
Predicting Partial Paths from Planning Problem
Parameters

Sarah Finney, Leslie Kaelbling, Tomás Lozano-Pérez
CSAIL, MIT

email: sjf,lpk,tlp@csail.mit.edu

Abstract— Many robot motion planning problems can be
described as a combination of motion through relatively sparsely
filled regions of configuration space and motion through tighter
passages. Sample-based planners perform very effectively every-
where but in the tight passages. In this paper, we provide a
method for parametrically describing workspace arrangements
that are difficult for planners, and then learning a function
that proposes partial paths through them as a function of the
parameters. These suggested partial paths are then used to
significantly speed up planning for new problems.

I. INTRODUCTION

Modern sample-based single-query robot-motion planners
are highly effective in a wide variety of planning tasks. When
they do encounter difficulty, it is usually because the path must
go through a part of the configuration space that is constricted,
or otherwise hard to sample.

One set of strategies for solving this problem is to approach
it generically, and to develop general methods for seeking
and sampling in constricted parts of the space. Because these
planning problems are ultimately intractable in the worst case,
the completely general strategy cannot be made efficient.
However, it may be that a rich set of classes of more specific
cases can be solved efficiently by learning from experience.

The basic question addressed in this paper is whether it is
possible to learn a function that maps directly from parameters
describing an arrangement of obstacles in the workspace,
to some information about the configuration space that can
be used effectively by a sample-based planner. We answer
this question in the affirmative and describe an approach
based on task templates, which are parametric descriptions
(in the workspace) of the robot’s planning problem. The goal
is to learn a function that, given a new planning problem,
described as an instance of the template, generates a small
set of suggested partial paths in the constricted part of the
configuration space. These suggested partial paths can then
be used to “seed” a sample-based planner, giving it guidance
about paths that are likely to be successful.

Task templates can be used to describe broad classes of
situations. Examples include: moving (all or part of) the
robot through an opening and grasping something; moving
through a door carrying a large object; arriving at a pre-grasp
configuration with fingers “straddling” an object. Note that the
task template parameters are in the workspace rather than the
configuration space of the robot, so knowing the parameters
is still a long way from knowing how to solve the task.

One scenario for obtaining and planning with task templates
would be a kind of teleoperation via task-specification. A
human user, rather than attempting to control the robot’s end-
effector or joints directly, would instead choose an appropriate
task template, and “fit” it to the environment by, for instance,
using a graphical user interface to specify the location of
a car-window to be reached through and a package on the
car seat to be grasped. Given this task-template instance the
planner can generate a solution and begin to execute it. During
the process of execution the operator might get additional
sensory information (from a camera on the arm, for example),
and modify the template dynamically, requiring a very quick
replanning cycle. Eventually, it might be possible to train a
recognition system, based on 2D images or 3D range data to
select and instantiate templates automatically.

Of course, we cannot get something for nothing: the power
of learning comes from exploiting the underlying similarity
in task instances. For this reason, template-based learning
cannot be a general-purpose solution to motion planning. It
is intended to apply to commonly occurring situations where
a very fast solution is required. Although one might be tempted
to encode a general workspace as a single task template, with
a finite (but very large) set of parameters that indicate which
voxels are occupied, there is no reason to believe that the
resulting learning problem for such a template is tractable.

II. RELATED WORK

A good deal of work has been done on improving multiple-
query roadmaps by biasing their sampling strategy to generate
samples in difficult areas of configuration space and avoid
over-sampling in regions that can be fairly sparsely covered.
Several techniques involve rejection sampling intended to
concentrate the samples in particular areas, such as near
obstacles [14], or near configuration-space bottlenecks [4].
Pushing samples toward the medial axis of the configuration
freespace is another method for generating samples that are
concentrated in the difficult narrow passages [7]. Visibility-
based approaches also strive to increase sampling near bottle-
necks [13].

Each of these techniques involves computationally expen-
sive operations, as they are intended to be used in a multiple-
query setting, in which the cost is amortized over a large
number of queries within a static environment. We are focused
instead on a single-query setting, in which these techniques are
prohibitively time-consuming. However, the collective body

of work argues persuasively that a relatively small number of
carefully selected samples can make the planning job much
easier. Our approach is similarly intended to address these
difficult regions of the planning space.

