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Abstract— In this paper we outline an approach to the
integration of task planning and motion planning that has
the following key properties: It is aggressively hierarchical. It
makes choices and commits to them in a top-down fashion
in an attempt to limit the length of plans that need to be
constructed, and thereby exponentially decrease the amount of
search required. Importantly, our approach also limits the need
to project the effect of actions into the far future. It operates
on detailed, continuous geometric representations and partial
symbolic descriptions. It does not require a complete symbolic
representation of the input geometry or of the geometric effect
of the task-level operations.

I. INTRODUCTION

As robots become more robust and capable of sophisti-
cated sensing, navigation, and manipulation, we will want
them to carry out increasingly complex tasks over long time
horizons. A robot that helps in a household must plan over
the scale of hours or days, considering abstract features such
as the desires of the occupants of the house, or what time the
UPS delivery is likely to arrive, down to detailed geometric
reasoning in support of putting objects away in cupboards or
washing dishes. Such long-term planning requires integration
of task and motion planning.

The strength of symbolic task planners is their ability to
reason over very large sets of states by manipulating partial
descriptions, for example, all the possible states in which
“the robot is in the kitchen and the blue chair is in the
kitchen”. However, these task planners work by enumeration:
all possible operations are considered in a state, in order to
expand it in the search. In geometric domains, enumeration
of possible operations and complete symbolic description
of states is difficult or impossible, depending on selected
vocabulary and desired resolution.

Motion planners, on the other hand, deal beautifully with
geometry, but not with abstract features of the domain; they
can plan how to get to the phone but not decide that a phone
call needs to be made. Motion planners also have limited
ability to deal with partially specified states. They do not
compute paths for the robot from the kitchen to the living
room without having to know where all the furniture is.

In this paper we outline an approach to integration of task
planning and motion planning that has the following key
properties:
• It is aggressively hierarchical. It makes choices and

commits to them in a top-down fashion in an attempt
to limit the length of plans that need to be constructed,
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and thereby exponentially decrease the amount of search
required. Importantly, our approach also limits the need
to project the effect of actions into the far future.

• It uses goal regression, constructing partial symbolic
descriptions of desired subgoals and making queries in a
continuous geometric representation of the initial state.
It does not require a complete symbolic representation
of the input geometry or of the geometric effect of the
task-level operations.

a) Hierarchy: Most work in hierarchical planning uses
the hierarchy as a kind of search heuristic: it can speed the
construction of a complete low-level plan with guaranteed
soundness or even optimality conditions. Our proposal is
more aggressive: we will sacrifice optimality in exchange
for a method that solves a small planning problem at a high
level of abstraction, commits to the plan, solves a problem of
achieving the first subtask in that plan, commits to that plan,
and so on, until primitive actions are reached and executed.

This aggressive approach to hierarchical planning has
several consequences:

• All planning problems are short-horizon and therefore
efficient. Planning cost is the minimum of an exponen-
tial in the horizon and a polynomial in the size of the
state space; we expect to be working in domains in
which the state spaces are very large or infinite, meaning
that decreasing the horizon is crucial.

• Subtasks can be serialized by propagating constraints
across a planning level and down to lower planning
levels.

• Detailed forward progression of the effects of actions is
not necessary. When, for example, it is time to make the
detailed plan for the second subtask of a more abstract
plan, we will already have executed the first subtask, and
can plan “in the now,” conditioned on the actual state of
the world. This property is useful even in deterministic
domains, but becomes crucial when world dynamics are
uncertain.

• The robot will sometimes embark on a plan, and begin
executing it, only to discover that some or all of the
early steps were mistaken. Our assumption is that most
actions are reversible without huge cost. In the case of
subtasks that involve irreversible or highly expensive
actions, we would invoke a more complete planning
algorithm before beginning execution.

b) Symbolic and geometric planning: We use a goal-
regression planner, which starts with a symbolic repre-
sentation of the goal, and works backwards, constructing
symbolic descriptions of subgoals, until all of the conditions



in a subgoal hold in the initial state. The initial state is
represented geometrically and can support any query about
the truth of a condition. This planning structure allows ’new’
geometric entities, such as regions of interest in task space,
to be constructed during the planning process, and does not
require a complete a priori enumeration of salient locations
or objects in advance. Because the domain of objects is not
specified in advance, we cannot use standard STRIPS add and
delete lists to characterize the effects of actions; we augment
the planning approach with additional geometric reasoning
capabilities.

