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Spatial and Temporal Abstractions in POMDPS: Learning and Planning

Georgios Theocharous and leslie Pack Kaelbling

Introduction: A popular approach to artificial intelligence is to model an agent and its interaction with
its environment through actions, perceptions, and rewards [1]. Intelligent agents should choose actions
after every perception, such that their long-term reward is maximized. A well defined framework for
this interaction is the partially observable Markov decision process (POMDP) model. Unfortunately,
standard methods for planning, inference, and learning with POMDPs take time at least exponential in
the number of (discrete) states, S, making them impractical for large problems.

Recent research has explored the advantages of spatial and temporal abstraction in POMDPs [2]. A
hierarchical extension to POMDPs such as H-POMDPs, [5] represents the state-space at multiple levels
of abstraction, and scales much better to larger environments. In particular, it simplifies the planning
and learning problems. Planning is simpler (requires less time) in H-POMDPs because abstract states
(at the coarse-level of resolution) have lower entropy, i.e., are more deterministic [2]. Learning is simpler
(requires less data) in H-POMDPs because the number of free parameters is reduced, and the structure
of the model provides a way of encoding prior knowledge.

We are continuing our exploration of spatio-temporal abstractions for POMDPs. In particular in
learning we investigate how to represent H-POMDPs as dynamical Bayesian networks [4]. In planning,
we describe a new reinforcement learning algorithm over belief states, which uses macro-actions [3].

Learning: In learning we explore the advantages of representing H-POMDPs as dynamic Bayesian
networks (DBNs). In particular, we focus on the special case of using H-POMDPs to represent multi-
resolution spatial maps for indoor robot navigation. Our results show that a DBN representation of
H-POMDPs can train significantly faster than the original learning algorithm for H-POMDPs or the
equivalent flat POMDP, and requires much less data. In addition, the DBN formulation can easily be
extended to parameter tying and factoring of variables, which further reduces the time and sample
complexity. This enables us to apply H-POMDP methods to much larger problems than previously
possible. Figure 1 depicts an H-POMDP model and its DBN representation.

Fig. 3. State transition diagram of the H-POMDP used to model corridor
environments. Throughout the paper we refer to this model as the “hierarchical
model”. Large ovals represent abstract states; the small solid circles within
them represent entry states, and the small hollow circles represent exit states.
The small circles with arrows represent concrete state and orientation. Arcs
represent non-zero transition probabilities as follows: Dashed arrows from
concrete states represent concrete horizontal transitions, dotted arrows from
exit states represent abstract horizontal transitions, and solid arrows from entry
states represent vertical transitions.

Fig. 4. State transition diagram for a flattened version of Figure 3.
Throughout this paper we refer to this model as the “flat” model. Transition
matrices for each action can be computed from the hierarchical model as
follows: for each pair of concrete states s1, s2, we need to sum up the
probabilities of all the paths that transition from s1 to s2 under some action
a.

C. Representing H-POMDPs as DBNs
A DBN model for HHMMs was introduced by [6]. We can

extend this to the H-POMDP case by making three changes:
we add action nodes, Ut, we add orientation nodes, Θt, and
we allow exit nodes, Et, to be multi-valued (not just binary).
See Figure 5.
The action nodes represent the movement made by the

robot. The orientation nodes are present because we now factor
X1

t into concrete location, L1
t , and orientation, Θt, instead of

having to duplicate each (concrete) location four times as is
done in Figures 3 and 4. We will denote the abstract location,
X2

t , by L2
t . The exit node Et can take on five possible values,

representing no-exit, north-exit, east-exit, south-exit, and west-
exit. If Et = no-exit, then we make a horizontal transition at
the concrete level, but the abstract state is required to remain
the same. We will explain the model in more detail below.
1) Notation: Lower case letters denote values of random

variables. To shorten notation, we will sometimes denote the
probability of events like P (Θt = θ, L2

t = a, L1
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Fig. 5. A 2-level factored H-POMDP represented as a DBN. Throughout
the paper we refer to this model as the “factored hierarchical DBN”. The arcs
from the action node, Ut, are shown dotted merely to reduce clutter. The L2

t
nodes denote the abstract state, the L1

t nodes denote the concrete location,
the Θt nodes denote the orientation, the Et nodes denote the state of the exit
variable, and Yt denotes the state of the observation variables.