Other similarly motivated techniques temporarily expand
the freespace by contracting the robot to identify the narrow
passages [11, 6], and these methods are fast enough to apply
to single-query problems. Nonetheless, they are required to
discover the structure of the environment at planning time.
We would like to use learning to move much of this work
offline.

A related class of techniques looks at aspects of the
workspace, rather than configuration space, to bias sampling
toward finding difficult narrow passages [8, 16, 15, 5]. This
work builds on the intuition that constrained areas in configu-
ration space are also often constrained in the workspace, and
are easier to identify in the lower dimensional space. Our work
shares this intuition.

There are also a number of strategies for guiding the search
in a single-query setting. Voronoi-based [17] and entropy-
guided [2, 10] exploration are among these techniques. Since
we are proposing a learning method that predicts partial
paths in order to help a single-query planner, our approach
is compatible with any single-query probabilistic roadmap
exploration strategy. In particular, in this paper we integrate
our approach with Stanford’s single-query, bidirectional, lazy
(SBL) planner [12].

Other approaches have also taken advantage of learning.
Features of configuration space can be used to classify parts
of the space and thereby choose the sampling strategies that are
most appropriate for building a good multiple-query roadmap
in that region [9]. Burns and Brock learn a predictive model
of the freespace to better allocate a roadmap’s resources and
avoid collision checking [1]. This use of learning is related to
ours, but is again in a multiple-query setting, and so does not
address generalizing to different environments.

III. TASK-TEMPLATE PLANNING

The task-template planner is made up of two phases: first,
the task is described parametrically as an instance of the
template, and used as input to a learned partial-path suggestion
function that generates a set of candidate partial paths for
solutions; second, these partial paths are used to initialize a
sample-based planner, suitably modified to take advantage of
these suggestions. If the suggested partial paths are indeed
in parts of the configuration space that are both useful and
constricted, then they will dramatically speed up the sample-
based planner.

To make the discussion concrete, we will use as a running
example a mobile two-degree-of-freedom arm, operating in
essentially a planar environment. One common task for such
a robot will be to go through doors. A door in a planar wall can
be described using 3 parameters (xdoor, ydoor, θdoor) as shown
in figure 1 (top left). Note that the environment need not be
exactly conformant to the template, as shown in figure 1 (top
right). As long as the suggestions to the planner help it with the

Fig. 1. A task template. Top left: Parameterization of the template. Top right:
Application of task template to a complex environment. Bottom: Suggested
partial paths generated by the same strategy for different environments.

difficult parts of the environment, the planner can handle other
sparsely arranged obstacles. The remaining panels in figure 1
show some useful suggested partial paths.

The overall learning approach generates training examples
by calling a single-query planner on a number of planning
problems, each of which is an instance of the same task
template. Each plan is then examined to extract the most con-
strained portion of the path, and the partial path through this
“tight spot” is stored along with the task-template parameters
describing the world. We then train several partial-path gener-
ators on this data. The idea is that the partial-path suggestion
function will learn the parametric dependence of the useful
partial paths on the task-template instance parameters, and
therefore apply to previously unseen examples.

Additionally, we must adapt the single-query planner so that
it can take in, along with the start and goal configuration for
a particular query, a set of suggested partial paths.

A. Generating training data

For each task template, we assume a source of training task
instances of that template. These instances might be synthet-
ically generated at random from some plausible distribution,
or be drawn from some source of problems encountered in the
world in which the robot will be operating.

We begin with a set of task instances, t1, . . . , tn, where
each task instance is a specification of the detailed problem,
including start and goal configurations and a description of
the workspace obstacles. These descriptions will generally
be non-parametric in the sense of not having a fixed size.
We will convert each of these tasks and their solution paths
into a training example, 〈xi, yi〉, where xi is a parametric
representation of ti as an instance of the task template, and
yi is a path segment. Intuitively, we instantiate the task
template for the particular task at hand. In the case of the

doorway example this means identifying the door, and finding
its position and orientation, xdoor, ydoor and θdoor.

Currently, we assume the each ti in the training set is
“labeled” with a parametric description xi; in the future, we
expect that the labels might be computed automatically. To
generate the yi values, we begin by calling the single-query
planner on task instance ti. If the planner succeeds, it returns
a path p = 〈c1, ..., cr〉 where the c’s are configurations of the
robot, connected by straight-line paths.