We handle the integration of continuous geometric plan-
ning with enumerative task planning by using geometric
’suggesters’, which are fast, approximate geometric compu-
tations that help the high-level processes make appropriate
choices. For example, it is possible to determine which
objects need to be moved out of the way by planning a path
for a conservatively grown object in the 3D workspace rather
than in the high-dimensional configuration space of the robot.

This paper outlines a basic framework for hierarchical
planning in the now, and provides very preliminary demon-
strations in mobile manipulation-planning tasks of moderate
complexity. It is currently only applied in deterministic
domains, but we have designed the framework to be extended
to domains with uncertainty in both state and dynamics.

II. RELATED WORK

There is a great deal of work related to ours; we attempt
to illustrate the main points of contact here.

Manipulation planning The problem of manipulation
planning is to take a goal configuration of several objects, and
generate a plan consisting of robot trajectories and grasping
operations that will result in the desired configuration [1],
[2], [3]. Planning in hybrid spaces, combining discrete mode
switching with continuous geometry, can be used to sequence
robot motions involving different contact states or dynamics.
Hauser and Latombe [4] have taken this approach to con-
struct climbing robots.

Planning among movable obstacles generalizes manipula-
tion planning to situations in which additional obstacles may
need to be moved out of the way in order for a manipulation
or motion goal to be achieved. In this area, the work of
Stilman et al. [5], [6] takes an approach similar to ours,
in that it plans backwards from the final goal and uses
swept volumes to determine, recursively, which additional
objects must be moved. Our framework treats the problem
of movable obstacles in the context of a general regression-
based symbolic planner. In the current implementation, it
does not consider sufficiently many object placements to be
complete.

Integrating symbolic and geometric planning In the
work of Cambon et al. [7], a symbolic domain acts as a
constraint and provides a heuristic function for a complete
geometric planner. Plaku and Heger [8] extend this approach
to handle robots with differential constraints and provide
a utility-driven search strategy. Choi and Amir [9] solve
the problem of hand-constructing symbolic representations

of geometric states and actions of interest by constructing
a roadmap of the geometric space and extracting salient
features to construct a symbolic domain description.

Hierarchical planning Hierarchical approaches to plan-
ning have been proposed since the earliest work of Sacer-
doti [10], whose ABSTRIPS method generated a hierarchy
by leaving off preconditions, in a way similar in spirit to our
method. Marthi et al. [11] have developed a framework that
gives hierarchical domain descriptions real semantics, and
can dramatically speed up the search for optimal plans based
on upper and lower bounds on achievability or value that are
specified for abstract operators. Our work is similar in spirit,
but sacrifices optimality quite aggressively for efficiency.

Nourbakhsh [12] suggests a hierarchical approach to in-
terleaving planning and execution that is similar to ours and
runs experiments on a real mobile robot, but with no detailed
geometric reasoning. The work of Wolfe et al. [13] provides
a hierarchical combined task and motion planner based on
hierarchical transition networks (HTNs) [14] and applies it
to a manipulation-planning problem.

III. EXAMPLE

Consider the domain shown in figure 1.1. The goal is
for the object labeled A to be clean and put away in the
storage room. To do this, the robot must take A, put it into
the washing room, wash it, and then move it to the storage
room. Accomplishing this requires moving other objects. In
the following, we describe informally how this problem is
solved by our system.
• The domain is formalized using fluents, which are like

logical predicates, to describe its symbolic aspects. The
fluents are In(object, region), Overlaps(object,region),
Clean(object), and ClearX(region,objects). The last
means that the region is clear except for certain objects.

• Possible operations are described using a generalization
of STRIPS planning rules. The operations
are PickPlace(obj, startRegion, targetRegion),
ClearX(region, objects), RunWasher(object), and
Remove(object, region).

• A starting state is determined, as a geometric model,
shown in 1.1. This domain is three-dimensional, and
the figures here are shown looking down from above.

• The goal is specified as a conjunction of fluents:
In(a,Storage)∧Clean(a).

• A recursive process of planning and execution is begun;
the entire process is shown as a tree in figure 2.

