, high-
resolution images, and much of the success of the Martin detectors
on that set appears to be due to the use of the sophisticated texture
gradient features [22]. The SANE sample images have much
lower resolution and much poorer quality. There is less texture
information available in each image, and boundaries are not as
sharp. SANE’s local edge detectors are simple, but the shape
model compensates. Also, the segmentations in the Berkeley
database can include visually significant internal object regions,
and it’s unsurprising that a detector designed to detect these
boundaries will have difficulty learning to ignore them when they
do not correspond to object boundaries. The shape information
stored in the SANE model appears to be more useful on this
data than the sophisticated local Martin detectors. The fact that
the SANE data requires different segmentation skills than the
Berkeley database is a strong argument for its potential utility,
in addition to the aforementioned advantages of learning from
motion-labeled training data.

E. Comparing SANE and LOCUS

To further investigate SANE’s performance, we compared it
to LOCUS, a learning-based, top-down segmentation algorithm
developed by Winn and Jojic [45]. LOCUS segments a group
of images based on the assumption that they each contain an

instance of the same object class. Unlike SANE, which segments
each image independently, LOCUS jointly segments a collection
of images, allowing information in any image to influence the
segmentation of the others.

LOCUS provides a good comparison to SANE. Its shape
model, which includes a probabilistic template describing the
expected overall shape of the objects, is much more global than
SANE’s shape model, which learns the relationships between
neighboring boundary segments. Furthermore, LOCUS does not
attempt to learn a common image model, while SANE segments
new images using previously learned models of the image prop-
erties of object boundaries.

LOCUS typically operates without supervision, but to provide
a fair comparison with SANE it was also run in a supervised
mode. This was accomplished by adding the training examples to
the collection of images and fixing their segmentations to be the
motion-defined ground truth. In this way, their shape information
influences the joint segmentation process on the other images.
LOCUS was run on the walking and mwalkA data sets. It could
not be run on the traffic data because many of those images
contain multiple cars and LOCUS is not designed to segment
multiple objects in an image.

The LOCUS algorithm requires a set of equal-sized images.
Therefore, it was provided with the uncropped images and bound-
ing boxes equivalent to the crops used to create the SANE data
sets. On each test image, the pixels external to the bounding box
were assigned the “background” label, while the segmentation of
the interior pixels was inferred by the algorithm. As a result, the
LOCUS algorithm used the areas in each test image that lacked
moving objects as labeled training data for the construction of
the background image model for that image. When training and
testing the SANE models, these regions were simply discarded on
the assumption that in the absence of motion the true segmentation
was unknown and unavailable to train or test against.

The results of the comparison are in Figure 12. On the walking
data sets, performance of unsupervised and supervised LOCUS
was very similar to that of color, multiresolution SANE. LOCUS
had higher recall, but lower precision. The small advantage of
SANE in f-measure was due to a few cases in which LOCUS
failed to find any object in images — several examples can be
seen in the figure. These examples typically occurred when the
figure was far over to the side of the bounding box, which caused
LOCUS to fail because it became stuck in a local minimum that
labeled all pixels as “background.”

LOCUS outperformed SANE on the mwalkA data, especially
in supervised mode. Examining the three images on which
supervised LOCUS most outperformed SANE, it appears that
LOCUS’s strong global shape model enabled successful segmen-
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Fig. 12. F-measures for SANE and supervised and unsupervised LOCUS and the examples for which SANE most outperformed LOCUS and vice-versa.

tation of some parts of the figures that had color values similar
to surrounding background region.

SANE’s performance was competitive with LOCUS’s on these
data sets. LOCUS had the advantage of joint segmentation,
which enables more sharing of shape information, and a global
shape representation. It also relied on the Canny edge detector,
a robust local edge detector, as an image feature. On the other
hand, SANE used only local shape information, simpler image
features, and segmented each image independently. The fact
that this mid-level approach achieves performance near or in
some cases exceeding LOCUS’s performance indicates that it
can be a useful enhancement to or replacement for top-down
segmentation methods. Additionally, as described in the next
section, SANE’s local shape information can generalize well to
other object classes, while LOCUS’s global shape templates are
usually class specific.