We do not, however, want to use the entire path to train our
learning algorithm. Instead we want to focus in on the parts
of the path that were most difficult for the planner to find, so
we will extract the most constrained portion of the path, and
use just this segment as our training data. Before we analyze
the path, we would like to reduce the number of unnecessary
configurations generated by the probabilistic planner, so we
begin by smoothing the path. This process involves looking for
non-colliding straight-line replacements for randomly selected
parts of the path, and using them in place of the original
segment. We made use of the SBL planner’s built-in smoother
to do this.

We also want to sample the paths at uniform distance
intervals, so that paths that follow similar trajectories through
the workspace are similar when represented as sample se-
quences. Thus, we first resample the smoothed path at a
higher resolution, generating samples by interpolating along
p at some fixed distance between samples, resulting in a more
finely sampled path.

Given this new, finely sampled path p′, we now want to
extract the segment that was most constrained, and therefore
difficult for the planner to find. In fact, if there is more than
one such segment, we would like to find them all. For each
configuration in the path, we draw some number of samples
from a normal distribution centered on that configuration (sam-
pling each degree of freedom independently). Each sample is
checked for collision, and the ratio of colliding to total samples
is used as a measure of how constrained the configuration is.

We then set a threshold to determine which configurations
are tight, and find the segments of contiguous tight con-
figurations. Our outputs need to have a fixed length l, so
for all segments less than l, we pad the end with the final
configuration. For segments with length greater than l, we
skip configurations in cases where skipping does not cause
a collision.

In our more complicated test domains, we found that it was
useful to add a step that pushes each configuration away from
collisions, by sampling randomly around each configuration
in the path, and replacing it if another is found that has
greater clearance. This makes it less likely that we will identify
spurious tight spots, and it also makes the segment we extract
more likely to generalize, since it has a larger margin of error.
This step also requires that we are careful not to decrease the
path’s clearance when we smooth it. In this way, we extract
each of the constrained path segments from the solution path.
Each of these, paired with the parametric description of the
task, becomes a separate data point.

B. Learning from successful plans

Each of our n training instances 〈xi, yi〉 consists of a task-
template description of the world, xi, described in terms of
m parameters, and the constrained segment from a successful
path, yi, as described above. The configurations have consis-
tent length d (the number of degrees of freedom that the robot
has), and each constrained segment has been constructed to
have consistent length l, therefore yi is a vector of length ld.

At first glance, this seems like a relatively straightforward
non-linear regression problem, learning some function f∗ from
an m-dimensional vector x to an ld-dimensional vector y, so
that the average distance between the actual output and the
predicted output is minimized. However, although it would
be useful to learn a single-valued function that generates one
predicted y vector given an input x, our source of data does
not necessarily have that form. In general, for any given
task instance, there may be a large set of valid plans, some
of which are qualitatively different from one another. For
instance, members of different homotopy classes should never
be averaged together.

Consider a mobile robot going around an obstacle. It could
choose to go around either to the left of the obstacle, or to
the right. In calling a planner to solve such problems, there
is no general way to bias it toward one solution or the other;
and in some problems there may be many such solutions. If
we simply took the partial paths from all of these plans and
tried to solve for a single regression function f from x to
y, it would have the effect of “averaging” the outputs, and
potentially end up suggesting partial paths that go through the
obstacle.

1) Mixture model: To handle this problem, we have to
construct a more sophisticated regression model, in which we
assume that data are actually drawn from a mixture of regres-
sion functions, representing qualitatively different “strategies”
for negotiating the environment. We learn a generative model
for the selection of strategies and for the regression function
given the strategy, in the form of a probabilistic mixture of
h regression models, so that the conditional distribution of an
output y given an input x is

Pr(y|x) =
h∑

k=1

Pr(y|x, s = k) Pr(s = k|x) .

where s is the mixture component responsible for this exam-
ple.

For each strategy, we assume that the components of the
output vector are generated independently, conditioned on x;
that is, that

Pr(y|x, s = k) =
ld∏

j=1

Pr(yj |x, s = k) .

Note that this applies to each configuration on the path as
well as each coordinate of each configuration. Thus, the whole
partial path is being treated as a point in an ld-dimensional
space and not a sequence of points in the configuration
space. The parameter-estimation model will cluster paths such

Fig. 2. Data with linear regression (left) and mixture regression (right) fits.

that this independence assumption is satisfied, to the degree
possible, in the model.