• 1. Blue nodes in the tree, labeled with numbers, denote
planning problems. The first planning problem is the
top-level goal. It is first addressed with abstract versions
of the subtasks, for which it is not required to make
the preconditions true. In this case, a two-step plan is
made; it is shown as two descendant purple nodes, each
of which represents a subtask. The plan is to run the
washer with a in it, and then to place a into the Storage
region.

• Now, that plan is recursively executed, by executing
each of its subtasks in turn. If a subtask is a primitive
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Fig. 1. Washing domain, in which the robot must move object A to the washing area, wash it, and put it in the storage area.

domain action, then it is executed directly; otherwise,
it is refined. A subtask’s refinement is typically another
goal to be planned for and achieved. Here, the abstract
runWasher(a) subtask is refined into the goal Clean(a).

• 2. We now plan for the goal Clean(a), and generate
a plan with two subtasks. Because it has the abstract
RunWasher as an ancestor, this time, the RunWasher
subtask is considered concretely, and its precondition,
that a be in the washer, is satisfied by a preceding pick-
and-place abstract subtask that puts a into the washer.

• 3. We execute the first subtask, which causes us to
plan to put a into the washer. The resulting plan has
two subtasks. The first abstractly requires that a swept
volume that results from moving the object a, as well as
the robot, from its current location to a location in the
washer, via a home location, is free. The swept volume
is shown in figure 3.1 as a complex brown polygon;
it was computed using a fast planner that considered
only translations of the object, with a gripper attached
to it. The second subtask is a concrete pick and place
operation on a, which can take place once that swept
volume is cleared.

• 4. Now, we plan concretely for clearing the swept vol-
ume, while maintaining that a is in its starting location
(if it gets moved elsewhere in the process, then the swept
volume may no longer be adequate); this condition will
be present in all goals of this subtree. The resulting
plan is comprised of abstract operations to remove both
b and c from the swept volume. Because we do not
yet have good cost estimates for abstract actions, the

planner decides to remove b first.
• 5. To remove b from the swept volume, a parking place,

shown as PB in figure 3.1, is suggested. The suggestion
is made to guarantee that it will not conflict with moving
a. The planner now determines that c is in the swept
volume of b, and finds a parking place PC for it, as
shown in figure 3.2. The plan is to move c and then to
move b.

• The subtask to move c is refined into a primitive
subtask. At this point, a grasp location is selected and
a robot motion planner (in this case, a simple RRT
implementation) is called to plan both phases of the
pick and place operation. The primitive operation
is executed in the world, with the result shown in
figure 1.2.

• Similarly, a detailed motion for moving b is planned
and executed in the world, resulting in figure 1.3.

• We continue with the recursive execution of the tree we
have constructed. Executing the subtask for removing c
from the swept volume of a requires no further work,
as the condition it was intended to establish has already
been done as part of removing b.

• Now, we plan and execute in the world motions to
move a to a location inside the washer, resulting in
figure 1.4.

• The symbolic primitive runWasher is now executed in
the world, and the object a is clean.

• 6. We have come back to the root of the tree and now
have the job of planning to put a in storage; notice
that it is required that we maintain Clean(a), which
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Fig. 2. Planning and execution tree for washing and putting away an object. Dashed arrows are subtask refinements.
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was established by the previous subtask. This planning
task is illustrative of the idea of planning in the now:
The object a was placed in some particular pose inside
the washer by the low-level pick-and-place planner. We
never had to simulate exactly where it would end up.
Instead, we have actually executed it, and the planning
problem in this step is executed with respect to a new
starting state, corresponding to figure 1.4.
So, with aX being the pose of a inside the washer, we
find a path and corresponding swept volume that would
move it to the storage region, and plan to clear that new
swept volume, then move a to storage.

• 7. The only step required is to move d out of the new
swept volume for a.

• 8. A parking place is suggested for d, shown as DP in
figure 3.3, and we plan to move d there.

• We plan and execute primitive motions to move d,
resulting in figure 1.5.

• Finally, we plan and execute primitive motions to
move a into storage, resulting in figure 1.6.

IV. HIERARCHICAL PLANNING

Now, we describe the system somewhat more formally.

A. Representation

Any planner that has to reason about geometric and
non-geometric properties of the world requires a hybrid
representation. It is tempting to try to make a complete
symbolic summary of the geometric state of the world. That
is ultimately quite difficult when, for example, the planner
needs to reason about different regions of space that are
specified dynamically or constructed during the process of
planning.

