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Abstract— In this paper, we describe an integrated strategy
for planning, perception, state-estimation and action in com-
plex mobile manipulation domains. The strategy is based on
planning in the belief space of probability distribution over
states. Our planning approach is based on hierarchical symbolic
regression (pre-image back-chaining). We develop a vocabulary
of fluents that describe sets of belief states, which are goals
and subgoals in the planning process. We show that a relatively
small set of symbolic operators lead to task-oriented perception
in support of the manipulation goals.

I. INTRODUCTION
A mobile robot in a complex environment can never be

completely certain about the state of the environment. It will
have to take sensing actions, including pointing its cameras
or moving to new poses in order to get a better view, in
support of doing high-level tasks, such as putting objects
away in a kitchen. In this paper, we describe an integrated
strategy for planning, perception, state-estimation and action
in complex mobile manipulation domains.

We have developed an approach to combined task and
motion planning that integrates geometric and symbolic
representations in an aggressively hierarchical planning ar-
chitecture, called HPN [1]. The hierarchical decomposition
allows efficient solution of problems with very long hori-
zons and the symbolic representations support abstraction
in complex domains with large numbers of objects and are
integrated effectively with the detailed geometric models
that support motion planning. We extended this approach to
handle uncertainty by changing the space in which we plan
from the space of underlying configurations of the robot and
objects to the belief space of probability distributions over
configurations of the robot and objects [2]. In this paper,
we develop much richer representations of belief space that
support both state estimation using a very high-fidelity model
and planning using an abstract symbolic representation.

What should the robot represent about its environment?
In order to manipulate objects, it needs to know their poses,
and the poses of other nearby objects fairly accurately. In
order to move through space (both with base and arms), it
needs to know whether that space is free. Early work in
mapping explicitly represented knowledge about free space
in occupancy grids, and scan-based SLAM methods implic-
itly contain information about where the robot has looked. In
mapping methods based on object pose estimation, however,
the focus has been on explicit representation of object poses
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and implicitly assumes that all space not explicitly marked
as occupied is in fact free.

We propose a two-part state representation, with explicit
joint pose estimation of the robot and objects in the world,
together with a variable-resolution grid representation of the
parts of space that have been recently observed. Thus, if
a region of space has been recently observed and it doesn’t
overlap any of the known objects, the the robot believes with
high probability that the space is free and can be traversed.

Our planning approach is based on hierarchical symbolic
planning, using a technique that is called regression in the
AI planning literature and pre-image back-chaining in the
robotics literature. We develop a vocabulary of logical fluents
that describe sets of belief states; these sets serve as goals
and subgoals in the planning process. These fluents can
never jointly represent a belief state in complete detail,
but are grounded in procedures that test their truth in the
current detailed belief state. They are just sufficiently detailed
to support planning while maintaining a tractably small
representation of complex subgoals.

We briefly touch on related work, then describe the under-
lying representation for belief states. We go on to describe
the formalism used by the planner and give example plan-
ning operator descriptions that illustrate interactions between
sensing and acting. Finally, we demonstrate the proposed
methods on a task with partial information and noisy sensing
using a simulated Willow Garage PR2 robot.

II. RELATED WORK

Advances in 3D perception, navigation and motion plan-
ning have enabled sophisticated manipulation systems that
interleave perception, planning and acting in realistic do-
mains (e.g., [3], [4]). In most such systems, perception tends
to be loosely coupled to the task, usually by assigning the
perception subsystem the job of constructing some sort of
map of the environment, in which planning will be done.
There is also a body of work in which perception is actively
controlled to achieve some goal. For example, in active vision
(e.g., [5]), cameras are controlled to detect objects more
effectively. In robot exploration (e.g., [6], [7], [8]), the target
locations of the robots are chosen to so as to perceive the
most uncertain locations. However, in this existing work, the
planning for perception is not driven by or tightly integrated
into planning for some larger task, such as manipulation; in
most cases, perception is the task.

We use planning in belief space to achieve a tight integra-
tion of perception and action; perception is used to achieve
desired belief states while in the process of accomplishing



a manipulation goal. Belief space, either in the form of
logical representation of sets of states [9], [10] or in the
form of probability distributions over an underlying state
space [11] provides the key representation for integrated
planning of perception and action. Recent research [12], [13],
[14] has established the value of control in belief space using
simplified models and replanning. Our approach to belief
space planning builds directly on this work.