Then, we assume that each yj has a linear dependence on
x with Gaussian noise, so that

Pr(yj |x, s = k) =
1

σjk

√
2π

exp

(
− (yj − wjk · x)2

2σ2
jk

)
,

where σjk is the standard deviation of the data in output
dimension j of strategy k from the nominal line, and wjk is an
m-dimensional vector of weights specifying the dependence of
the mean of the distribution of yj in strategy k given x as the
dot product of wjk and x.

It would be possible to extend this model to contain non-
linear regression models for each mixture components, and it
might be useful to do so in the future. However, the current
model can approximate a non-linear strategy function by using
multiple linear components.

In our current model, we assume that Pr(s = k|x) is
actually independent of x (we may wish to relax this in future),
and define πk = Pr(s = k). So, finally, we can write the log
likelihood of the entire training set LL(σ,w, π), as a function
of the parameters σ, w, and π, (note that each of these is a
vector or matrix of values), as

n∑
i=1

log
h∑

k=1

πk

ld∏
j=1

1
σjk

√
2π

exp

(
−

(yi
j − wjk · xi)2

2σ2
jk

)
.

We will take a simple maximum likelihood approach and
attempt to find values of σ, w, and π that maximize this
likelihood, and use that parameterization of the model to
predict outputs for previously unseen values of x.

Figure 2 illustrates a data set in which the x and y are one
dimensional. In the first frame, we show the best single linear
regression line, and in the second frame, a mixture of linear
regression models. It is clear that a single linear (or non-linear,
for that matter) regression model is inappropriate for this data.

The model described in this section is essentially identical
to one used for clustering trajectories in video streams [3],
though their objective is primarily clustering, where ours is
primarily regression.

2) Parameter estimation: If we knew which training points
to assign to which mixture component, then the maximum
likelihood parameter estimation problem would be a simple
matter of counting to estimate the πk and linear regression to
estimate w and σ. Because we don’t know those assignments,
will will have to treat them as hidden variables. Let γi

k =

Pr(si = k|xi, yi) be the probability that training example i
belongs to mixture component k. With this model we can use
the expectation-maximization (EM) algorithm to estimate the
maximum likelihood parameters.

We start with an initial random assignment of training ex-
amples to mixture components, ensuring that each component
has enough points to make the linear regression required in
the M step described below be well-conditioned.

In the expectation (E) step, we temporarily assume our
current model parameters are correct, and use them and the
data to compute the responsibilities:

γi
k :=

πk Pr(yi|xi, si = j)∑h
a=1 πa Pr(yi|xi, si = a)

.

In the maximization (M) step, we temporarily assume the
responsibilities are correct, and use them and the data to
compute a new estimate of the model parameters. We do this
by solving, for each component k and output dimension j,
a weighted linear regression, with the responsibilities γi

k as
weights. Weighted regression finds the weight vector, wjk,
minimizing ∑

i

γi
k(wjk · xi − yi

j)
2 .

When the regression is numerically ill-conditioned, we use a
ridge parameter to regularize it.

In addition, for each mixture component k, we re-estimate
the standard deviation:

σjk :=
1∑
i γi

j

∑
i

γi
j(wjk · xi − yi

j)
2 .

Finally, we reestimate the mixture probabilities:

πj :=
1
n

n∑
i=1

γi
j .

This algorithm is guaranteed to find models for which the
log likelihood of the data is monotonically increasing, but has
the potential to be trapped in local optima. To ameliorate this
effect, our implementation does random re-starts of EM and
selects the solutions with the best log likelihood.

The problem of selecting an appropriate number of com-
ponents can be difficult. One standard strategy is to try
different values and select one based on held-out data or cross-
validation. In this work, since we are ultimately interested in
regression outputs and not the underlying cluster structure, we
simply use more clusters than are likely to be necessary and
ignore any that ultimately have little data assigned to them.

C. Generating and using suggestions

Given the model parameters estimated from the training
data, we can generate suggested partial paths from each
strategy, and use those to bias the search of a sample-based
planner. In our experiments, we have modified the SBL planner
to accept these suggestions, but we expect that most sample-
based planners could be similarly modified. We describe the
way in which we modified the SBL planner below.