For this reason, we only represent the world state that
is current at the time of planning in complete geometric
detail. During planning, the goal “state” (which is actually
a symbolic specification of a set of satisfactory states in
terms of both geometric and non-geometric properties) and
intermediate states are specified symbolically, but include
geometric predicates that constrain the underlying physical
states of the world.

The goal, as well as intermediate planning states, is
represented as a conjunction of fluents. A fluent is a symbolic
predicate, such as In(obj, region) = True, whose arguments
may be variables or constants. Constants can be names
of objects or geometric specifications of regions of space.
Fluents have several procedural attachments, to facilitate both
geometric and symbolic reasoning:
• test: a procedure that, given ground values of the argu-

ments, can be applied to the current geometric world
state, and returns True or False.

• contradicts: a procedure that takes another ground fluent
and returns True if they contradict one another and False
otherwise.

• entails: a procedure that takes another ground fluent and
returns True if this fluent logically entails the other one,
and False otherwise.

We encode the knowledge of the preconditions and effects
of operations in a set of subtask descriptions. Subtasks are
not organized into a rigid hierarchy, but may refer to one
another as needed. A subtask is specified by the following
components:
• target fluent: A single fluent which is the ’desired effect’

of the subtask. The arguments of the fluent are variables.
• variables: The subtask variables include the variables in

the target fluent as well as existential variables whose
value is chosen during the planning process.

• preconditions: A procedure that maps bindings of the
target-fluent variables into a conjunction of fluents that
describe the set of states in which executing this subtask
will cause the target fluent to be true. This procedure
also takes the current geometric state and the symbolic
state to which the operator is being applied as input, so
that it can make choices of existential variables that are
unlikely to generate contradictions.

• side-effects: A list of fluents describing additional ef-
fects of executing this subtask; fluents may have an
unspecified value, which signifies that the subtask may
change the value of the fluent, in an undetermined way.
It is important to be able to have an incomplete effects
model at more abstract levels of the hierarchy.

• constraints: A list of fluents that should be true when
this subtask is executed and which must be true when
it terminates. These are derived during the planning
process and passed backward and down the plan tree.

• refinement: A procedure that maps bindings of the
subtask variables, the current geometric world state, and
current constraints into a refinement of this subtask at
the next lower hierarchical level: a refinement can be
a primitive action or a conjunctive goal specification
(which will require subsequent planning).

Subtask definitions for our domain are provided in section V.

B. Constructing an operator hierarchy

Inspired by Sacerdoti’s [10] approach to constructing a
planning hierarchy, we also build our hierarchy on the idea
of postponing consideration of some or all preconditions of
a subtask. In the current implementation, we first consider
a subtask completely abstractly, ignoring its preconditions
during planning, and assuming they can be made true when
it is time to plan for and execute the subtask. When the
abstract subtask is executed, a new plan is made, taking all
of its preconditions into account. In future implementations,
we would have multiple levels of abstraction and some
additional reasoning about how abstractly to consider a
subtask each time it is encountered.

C. Planning by goal regression

Our starting state is encoded in complete geometric detail,
in the form of an actual world that we can measure or a
highly accurate geometric model. Our goal is specified by
a conjunction of symbolic fluents. There are generally three
choices in designing the search process for a planner: forward
search over sequences of operations from the starting state,



backward search over sequences of operations from the goal,
or a more general search in the space of plans. Plan-space
search can be very difficult to guide heuristically, so we opt
for a search over operation sequences.

It is difficult to compute a complete symbolic representa-
tion of the initial state, which would be necessary to support
fully symbolic forward-search planning. So, we perform goal
regression, starting from a symbolically-encoded goal (which
will, in general, contain fluents with geometric content). The
search works backward from the goal to other symbolic
precursor conditions, until it reaches a symbolic condition
that holds in the geometric representation of the start state;
the test attribute of each fluent allows it to be evaluated in
the geometric model.