F. Generality

The previously discussed experiments have all involved testing
and training data drawn from the same location and environmental
conditions. It is also fair to judge a learning-based segmentation
system on its generality. Generality is the effectiveness of a
segmentation model learned in a particular environment or on
a particular class of objects when applied to new environments
or classes. Experiments testing SANE’s generality indicate that
the shape model, SANE’s central feature, is both highly general
and crucial to its performance.

The simplest generality experiment is to apply a model trained
on one type of data to another. In these crossed-model exper-
iments, single-resolution models trained on the traffic training
subsets segmented examples from the walking testing subsets, and
vice-versa. The mwalkA and mwalkC models were also crossed.

Unsurprisingly, running the walking models on the traffic data
and vice-versa produced much worse results than running on the
matching test set, as seen in Figure 13. Crossing the mwalkA and
mwalkC models produced roughly no change in the brightness
results and a relatively small decline in color model performance.
The two sequences came from the same environment and con-
tained many of the same people, but were filmed under different
lighting conditions. Given the well known sensitivity of color
values to lighting, it is unsurprising that the color results were

affected more by the swap. The grayscale results indicate that
with the appropriate selection of image features, SANE can be
robust to lighting variations.

SANE uses simple brightness and color image features which
may not be robust to environmental change, but could be replaced
with more sophisticated features, such as those used in the Martin
detectors. A more fundamental issue is the generality of the shape
information in each model. Is SANE learning shape probabilities
specific to particular environments or particular object classes, or
are they useful for generic segmentation tasks? What aspects of
the shape information are most important to its performance?

Because SANE’s compatibility functions factorize into image
and shape components, it is possible to explore the generality of
the shape model independently from that of the image features.
The image features of a trained model can be left unmodified
while the probability of edges and neighboring edge pairs are
altered. Observing the effects of these alterations on the segmen-
tation results will reveal the influence of shape information on the
results and the degree of generality of each trained shape model.

This shape-transfer experiment was performed on the color,
single-resolution traffic, walking, and mwalkA models, and on
the color, multiresolution mwalkA model. The bp,ss algorithm
was used to find the segmentations. The shape information (the
P (Ei, Ej) and P (E) probability functions) in each model was
replaced to create four alternative models. The generic-shape
(gs) model contains no edge probability information, with the
exception of the requirement that neighboring patches form closed
contours. The generic-pair (gp) model uses the original P (Ei)

functions, but defines P (Ei, Ej) = P (Ei)P (Ej). Examining its
performance can indicate whether the pairwise statistics collected
in training are useful in producing accurate segmentations. Fi-
nally, the other two trained shape models were substituted to
examine whether shape learned for one class of objects or in
one environment would be useful in a different situation. For
example, a traffic model’s shape information would be replaced
by the shape information from an mwalkA or walking model. All
the shape-modified models were tested on test sets appropriate
to the source of their image training, therefore any variation in
performance is solely due to shape factors. Comparisons of the
modified models with each other and with the original shape
model are in Figure 14.
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Fig. 13. F-measures from crossing traffic and walking models, and from
crossing mwalkA and mwalkC models.

The overall pattern of results reveals that shape information is
important to the results and exhibits surprising generality. The
most striking confirmation of this hypothesis is in the walking
data, in which the gs and gp models severely underperformed
all three of the learned models, which performed very similarly
to one another. It is not surprising that shape is important on
this data set, given the saturated background that tends to wash
out local image edge evidence, and it is to be expected that the
wide variety of people in the mwalkA data lends itself to the
task of segmenting the figure in walking. But it’s shocking that
the traffic shape information provides almost equal performance.
Furthermore, it is clear from the relatively poor performance of
the gp model that the pairwise information was crucial on this
data set. Even learning the pairwise shape probabilities of the
blob-like cars substantially boosted performance, indicating that
this knowledge is both important and general.