For a new planning problem with task-template description
x, each strategy k generates a vector yk = wk · x that
represents a path segment. However, in the new planning
environment described by x, the path segment may have
collisions. We want to avoid distracting the planner with
bad suggestions, so we collision-check each configuration and
each path between consecutive configurations, and split the
path into valid subpaths. For example, if y is a suggested
path, consisting of configurations 〈c1, . . . , c15〉, imagine that
configuration c5 collides, as do the paths between c9 and c10

and between c10 and c11. We would remove the offending
configurations, and split the path into three non-colliding
segments: 〈c1 . . . c4〉, 〈c6 . . . c9〉, and 〈c11 . . . c15〉. All of the
non-colliding path suggestions from each strategy are then
given to the modified SBL planner, along with the initial start
and goal query configurations.

The original SBL planner searches for a valid plan between
two configurations by building two trees: Ts, rooted at the start
configuration, and Tg , rooted at the goal configuration. Each
node in the trees corresponds to a robot configuration, and the
edges to a linear path between them. At each iteration a node
n, from one of the trees is chosen to be expanded.1 A node is
expanded by sampling a new configuration nnew that is near
n (in configuration space) and collision-free. In the function
CONNECTTREES, the planner tries to connect Ts and Tg via
nnew. To do this, it finds the node nclose in the other tree that
is closest to nnew. If nclose and nnew are sufficiently close
to one another, a candidate path from the start to the goal
through the edge between nnew and nclose is proposed. At
this point the edges along the path are checked for collision.
If they are all collision-free, the path is returned. If an invalid
edge is found, the path connecting the two trees is broken at
the colliding edge, possibly moving some nodes from one tree
to the other.

We extended this algorithm slightly, so that the query may
include not only start and goal configurations, cs and cg , but a
set of h path segments, 〈p1, ..., ph〉, where each path segment
pi is a list of configurations 〈ci1, ..., cir〉. Note that r may
be less than l, since nodes in collision with obstacles were
removed. We now root trees at the first configuration ci1 in
each of the path segments pi, adding h trees to the planner’s
collection of trees. The rest of the configurations in each path
segment are added as linear descendants, so each suggestion
tree starts as a trunk with no branches.

Importantly, the order of the suggestions (barring those
that were thrown out due to collisions) is preserved. This
means that the suggested path segments are potentially more
useful than a simple collection of suggested collision-free
configurations, since we have reason to believe that the edges
between them are also collision-free.

The original SBL algorithm chose with equal probability

1The SBL planning algorithm has many sophisticated details that make it a
high-performance planner, but which we will not describe here, such as how
to decide which configuration to expand. While these details are crucial for
the effectiveness of the planner, we did not alter them, and so omit them for
the sake of brevity.

to expand either the start or goal tree. If we knew that the
suggestions were perfect, we would simply require them to
be connected to the start and goal locations by the planner.
However, it is important to be robust to the case in which
some or all of the suggestions are unhelpful. So, our planner
chooses between the three types of trees uniformly: we choose
the start tree and goal tree each with probability 1/3, and one
of the k previous path trees with probability 1/(3k). When we
have generated a new node, we must now consider which, if
any, of our trees to connect together. Algorithms 1 and 2 show
pseudo-code for this process. The overall goal is to consider,
for each newly sampled node nnew, any tree-to-tree connection
that nnew might allow us to make, but still to leave all collision
checking until the very end, as in the SBL planner.

Texpand is the tree that was just expanded with the addition
of the newly sampled node nnew. If Texpand is either the
start or goal tree (Ts and Tg respectively), we first try to
make a connection to the other endpoint tree, through the
CONNECTTREES function in the SBL planner. If this function
succeeds, we have found a candidate path and determined that
it is actually collision free, so we have solved the query and
need only return the path.

If we have not successfully connected the start and goal
trees, we consider making connections between the newly
expanded tree and each of the previous path trees, Ti. The
MERGETREES function tries to make these connections. The
paths between these trees are not checked for collisions at
this point. As mentioned above, the original algorithm has a
distance requirement on two nodes in different trees before the
nodes can be considered a link in a candidate path. We use
the same criterion here. If the new node is found to be close
enough to a node in another tree, we reroot Ti at node nclose,
and then graft the newly structured tree onto Texpand at node
nnew. If one connection is successfully made, we consider no
more connections until we have sampled a new node.