III. BELIEF STATE REPRESENTATION

The belief state for mobile manipulation under uncertainty
needs to contain enough information to support queries
both about the nominal (mean or mode) state of the world
and about the system’s confidence in those estimates. The
confidence estimates must be accurate enough to support
decision-theoretic trade-offs between, for example, going
through the door or taking another look to localize it more
accurately. It also needs to be a sufficient statistic for the
history of observations so that recursive updates may be
made effectively. We do not believe there is a good uniform
representational strategy for all aspects of information about
the domain, so we have separate representations for poses of
known objects, for poses of objects that have not yet been
observed (but are believed to exist) and for free space.

A. Object poses

Object detection and recognition systems based on vi-
sual (intensity or depth) perception usually have fairly
good spatial accuracy, though they are susceptible to mis-
classification, resulting in data-association problems. We are
operating under the assumption that the misclassification
issues can be handled using robust-statistics strategies and
outlier rejection (e.g., [15]) and that unimodal spatial
distributions will suffice for such objects.

In our experimental work, we use an extended Kalman
filter, but an unscented Kalman filter with outlier rejection
might result in a more robust system. The state of the system
that is being filtered consists of the poses of all known objects
as well as the robot base. The object and robot poses are
represented with four degrees of freedom: x, y, z, and θ,
which is rotation in the horizontal plane. It is assumed that
the robot and all objects are resting on a known stable face.

We establish the following notation for characterizing
aspects of the belief state maintained by the filter:
• Objects: integer indices i, j, . . . ; index 0 is robot base.
• Pose of object i is a random variable: Φi =
〈Xi, Yi, Zi,Θi〉 taking on values φi = 〈xi, yi, zi, θi〉.
Poses are all expressed in an arbitrary global coordinate
frame.

• Mean of pose estimate for object i is µi.
• Covariance of pose estimate for object i is Σi: this is a

4 by 4 matrix.
• Mean of pose estimate for object i given that the pose

of object j is at its mean is is µi|j .
• Covariance of pose estimate of object i given that the

pose of object j is at its mean is Σi|j : this is a 4 by 4
matrix.

Observation updates of the filter are performed with an
observation vector that consists of the poses of objects
that were perceptually detected, in robot-relative coordinates.
Transition updates of the filter are performed with a control
input computed as the difference between the uncorrected
raw odometry of the robot now and at the time of the
previous update.

Care must be taken to estimate poses correctly when
there are angular dimensions. We handle this by using a
wrapped Gaussian representation for the angular dimension,
essentially constructing a real space tangent to the unit circle
at the mean of the angular distribution. This approach is
convenient because the product can be taken of multiple
tangent spaces together with regular real spaces for the
other dimensions, and a single multivariate Gaussian used
to represent the entire joint distribution over the product
space[16]. An additional concern is object interpenetration:
any joint pose of the objects that would cause a collision is
invalid. The work described in this paper does not address
that problem, but we hope to incorporate a solution based
on truncated distributions [17].

The first row of figure 1 shows four states of the EKF
during the course of a planning and execution run. The robot
is drawn in its mean pose. The other objects are drawn using
their conditional distribution given the mean robot pose:
µi|0,Σi|0. The mean pose of the object is drawn in its regular
color, and then a “shadow” consisting of the object drawn at
poses in which each individual dimension is extended to its
positive or negative 95% confidence limit is drawn in gray.
In the leftmost frame, there are three known objects: a table,
a cupboard, and a cup, and there is substantial uncertainty
about their poses. The next frame shows the situation after
the robot has made an observation and detected the table
and cupboard. They still have moderate uncertainty, but it
is dificult to see in this figure; the cup has not yet been
observed. In the third frame, a new object is discovered and
added to the state of the filter; but it occluded the view of
the cup, so that object remains significantly uncertain. In the
last frame the cup has been observed and its distribution and
its uncertainty reduced.

Unobserved objects There may be objects, or object
types, about which the system has prior knowledge, but
which it has not yet observed. For instance, the system might
believe that, with high probability, there is salt somewhere
in the kitchen, but not know which cupboard it is in. In
such situations, the spatial details of the distribution are not
important, and we do not include such objects in the state
of the Kalman filter until they are actually observed. Rather,
we maintain a mixture distribution over the possible abstract
locations that might contain the object, such as rooms or
cupboards, and update that distribution based on negative
information, until the object is actually observed.