Our planner is a relatively standard goal-regression plan-
ner, with one important exception. In standard goal regres-
sion, states of the search are conjunctive goal conditions.
A state is expanded (backwards) by computing, for each
possible operator, the weakest precondition of the state under
the operator: that is, what would have to be true at some
time t in order for the execution of that operator to make
the state true at time t + 1. Our difficulty is that we cannot
enumerate all possible operators: the sets of poses and grasps
for objects and paths between locations are infinite. During
regression we apply geometric suggesters: procedures that
take the current geometric reality and the state that we desire
to achieve and suggest bindings of existential variables in the
subtask descriptions, such as paths and grasps, based on a
fast, approximate motion planner.

For example, consider a case where the goal condition
specifies that some object a be in a particular region. A
subtask of moving a into that region can make that condition
true; but the preconditions of the subtask will require a
decision about where that object is to be moved from.
Traditional symbolic planners enumerate all possible such
locations, but in general geometric spaces, this is impossible.
It is crucial, and often sufficient alone, to consider the current
geometric starting pose of the object. Another useful type of
location to consider is a “parking place”: a location that is
relatively out of the way of the objects involved in the goal.
We discuss our particular set of geometric suggesters in more
detail in section VII-A.

Unless the suggesters are well informed about the context
of their suggestions, there is a risk that the suggestions will
generate contradictions with other aspects of the goal, and
therefore be rejected. So, we adopt the strategy of moving
part of the test into the suggester: the suggesters are given
the context of the fluent that is to be achieved (that is, the
other conjuncts in the current regression goal) and are asked
to guarantee that the variable bindings they suggest will be
compatible with the rest of the goal condition.

This mechanism can be used to manage resources more
generally: a subtask can “reserve” a resource by adding a
precondition that requires the resource to be available before
the subtask is executed. Other subtasks that may be added to
the plan will be able to observe the reservation and respect
it while making their own choices.

We define the planning domain as follows:

• initial state: The goal condition, represented as a con-
junction of ground fluents.

• termination condition: A procedure that takes a state
of the search, which is a conjunction of ground fluents,
and returns True if all of the fluents hold in the initial
geometric state and False otherwise.

• successor function:
– Given a state, find all subtasks whose target fluent

can be matched with a fluent in the state.
– For each such subtask, generate one or more ground

instances by suggesting values for existential vari-
ables. If an abstract version of the subtask is not an
ancestor of this problem in the planning/execution
tree, then consider this subtask abstractly by ignor-
ing its preconditions in the next step.

– Compute preconditions and side-effects for each
ground subtask.

– If neither the preconditions nor the side-effects are
in contradiction with any other fluents in the state,
then construct a successor state from the conjunc-
tion of all fluents from the original state and all
of the preconditions, with the target fluent and any
other fluents that are entailed by the precondition
removed.

– Annotate any ground subtask that is used to gen-
erate a legal successor state with any fluents that
occur both before and after the execution of that
subtask: those fluents are maintenance constraints
that are passed down to the expansion and execu-
tion of the subtask.

– Return a set of pairs of (subtask, successorState) so
constructed.

The planning procedure, then, is:

PLAN(startState,goal):
A∗ search in the space defined above

heuristic(s): num fluents in s not true in startState

D. Hierarchical planning and execution

The regression-planning algorithm is used to solve single
planning subproblems within the overall hierarchical plan-
ning and execution architecture. The architecture can be
thought of as doing a depth-first traversal of a planning tree,
and is implemented as a recursive algorithm. Because the
hierarchical structure is not uniform (it may be deeper in
some parts of the tree than others) the process is framed in
terms of doing jobs, dispatching on the type of the job to be
done. Jobs can be of the following types:

• Primitive: an action that may require further geometric-
only planning, but that requires no further symbolic
planning. Examples include putting an object in a lo-
cation, or turning on a washing machine. This is a leaf
of the hierarchical planning process, which ultimately
results in a change in the real physical world and in the
model that is being used by the planner.



• State: symbolic description of a desired world state,
given as a conjunction of fluents.

• Sequence: ordered list of subtasks.
• Subtask: A step in a plan. Can be refined in the current

world into a primitive job, a sequence of jobs, or a state
to plan for.

The algorithm is as shown below. The planning and
execution system is invoked by calling do(job,world), where
job is the highest level goal for the system and world is a
queryable representation of the world (either the world itself
or a high-fidelity model). The last case is entered and the
regression planner called to make a plan p. That plan is then
executed, by recursively executing each of its subtasks in
sequence. If a subtask’s fluent has been serendipitously made
true by a previous step, then it requires no further action.