Algorithm 1 TRYCONNECTIONS(nnew , Texpand) : Boolean
1: success ← false
2: if Texpand == Tg then
3: success ← CONNECTTREES(nnew ,Texpand, Ts)
4: else if Texpand == Ts then
5: success ← CONNECTTREES(nnew ,Texpand, Tg)
6: else
7: for previous path trees Ti 6= Texpand do
8: merged ← MERGETREES(nnew , Texpand,Ti)
9: if merged then

10: break
11: end if
12: end for
13: end if
14: return success

IV. EXPERIMENTS

We have experimented with task-templates in several dif-
ferent types of environment, to show that learning generalized
paths in this way can work, and that the proposed partial paths

Algorithm 2 MERGETREES(nnew , Texpand, Telim) : Boolean
1: nclose ← Telim .CLOSESTNODE(nnew)
2: success ← CLOSEENOUGH(nclose, nnew)
3: if success then
4: REROOTTREE(nclose, Telim)
5: GRAFTTREE(nnew , nclose, Texpand, Telim)
6: end if

Fig. 3. Four types of environment for experimental testing. The robot shown
in the first two illustrations is a planar mobile arm with varying number of
degrees of freedom; in the last, it is a 8-DOF planar arm, with a simple hinged
gripper.

can be used to speed up single-query planning. The simplest
environment is depicted in figure 1, and the rest are shown in
figure 3. Each illustration shows the obstacle placement and
the start and goal locations for a particular task instance.

The first environment (depicted in figure 1, bottom) is sim-
ply a wall with a doorway in it. The robot is a mobile arm with
a variable number of links in the arm, so that we can carefully
explore how well the algorithms scale. Experiments done in
this very simple domain were intended to be a proof of concept
for both the generalized path learning from probabilistically
generated paths, and the integration of suggested paths with
the SBL planner.

The second domain extends the doorway domain slightly by
introducing random obstacles during testing. The task template
for this domain is the same as for the previous one, and in both
cases training data was gathered in the absence of obstacles.
Since randomly placing obstacles may completely obscure the
door, we report planning times only for problems for which
either the planner alone, or the modified planner, was able to
find a solution.

The third domain was designed to show that the learning
algorithm can learn more complicated path segments. This
domain is tricky because the constrained portion is longer than
in the previous examples. This means the learning is more
difficult, as the training data is less well-aligned than in the

domain average
planner
time

average
time with
suggestions

4 DOF door 1.5 s 0.7 s
5 DOF door 6.6 s 0.7 s
6 DOF door 38.1 s 1.0 s
7 DOF door 189.9 s 1.6 s
6 DOF cluttered door 82.3 s 5.3 s
4 DOF zig-zag corr. 12.9 s 2.3 s
5 DOF angle corr. 25.8 s 1.7 s
8 DOF simple gripper 78.6 52.0 s
8 DOF simple gripper
with 2000 data points 74.8 s 13.7 s

Fig. 4. Planning performance results.

previous cases, where the “tight spot” is generally easy to
identify.

The first three domains all share the attribute that there
exists a global rigid transform which could be applied to a
good path segment for one task instance to generate a good
path segment for a new task instance. This is not true of motion
planning tasks in general, and our approach does not rely
on the existence of such a transform; nonetheless, the fourth
domain was designed to show that the technique applies in
cases for which such a transform does not exist.

The final domain involves a robot with different kinematics,
that has to have a substantially different configuration in going
through the tight spot from that at the goal.

A summary of the results in each domain is shown in
figure 4. We compare the time spent by the basic SBL planner
to the time required by the partial-path-suggestion method,
applying each to the same planning problem. Each planning
time measurement was an average of 10 training trials, in
which the model was trained on 500 data points (except
the last experiment, which used 2000 data points), and then
tested, along with the unmodified planner, on 100 planning
problems. The running times reported throughout the paper
for the version of the planner with suggestions includes the
time required to generate suggestions for the new problem
instance.

Figure 5 shows the time required to extract the constrained
portion of each path in order to generate training data, and
the time required to train all of the randomly initialized EM
models. We used 500 samples with a sample variance of 0.01
for estimating the tightness of each configuration. The zig-
zag corridor, angle corridor and simple gripper domains use
the additional step for increasing collision clearance during the
tight spot identification, which makes the process substantially
slower. We used 20 random restarts of the EM algorithm. We
discuss the details of each domain below.