B. Observed space

Another important query the robot needs to make of the
belief state is whether a region of space is known to be clear
of obstacles and therefore safe to traverse. To answer such



Fig. 1. The first row shows the conditional distribution of the objects given the mean robot pose. The second row shows the unobserved space (as gray
boxes). The third row shows suggested robot poses (cyan), view cones (light blue) and target regions (green) for looking operations. The fourth row shows
swept volumes for suggested robot motions.

queries, we represent the parts of the space that the robot
has recently observed with its depth sensors.

Keeping an accurate probabilistic model of known-clear
space is quite difficult: the typical approach in two-
dimensional problems is an occupancy grid [18]. It requires
a detailed decomposition of the space into grid cells and
although there are some attempts to handle odometry error
in the robot [19], they are not particularly effective. A more
principled strategy would be to maintain the history of robot
poses in the EKF, rather than just the current one, and
combine the depth maps sensed at each of those poses into
a global map of observed space.

We take a much simpler approach, operating under two
assumptions: first, that the observed-space maps we construct
will only be used in the short term; second, that the mech-
anisms for detecting objects and tracking their poses will
provide a high-accuracy estimate of the poses of material
objects. Looking is not too expensive, and objects may be

dynamic, so we expect, for instance, when the robot re-enters
a room, that it will need to reconstruct the observed-space
map. Thus, handling long-distance relative odometry errors
is not crucial. For this reason, we simply attach each depth
scan to the most likely pose estimate for the robot in the
Kalman filter (this is much more accurate than the raw odom-
etry). We integrate the observed-space information from the
sequence of scans into an oct-tree representation the space
that has been observed by the robot. This representation of
known space can be much coarser than an occupancy grid,
which must also represent the boundaries between free and
occupied regions of the environment.

In the following sections, we will denote space that has
been observed as Sobs . The second row of figure 1 shows
the observed-space oct-tree at four different points during
execution; space that is filled with dark-grey cells has not yet
been observed by the robot. At initialization time, the robot
knows the contents of the region of space right around it.



As it moves and scans (in this case, using both the scanning
laser on the torso as well as the narrow-field stereo cameras
on the head), it clears out more of the space, until in the final
frame, it has observed most of the observable space in the
room. One very important role that the observed-space map
plays is to constrain the RRT planner when it is determining
a trajectory for final execution of a motion primitive; any
part of the space that has not yet been observed is marked
as an obstacle and cannot be traversed.

IV. BELIEF SET ESTIMATION FOR PLANNING

When planning in belief space, goals must be described
in belief space. Example goals are “With probability greater
than 0.95, the cup is in the cupboard.” or “The probability
that more than 1% of the floor is dirty is less than 0.01.”
These goals describe sets of belief states. The process of
planning with pre-image backchaining computes pre-images
of goals, which are themselves sets of belief states. Our
representational problem is to find a compact yet sufficiently
accurate way of describing goals and their pre-images.

In traditional symbolic planning, fluents are logical asser-
tions used to represent aspects of the state of the external
physical world; conjunctions of fluents are used to describe
sets of world states, to specify goals, and to represent pre-
images. States in a completely symbolic domain can be
represented in complete detail by an assignment of values
to all possible fluents in a domain. Real world states in
robotics problems, however, are highly complex geometric
arrangements of objects and robot configurations which
cannot be completely captured in terms of logical fluents.
However, logical fluents can be used to characterize the
domain at an abstract level for use in the upper levels of
hierarchical planning.

We will take a step further and use fluents to characterize
aspects of the robot’s belief state, for specifying goals and
pre-images. For example, the condition “With probability
greater than 0.95, the cup is in the cupboard,”, can be written
using a fluent such as PrIn(cup, cupboard , 0 .95 ), and might
serve as a goal for planning. For any fluent, we need to
be able to test whether or not it holds in the current belief
state, and we must be able to compute the pre-image of
a set of belief states described by a conjunction of fluents
under each of the robot’s actions. Thus, our description of
operators will not be in terms of their effect on the state of
the external world but in terms of their effect on the fluents
that characterize the robot’s belief. Our work is informed by
related work in partially observed or probabilistic regression
(back-chaining) planning [20], [21], [22]. In general, it will
be very difficult to characterize the exact pre-image of
an operation in belief space; we will strive to provide an
approximation that supports the construction of reasonable
plans and relies on execution monitoring and replanning to
handle errors due to approximation.