j) by P (θ, a, i, j), i.e., we will use θt to denote an assignment
to Θt, a for L2

t , j for L1
t and i for L1

t−1.
2) Transition model: We now define the conditional prob-

ability distributions (CPDs) of each type of node in the DBN.
All distributions, except for the observations, are conditioned
on the input Ut−1; this is not shown explicitly, to simplify
notation. For the abstract nodes,

P (L2
t = j|L2

t−1 = i,Et−1 = e)

=

{
δ(i, j) if e =no-exit
H2(i, e, j) otherwise

where H2(i, e, j) is the abstract horizontal transition matrix
through exit of type e and δ is the Kronecker delta function.
(This corresponds to the connections between the big ovals in
Figure 3.) For the concrete nodes,

P (L1
t = j|L1

t−1 = i,Et−1 = e, θt−1, L
2
t = a)

=

{
H1(i, θt−1, a, j) if e =no-exit
V (e, a, j) otherwise

where H1(i, θt−1, a, j) is the concrete horizontal transition
matrix (the horizontal connections below each oval in Fig-
ure 3), and V (e, a, j) is the concrete vertical entry vector (the
downward pointing arcs in Figure 3). For the exit nodes,

P (Et = e|j, θt, a) = X(j, a, θt, e)

where X(j, a, θt, e) is the probability of concrete state j
entering exit state e given that it is in abstract state a and
has orientation θt (the upward pointing arcs in Figure 3).

Figure 1: The figure on the left shows a hierarchical POMDP representation of spatial indoor environ-
ments. Abstract states (shaded circles) represent corridors, junctions and buildings. Production states
(empty circles) represent robot location and orientation. At higher levels of abstraction there is less un-
certainty, which results in better robot state estimation. The figure on the right shows a 2-level factored
H-POMDP represented as a DBN. The Ut nodes denote the action nodes. The L2

t nodes denote the ab-
stract state, the L1

t nodes denote the concrete location, the Θt nodes denote the orientation, the Et nodes
denote the state of the exit variable, and Yt denotes the state of the observation variables.

Planning: In planning we explore the fact that useful POMDP solutions do not require consideration
of the entire belief space. We extend this idea with the notion of temporal abstraction. We present and ex-
plore a new reinforcement learning algorithm over grid-points in belief space, which uses macro-actions
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and Monte Carlo updates of the Q-values. We apply the algorithm to a large scale robot navigation task
and demonstrate that with temporal abstraction we can consider an even smaller part of the belief space,
we can learn POMDP policies faster, and we can do information gathering more efficiently.

In a regular grid-based approach, we discretize the belief space by covering it with a uniformly-
spaced grid as shown in Figure 2, then solve an MDP that takes those grid points as states. Unfortu-
nately, the number of grid points required rises exponentially in the number of dimensions in the belief
space, which corresponds to the number of states in the original space. In our work, we allocate grid
points from a uniformly-spaced grid dynamically by simulating trajectories of the agent through the
belief space. At each belief state experienced, we find the grid point that is closest to that belief state and
add it to the set of grid points that we explicitly consider. In this way, we develop a set of grid points
that is typically a very small subset of the entire possible grid, which is adapted to the parts of the belief
space typically inhabited by the agent (see right part of figure 2).
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Figure 2: The figure on the left depicts various regular dicretizations of a 3 dimensional belief simplex.
The belief-space is the surface of the triangle, while grid points are the intersection of the lines drawn
within the triangles. In the right figure an agent finds itself at a belief state b. It maps b to the grid point g,
It chooses a macro action and executes it starting from the chosen grid-point, using the primitive actions
and observations that it does along the way to update its belief state. It gets a value estimate for the
resulting belief state b′′ through interpolation from nearby grid points g1, g2, and g3. The agent executes
the macro-action from the same grid point g multiple times so that it can approximate the probability
distribution over the resulting belief-states b′′. Finally, it can update the estimated value of the grid point
g and execute the macro-action chosen from the true belief state b. The process repeats from the next
true belief state b′.

Conclusion and future directions: In general, spatio-temporal abstractions and multi-resolution rep-
resentations in POMDPS are necessary in-order to scale up to large domains. We are currently exploring
methods for automatically deriving these abstractions for arbitrary POMDP models.
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