A. The door task

The doorway in this domain, and the following one, is
parameterized by the x, y position of the door, and the angle of

domain time to find
tight spots

time to train
models

4 DOF door 1086 s 204 s
5 DOF door 1410 s 221 s
6 DOF door 2043 s 283 s
7 DOF door 3796 s 321 s
4 DOF zig-zag corr. 14588 s 1003 s
5 DOF angle corr. 25439 s 928 s
8 DOF simple gripper 42142 s 3396 s

Fig. 5. Offline learning time.

the wall relative to horizontal. We chose a tight spot segment
length of 7 for this domain.

These simple experiments show that the suggestions can
dramatically decrease the running time of the planner, with
speed-ups of approximately 2, 9, 38 and 118 for the different
number of degrees of freedom. For the robots with 4, 5, and
6 degrees of freedom, both methods returned an answer for
every query. In the 7-DOF case, the unmodified planner found
a solution to 88% of the queries, while the suggestions allowed
it to answer 100% successfully within the allotted number
(100,000) of iterations.

B. The door task with obstacles

We also did limited experiments by adding obstacles to the
test environments after training on environments with just the
door described above. The goal of these experiments was to
show that the suggestions generated by the learner are often
helpful even in the presence of additional obstacles.

For a mobile arm robot with 6 degrees of freedom, the
suggestions allow the planner to find a solution approximately
15 times faster than the planner alone, on problems where
either method finds an answer. The unmodified planner fails
to find a solution over 4% of the time, whereas the suggestion-
enhanced planner fails less just 0.3% of the time.

C. The zig-zag corridor

The zig-zag corridor domain was designed to require more
interesting paths in order to test the robustness of the parame-
terized path learning. The robot for this domain has 4 degrees
of freedom. The domain has two parameters, the vertical
displacement of the corridor, and its rotation from vertical.
The rotation parameter is encoded as three separate entries in
the input vector: the angle, its sine and its cosine, since each of
these may be necessary for the path to be expressed as a linear
function of the input. The shape of the corridor is constant.
The tight spot segment length is 15.

In this domain, we found that our results were initially
unimpressive, due to difficulty in identifying the tight spot
in our training paths. The step of pushing paths away from
collisions before extracting the tight spot allowed us to im-
prove our results to the same level as those achieved by hand-
picking the tight spot. With the improved data generated in
this way, we find that the speedups are substantial, but less
dramatic than the doorway cases. Figure 6 shows an example

Fig. 6. A suggested path segment for the zig zag corridor.

suggestion for this domain. It is clear that the suggestions are
providing useful guidance to the planner

If the corridor is no longer allowed to rotate, leading to a
one-dimensional input parameter vector, we find that planning
time with suggestions is reduced to 1.2 seconds. This suggests
that we have increased the difficulty of the planning problem
by adding the additional parameters.

D. The angle corridor

The angle corridor domain was designed to be a simple
domain that has the property that there is not a single rigid
transformation for transforming paths for one task instance
into paths for another task instance. In this domain, the robot
has 5 degrees of freedom. The task parameters are the vertical
displacement of the corridor, and the angle of the bend in the
middle of the corridor, which varied from horizontal (0◦) by
up to ±50◦. We again see a speedup of roughly 15 times. This
demonstrates that our technique does not require that a rigid
path transformation exist in order to make useful suggestions
in new environments based on experience.

E. Simple gripper

The simple gripper domain was designed to test another
kind of added path complexity. This domain is the simple hole
in the wall (parameterized by x, y, and θ), but the robot has
different kinematics and must ultimately finish by “grasping”
a block. We again chose a tight spot segment length of 15.

In this domain, we find that more training data is required
to achieve substantial speedup over the unmodified planner;
figure 8 shows the performance as the amount of training
data is increased. Even with 500 training points, however, the
suggestions allow the planner to find a solution in 97.5% of
the problem for which either method succeeds, compared to
about 92% for the unmodified planner. As the training data
increases, the success rate climbs above 99%.

Figure 7 shows example path segments from different strate-
gies in different environments. The path segments in figure 7
are in roughly the right part of the configuration space, but
they tend to involve collisions. The colliding configurations are
removed, and so the suggested path segments require patching
by the planner, they are less beneficial to the planner than a
completely connected path segment would have been.

V. CONCLUSIONS

The simple experiments described in this paper show that
it is possible to considerably speed up planning time, given
experience in related problems, by describing the problems
in terms of an appropriate parametric representation and then

Fig. 7. Suggested path segments for the simple gripper in a single
environment.