We will represent belief sets as conjunctions of fluents.
Each fluent is a test on an actual belief state: the belief state
is in the belief set if all of the fluents test to true.

A. Fluents for mobile manipulation

We demonstrate the use of logical fluents for describing
belief sets in the mobile manipulation domain. In this section,
we describe the most important fluents in our formulation,
and their definitions in terms of tests on belief states.

We specify conditions on continuous belief distributions,
by requiring, for instance, that the mean of the distribution
be within some value of the target and the variance be
below some threshold. Generally, we would like to derive
requirements on beliefs from requirements for action in the
physical world. So, in order for a robot to move through a
door, the estimated position of the door needs to be within
a tolerance equal to the difference between the width of the
robot and the width of the door. The variance of the robot’s
estimate of the door position is not the best measure of how
likely the robot is to succeed: instead we will use the concept
of the probability near mode (PNM) of the distribution. It
measures the amount of probability mass within some δ of
the mode of the distribution. So, the robot’s prediction of its
success in going through the door would be the PNM with
δ equal to half of the robot width minus the door width.

The first set of fluents characterize belief about the pose
of an object. We start by asserting that the mean of the
distribution on the pose of object i is within δ of a desired
pose φ:

PoseMeanNear(i, φ, δ) ≡ ‖µi − φ‖ < δ .

Any appropriate norm can be used here.1

To characterize certainty about a pose, we must specify
a frame of reference. Although all poses are expressed in a
global coordinate frame, we are typically interested in the
variance in the estimate of the pose of one object relative
to another object. Thus, we are interested in the conditional
distribution of object i, conditioned on object j being at its
mean pose. (This represents a “slice” through the distribution
along the i dimensions, rather than a projection of the
distribution onto the i axis, and will in general be lower
variance.) For example, it may frequently be the case that
two objects have very uncertain pose relative to the global
coordinate frame, but if they are observed in the same image,
they have very certain poses relative to one another.

KVCondPose(i, j, ε, δ) ≡ Pr(‖Φi−µi|j‖ < δ | Φj = µj) > 1−ε .

Because of the symmetry of covariance and the fact that
we are slicing through the mean, this fluent will have the
same value with arguments i and j reversed. The name of
the fluent is intended to indicate belief states in which we
“know the value” of the pose, without specifying what the
value will be.

1In our implementation of this domain, the test is actually computed
componentwise: δ is a vector of four values (three metric distances and
an angle) and ‖〈x1, y1, z1, θ1〉 − 〈x2, y2, z2, θ2〉‖ = 〈|x1 − y1|, |x2 −
y2|, |z1 − z2|, |θ1 − θ2|±π〉, where |θ|±π denotes an angle equivalent to
θ, in the interval [−π,+π]. Each of the four components of the difference
has to be less than the associated component of δ, in order for the condition
to be satisfied.



Combining these two concepts, we have a fluent that
asserts that there is a high degree of belief that object i is at
pose φ conditioned on object j being at its mean pose:

KCondPose(i, φ, j, ε, δ) ≡ Pr(‖Φi−φ‖ < δ | Φj = µj) > 1−ε .

In order to specify conditions on the configuration of
the robot, including the 4-dof base pose, as well as the
arm (in this work, we only use one arm of the robot),
we use the fluents ConfMeanNear and KCondRobotConf,
which are analogous to PoseMeanNear and KCondPose, but
which specify a particular configuration of robot arm. We
are assuming that the robot arm configuration is known
exactly, so the distributional conditions are not applied to
those degrees of freedom.

The next set of fluents characterize beliefs about the
contents of regions in space. The regions under consideration
are not pre-discretized, but are computed dynamically during
planning as part of the pre-image backchaining process.

The KContents(r) fluent simply asserts that the region r
has been completely observed.

KContents(r) ≡ r ⊆ Sobs .

The KClearX (r, x) fluent asserts that the region r is known
to be clear with the exception of objects in the set x.

KClearX (r, x) ≡ KContents(r) & ¬∃i 6∈ x.overlaps(i, r) .

In formalizing the domain, it is also useful to be able to say
“we don’t know of anything in the way.” For this, we use
the fluent NotKNotClear(r), defined as

NotKNotClear(r) ≡ KClear(r) || ¬KContents(r) .