The traffic and mwalkA data sets also produced performance
differences. Across all data sets, the learned shape models had
higher levels of precision than the gs and gp models. Walking is
the only data set where there is a similarly dramatic improvement
in recall, but the superiority of learned models is still reflected in
higher f-measures in most cases. The mwalkA single-resolution
results do not show much of a pattern because the learned
shape models tend to decrease recall compared to gs, but in the
multiresolution results there is a consistent pattern indicating an
advantage of the learned models due to better recall performance.

Overall, the data indicate that the shape information transferred
extremely well between object classes and environments. Addi-
tionally, the gp model was the clear worst performer in every
case except the walking data, and that case is most likely due to
the extremely poor performance of gs, which probably floundered
because the poor image data was combined with the absence of
any local prior probability on edge assignments.

These results indicate that SANE is learning generic properties
about object boundaries. The information is extremely useful
when image data is poor and the pairwise statistics are important.
Shape information from a single class example (walking) can be
useful on a variety of other examples in a different environment
(mwalkA), and vice-versa. The performance of traffic shape sug-
gests that even if shape is not very important in the environment it
is learned in, it can be useful in a new environment. The contrast
between the shape-transfer results and the crossed-model results
suggest that future work on learning more generalized SANE
models should focus on improving the image features.

G. Future work

Future extensions to SANE might include the use of more
sophisticated local features, such as those used in the Martin edge
detectors [22] and extending the model to use four segmentation
labels, which would allow for the production of arbitrary seg-
mentations, even separating overlapping objects. More accurate
inference and learning algorithms might also improve the results.

The current implementation of SANE requires a few minutes
to segment images composed of a few thousand pixels, but can
take up to a few hours for images containing tens of thousands
of pixels. However, these running times are dominated by the
construction of the MRFs, rather than by inference, and they could
be greatly reduced by software optimizations.

Currently, SANE can learn a scale-robust model by being
exposed to example objects of different scales such as differently
sized people or cars. This could be enhanced by changing the
training procedure so the images are presented at a number
of different scales, or by modifying the model to account for
scale more directly, perhaps in the context of the multiresolution
approach. The related issue of image resolution might be more
difficult to tackle—the relatively poor performance of the Martin
edge detectors suggest that different features are useful for
segmentation on high and low-resolution images.

SANE acquires its training data through background subtrac-
tion, but the Stauffer algorithm cannot handle videos with moving
backgrounds, or separate multiple moving objects whose paths
intersect. In order to learn under these conditions, more sophisti-
cated background subtraction or motion segmentation algorithms
would be required, particularly those able to use optical flow.

Further work might integrate SANE with other algorithms, such
as manipulation or object recognition, in which segmentation
can be optimized against other objective criteria, such as its
utility in assisting the performance of another task. The concept
of using manipulation to provide segmentation knowledge is
similar to recent work by Fitzpatrick [7], but with the goal of
learning better segmentation algorithms rather than focusing on
detecting specific objects and their boundaries. Extra sources of
segmentation information might allow a future SANE algorithm to
distinguish between objects and shadows and to learn to segment
a larger class of objects.

V. CONCLUSIONS

The results demonstrate that the SANE algorithm provides
advantages over a prominent non-learned image segmentation
algorithm and over a trained local boundary detector. SANE’s out-
put is competitive with a learning-based, top-down segmentation
algorithm despite using local neighborhood shape information
instead of a global class-specific model. Its ability to learn the
visual features appropriate to segmentation in a particular visual
environment and to combine those features with a strong learned
shape model had clear performance benefits. It demonstrates
that simple boundary detection features and local neighborhood
shape information can be combined into a powerful segmentation
algorithm. The automatically labeled training data made the use of
simple and powerful non-parametric density estimators practical.

Furthermore, experiments on generality demonstrate that the
shape information learned is not specific to a particular object
class or environment, and that it is responsible for much of
SANE’s performance. This validates the utility and practicality
of SANE’s shape model, the central structure of the model.
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Fig. 14. The f-measures from the shape-transfer experiments.

Most importantly, this learning was done with self-labeled
training data, optimizing against an objective and useful segmen-
tation ground truth. Therefore it is practical to train SANE to
be a useful component of a deployed vision system in a new
environment.
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