Fig. 8. Results for the simple gripper as the size of the training set is
increased. The top plot shows the ratio of the unmodified average planning
time to the average planning time with suggestions. The bottom plot shows
the percentage of the time that each method finds a plan successfully.

learning to suggest path sub-sequences that are in the most
constrained parts of the space.

To improve the performance of this method, we will need
to develop a more efficient way to extract and align the
sub-sequences of paths from the training examples. In ad-
dition, it would broaden the applicability of this method if
we could automatically derive task-template parameters from
environment descriptions and, ultimately, learn a small set of
generally useful task templates from a body of experience in
a variety of environments. Lastly, the issue of how to reduce
the data requirements in the more complicated domains must
be addressed.

Ultimately, this suggests a different direction for path-
planning: systems that can routinely and quickly identify the
hard spots in any new planning instance and then fill in the rest
of the plan, dramatically improving their performance from
experience.

ACKNOWLEDGMENT

This research was supported in part by DARPA IPTO Con-
tract FA8750-05-2-0249, “Effective Bayesian Transfer Learn-
ing”

REFERENCES

[1] B. Burns and O. Brock. Sampling-based motion planning using predic-
tive models. Proceedings of the 2005 IEEE International Conference
on Robotics and Automation (ICRA 2005), pages 3120–3125, 2005.

[2] B. Burns and O. Brock. Single-query entropy-guided path planning.
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation (ICRA 2005), 2005.

[3] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of
regression models. In Conference in Knowledge Discovery and Data
Mining, pages 63–72, 1999.

[4] D. Hsu, T. Jiang, J. Reif, and Z.Sun. The bridge test for sampling narrow
passages with probabilistic roadmap planners. EIII/RSJ International
Conference on Intelligent Robots and Systems, pages 4420–4426, 2003.

[5] D. Hsu and H. Kurniawati. Workspace-based connectivity oracle:
An adaptive sampling strategy for prm planning. Proceedings of the
International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2006.

[6] D. Hsu, G. Sánchez-Ante, H l. Cheng, and J-C. Latombe. Multi-
level free-space dilation for sampling narrow passages in prm planning.
Proceedings of the 2006 IEEE International Conference on Robotics
and Automation (ICRA 2006), pages 1255–1260, 2006.

[7] N. M. Amato J-M Lien, S. L. Thomas. A general framework for
sampling on the medial axis of the free space. Proceedings of the
2003 IEEE International Conference on Robotics and Automation (ICRA
2003), pages 4439–4444, 2003.

[8] H. Kurniawati and D. Hsu. Workspace importance sampling for
probabilistic roadmap planning. EIII/RSJ International Conference on
Intelligent Robots and Systems, 2004.

[9] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato. A
machine learning approach for feature-sensitive motion planning. Pro-
ceedings of the International Workshop on the Algorithmic Foundations
of Robotics (WAFR), pages 361–376, 2004.

[10] S. Rodriguez, S. Thomas, R. Pearce, and N. Amato. Resampl: A region-
sensitive adaptive motion planner. Proceedings of the International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2006.

[11] M. Saha and J-C. Latombe. Finding narrow passages with probabilistic
roadmaps: The small step retraction method. EIII/RSJ International
Conference on Intelligent Robots and Systems, 2005.

[12] G. Sanchez and J-C. Latombe. A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking. In International
Symposium on Robotics Research, 2001.

[13] T. Siméon, J. Laumond, and C. Nissoux. Visibility-based probabilistic
roadmaps. Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, pages 1316–1321, 1999.

[14] A. F. van der Stappen V. Boor, M. H. Overmars. The gaussian sampling
strategy for probabilistic roadmap planners. Proceedings of the 1999
IEEE International Conference on Robotics and Automation (ICRA
1999), pages 1018–1023, 1999.

[15] J. P. van den Berg and M. H. Overmars. Using workspace information as
a guide to non-uniform sampling in probabilistic roadmap planners. The
International Journal of Robotics Research, 24(12):1055–1071, 2005.

[16] Y. Yang and O. Brock. Efficient motion planning based on disassembly.
Proceedings of Robotics: Science and Systems, 2005.

[17] A. Yershova, L. Jaillet, T. Siméon, and S. LaValle. Dynamic-domain rrts:
Efficient exploration by controlling the sampling domain. Proceedings
of the 2005 IEEE International Conference on Robotics and Automation
(ICRA 2005), 2005.