An interesting additional fluent is

KIn(i, r, p) ≡ Pr(contains(r, i)) > p ,

where i is an object, r is a region, and p is a probability.
To test this in practice, we construct a union of the volumes
obtained by placing the object at the p-percentile pose in
each direction of each dimension, then test to see if that
“shadow” region is contained in r.

B. Operator descriptions

Operator descriptions for planning characterize the belief
pre-image of an action: the conditions that must be true of
a belief state, so that the resulting belief state will satisfy
the result condition of the operator. Because our domain
dynamics are stochastic, even in the belief space, we cannot
guarantee a result; these operation descriptions characterize
the most likely outcome, and we will re-plan whenever that
outcome fails to occur.

The following operator descriptions constitute part of the
planning domain description that is used to generate the
examples in section V. They illustrate two important ideas:
(1) That motion and perception actions need to be tightly
integrated in order to achieve goals in complex environments;
and (2) That that the general-purpose planning mechanism
of logical regression-based planning, applied in belief space,
can be used to achieve this integration.

Each operator description has a name, then several com-
ponents. The tag pre indicates a precondition fluent, let
indicates a quantity that is being computed and named,
exists indicates a call to a heuristic suggester procedure
that may generate one or more bindings of variables that
have large or infinite domains, and result indicates a
result fluent. These operators are applied backward during
planning: the goal is a conjunction of fluents. A step in the
planning search is to match a fluent in the current goal with
the result fluent of an operator, to remove that result from
the goal, then to add the preconditions to the goal; if the
new goal is not a contradiction, then it becomes a node in
the search tree. Whenever a goal is satisfied in the current
belief state (this happens when all of the fluents in the goal
are true) then a legal plan has been found.

Following is a description of the Pick operator, which
results in the robot knowing that it is holding the objct O,
with high probability. One thing to note is that the precondi-
tions are divided into two sets. The first precondition is that
the pose of the object O be known, with large tolerances,
with respect to the robot. Given that, the planner considers
places from which the object might be picked up: typically,
from the current mode of the distribution of the pose of
that object in the b0, which is the belief state that holds at
planning time, and given that pose, it suggests one or more
paths P that the robot might need to move through in order to
pick up the object at that pose. Given these suggestions, we
establish another set of preconditions: that the swept volume
of that path be known to be clear, that the robot not be olding
anything, that the object be known to be close to the pose
that we expected it to be in when we computed the path,
and that the robot’s configuration, conditioned on the object’s
pose, be known highly accurately. If all of these conditions
hold, then the primitive procedure that picks up the object
will succeed, resulting in the object being held. The domain
description also contains a similar operator description for
placing the object. The fact that there are some knowledge
preconditions that must be satisfied before even computing
the rest of the preconditions fits naturally into the hierarchical
planning framework.
Pick(O, ObjPose):
pre: KVCondPose(O, robot, bigEps, planDelta)
exists: ObjPose in {modeObjPose(b0)} U generateParking(O)

P in generatePickPaths(ObjPose)
pre: KClearX(sweptVol(P), O)

KHolding(None)
KCondPose(O, ObjLoc, robot, eps, graspDelta)
KCondRobotConf(O, baseConf(P), smallEps,grspDelta)

result: KHolding(O)

In our planning domain, the primitive operation of looking
at an object (by pointing the robot’s head so that the
object will be centered in the stereo camera frame) can be
used to achieve several knowledge conditions. The operator
description below characterizes how looking can be used to
increase certainty that the pose of object O is within Delta
of pose OPose. The most basic precondition is that the mean
of the pose distribution for O be near the desired pose. If that
is true, then we can suggest a configuration of the robot,
RobotConf, which includes the configuration of the head,



that has the property that if the robot is in that pose, then it
is possible to view object O. Additionally, Viewcone is a
volume of space between the robot’s camera and the object
that must be free in order for the view not to be occluded.
The next precondition is interesting: it is that the view cone
be not known to be occluded. This means that if we know
something is in the way, we will be required to move it
out; but if we simply don’t know the contents of the view
cone, then that is sufficient for the most likely result of this
operation to be a successful view. We rely on the replanning
mechnisms of HPN: if, upon looking, it is reveled that there
is an object occluding the view, then a new plan will be made
that achieves the NotKNotClear condition by removing
the occluding object(s).

Next, we require that the robot’s configuration be near the
one suggested for viewing the object. The requirement is
currently only on the mean of the robot’s pose distribution,
so that it is in roughly the right place.

Finally, in order to have as a likely outcome KCondPose
with probability 1 - Eps, we determine the pre-image of
that knowledge fluent by finding a value PNRegress(eps,
obsVar, Delta), which is larger than Eps, such that
if an observation is made with variance obsVar and that
starting degree of uncertainty, everything will come out fine.
This operation can chain backwards, determining a sequence
of several Look operations in order to guarantee the desired
resulting confidence.

In order to achieve KCondPose when the
PoseMeanNear condition does not hold, the planner
will satisfy that condition using an instance of the Place
operator, which will itself generate a condition that requires
the Pick operator.
Look(O):
pre: PoseMeanNear(O, OPose, Delta)
exists: (RobotConf, ViewCone) in generateViewPose(O, OPose)
pre: NotKNotClear(ViewCone)

ConfMeanNear(RobotConf, lookDelta)
KCondPose(O, OPose, RefObj,

PNRegress(eps, obsVar, Delta), Delta)
result: KCondPose(O, OPose, RefObj, Eps, Delta)

The next two operators don’t have actual primitives associ-
ated with them: they are essentially definitional, and compute
a set of conditions under which the resulting condition
will be true; applying the operator during planning simply
replaces the target condition with the preconditions at the
appropriate level of abstraction.

In order to achieve the condition that region R is known
to be clear with the exception of a list of objects, we must
first know the contents of R. Then, we require that each of
the objects that is overlapping R in the current belief state be
moved, with high probability to a part of the domain called
the warehouse; in addition, we establish the requirement
that the region be clear of all other objects, as well. This
condition will, cause the region to be cleared out again if
some exogenous process puts objects into it and will prevent
other object placements from being made into that region.
KClearX:

pre: KContents(R)
let: occluders = objectsOverlapping(R, b0) - Exceptions

pre: KClearX(R, Exceptions + occluders)
for o in occluders: KIn(o, ’warehouse’, placeEpsilon)

result: KClearX(R, Exceptions):

Finally, to achieve the condition that the contents of a
region R are known, we depend on a recursive decomposition
of the region. If the region can be viewed in one look
operation, then we suggest a configuration for the robot and
associated view cone for viewing the region and require the
view cone not to be known to be occluded and require the
robot configuration to be near the suggested one; if the region
is too big for a single view, then we split it into subregions,
driven partly by the desire to aggregate space that has already
been viewed into the same subregion and space that has
not been viewed into different subregions. For each of the
subregions, we assert that the contents must be known.
KContents:
if not viewable(R):

let: subRegions = split(R, b0)
pre: for s in subRegions: KContents(s)

else:
exists: (RobotConf, ViewCone) in generateViewPose(R)
pre: NotKNotClear(ViewCone)

ConfMeanNear(RobotConf, lookDelta)

C. Regression of fluents

We defined fluents characterizing aspects of continuous
probability distributions, and we use them in operator de-
scriptions. It is necessary to be able to compute the pre-image
of a fluent in belief space. We will begin with a simple one-
dimensional case, and the describe how it is done for the
robot and object pose fluents described in section IV-B.

For a planning goal of KV (X , ε, δ), that is, knowing
the amount of probability mass of random variable X that
is within δ of the mode is greater than 1 − ε, we need
to know expressions for the regression of that condition
under the actions and observations in our domain. In the
following, we determine such expressions for the case where
the underlying belief distribution on state variable X is
Gaussian, the dynamics of X are stationary, the action is
to make an observation, and the observation o is drawn from
a Gaussian distribution with mean X and variance σ2

o .
For a one-dimensional random variable X ∼ N (µ, σ2),

P (|X − µ| < δ) = Φ
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)
then
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Now, we can solve for θt, yielding

PNMregress(θt+1, δ, σ
2
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.



So, to guarantee that KV (X, ε, δ) = P (|X − µ| < δ) >
1 − ε holds after taking action a and observing o, we must
guarantee that KV (X, 1−PNMregress(1−ε, δ, σ2

o), δ) holds
on the previous step.

For the fluent K(X,x, ε, δ) ≡ P (|Xt − x| < δ) > 1 − ε,
which requires 1 − ε of the probability mass of X to be
within δ of a specific value x, we do a similar regression
calculation, though the result cannot be expressed as cleanly.
It allows us to define the function PNregress, such that,
to guarantee that K (X,x, ε, δ) holds after taking action
a and observing o, we must guarantee that K (X,x, 1 −
PNregress(1− ε, δ, σ2

o), δ) holds on the previous step.
Now, to compute regression conditions for KCondPose

for example, we might need to compute the preimage of
a set of distributions on an entire pose. We are using four-
dimensional vectors of ε and δ values, however, so we simply
regress the epsilons individually for each dimension.

D. Suggesters

Because the symbolic planner is working in what is
essentially an infinite domain (the space of poses, paths,
volumes, etc.) it is impossible to create an a priori dis-
cretization or enumeration of the state space. Instead, we
employ heuristic suggester procedures to generate candidate
values of variables, such as paths and poses, that have infinite
domains. We describe two example suggesters in some more
detail in this section.

Because we are planning to gain visual information, one
important question is where to place the robot in order to
get a good view of an object or a region of space that is of
interest to the system. The suggester works by constructing
an approximate visibility graph of the configuration space
of a robot model with simplified kinematics, and testing free
configurations in this space to see if they satisfy the visibility
requirements for the object or region to be viewed.

The third row of figure 1 shows example results of the
view suggester. The robot is shown in cyan at the suggested
pose. The cone emenating from the eye is the view cone,
which must be unoccluded in order for this pose to result
in a good view of the object. The suggester prefers to find
poses with view cones that are unoccluded in the belief state
at the time of planning; however, if necessary, it will plan
to look ’through’ another movable object. In that case, the
planning operators will construct additional steps in the plan
to move the occluding object out of the way before looking.
The third frame shows the pose and view cone for looking at
a small object in the back of the cupboard; the other frames
show view cones for looking at regions of space (shown in
green) that had not yet been entirely observed.

Similarly, when the robot needs to move to a new base
pose or to pick up or place an object, the high level planner
needs to guarantee that space will be available for that
operation. The actual primitive robot motion operations,
when they are executed, are planned using an RRT on a high-
fidelity model. However, while we are considering multiple
different high-level plans, it is not efficient to plan robot
motions completely accurately. So, the path suggester also

uses a visibility graph planner for an approximate robot, and
it only tries to guarantee a path to a ’home’ region. If, every
time the robot moves, there is guaranteed to be a free path to
the ’home’ region, then it can never block itself in. The fourth
row of figure 1 shows, in green, highly approximate, but
conservative swept volumes of the robot moving through the
suggested paths. It is these volumes that must be determined
to be clear before the robot can execute the associated motion
or manipulation actions.

V. EXAMPLE PLANNING AND EXECUTION

Figure 2 shows a sequence of images depicting the plan-
ning and execution process, which is shown in much more
detail in the accompanying video. The initial goal is for the
small blue object to placed on the table to the robot’s left.

Initially the robot has a small known area around it, the
rest of the room is unknown—as shown in the first oct-tree
in Figure1. To determine the contents of the swept regions
of suggested motions (the large green regions in Figure1), a
series of look motions and view cones are suggested (the
cyan robot placement and light blue cones). When these
scans are executed (steps 2–7), new areas of the oct-tree
become known as illustrated in subsequent oct-trees in the
Figure1.

After the first two scans (steps 2 and 3), the table has not
been observed and so its pose distribution is very diffuse –
as shown in the first pose distribution in Figure1. Also, the
big red object has not been seen; note that it is not part of
the initial model. After the table is scanned in step 3, its pose
distribution becomes tight but the blue cup is still not visible
(it is occluded by the big red object), so its pose distribution
is still diffuse—as shown in the second pose distribution.
Later, the red object is seen and added to the model (as seen
in the third pose distribution). Finally, when going to look at
the warehouse region, where the red object is to be moved,
the robot serendipitously “sees” the blue cup and narrows its
distribution, as seen in the fourth pose distribution.

After the required regions are known, the planning and
execution proceeds as normal, resulting in a sequence of
operations to move the red block to the warehouse, pick up
the blue block and take it to its goal location.

Conclusion: This paper has provided methods for extend-
ing belief-space planning techniques to mobile manipulation
problems, seamlessly integrating perception and manipula-
tion actions, performing goal-directed perception in service
of manipulation and goal-directed manipulation in service
of perception. We believe that this work forms a basis for
extending the application to very large, cluttered domains.
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