DO(job,world):
if type(job) == PRIMITIVE:

then EXECUTE(job, world)
elseif TYPE(job) == SUBTASK ∧¬ holds(job.fluent, world):

then DO(job.refinement(world))
elseif TYPE(job) == SEQUENCE:

then for task in job.tasks:
do DO(task, world)

else ; TYPE(job) == STATE:
p← plan(STATE([],world), job)
if p:

then DO(p, world)
else Raise failed

V. DOMAIN DESCRIPTION

In order to develop intuition for this hierarchical planning
representation and algorithm, we present the formalization of
a simple domain in which a robot can move objects around
in the world, and wash them by putting them in a special
“washer” location.

The fluents in this domain are: In(O,R), meaning that
object O is entirely contained in region R; ClearX(R,Os),
meaning that region R is clear except for the list of objects
Os; Overlaps(O,R), meaning that object O overlaps region
R, and Clean(R), meaning that object R is clean.

The primitives in this domain are PickAndPlace(O,R),
which causes the robot to move object O from its current
starting pose into a pose such that the object is entirely
contained in region R; and RunWasher(), which simply
causes the washing machine to be run.

Here is the definition of the subtask of moving an object
O into a region R. It begins by looking in the constraints
that apply to it, to find “tabu” regions T s that it must keep
clear; then it considers two different bindings of variable L,
which is the location from which the object will be moved.
Either it is the object’s location in the current true world state,
or it is a “parking” place, suggested to be not overlapping
with the tabus, nor with other objects in the starting state. It
also suggests one or more possible paths that O might move
through in order to get from L to R. The preconditions to
doing the move, then, are that O be in the starting location L,

and that the swept volume of path P be clear of all objects
except O. Once these preconditions are satisfied, then the
subtask may be refined to a pick-and-place operation to be
executed by the fully geometric part of the planner.

PICKPLACE(O,R):
pre:

define: T s←{T : ClearX(T,X) ∈ constraints}
exists: L ∈ {Loc(O,start),SuggestParking(O,Ts,start)}

P ∈ SuggestPaths(O,L,R)
In(O,L),ClearX(sweptVol(P), [O])

ref: PickAndPlace(O,L,R)

The subtask for clearing a region has no refinement. It
is, essentially, a definition of what it means for a region to
be clear, which is articulated in the preconditions. It finds
all objects X 6∈ Os that overlap the region of interest R and
creates a list of preconditions requiring that each of those
objects X not overlap with O. In addition, it requires that no
additional objects be put into the region.

CLEARX(R,Os):
pre:

define: Xs←{X : Overlaps(X ,R,start) ∈ w∧X 6∈ Os}
forall: X ∈ Xs : ¬Overlaps(X ,R)
ClearX(R,Os∪Xs)

ref: none

The following operator causes an object O not to overlap
a region R. Like the previous operator, it is definitional, and
has no refinement. Like pick-and-place, it starts by finding
a set of tabu regions that are constrained to be kept clear
(excluding those that would allow O to remain in them); it
then asks a geometric suggester for a region P, to ’park’ this
object in. It will attempt to find and return such a region that
is reachable from the robot’s current position and that does
not overlap any tabu regions. The preconditions, then, are
that that parking region remain clear except for O and that
O be in P.

REMOVE(O,R):
pre:

define: Ts←{T : ClearX(T,X ,constraints) ∈ state∧O 6∈ X}
exists: P← suggestParking(O,T s,start)
In(O,P),ClearX(P, [O])

ref: none

Finally, we have a simple subtask to make an object clean,
that articulates the geometric precondition that the object be
located in the washer.

WASH(O):
pre: In(O, WASHER)
ref: RunWasher()

VI. CORRECTNESS

Our goal in this work is to design a planning and execution
system that can solve extremely long-horizon planning prob-
lems. It is well known that solving such problems exactly is



intractable, so it is not reasonable to expect that we will
get something for nothing. We hope that our system will
solve the vast majority of planning problems reasonably well:
probably not optimally, but not ridiculously. It will depend
the environment being relatively benign, and an expectation
that problems posed will not be puzzles.

This approach rests two major assumptions:
• Conservative preconditions on abstract operations can

be computed efficiently and correctly.
• Subgoals are often serializable.
The first assumption is embodied in the geometric sug-

gesters: it is their job to perform a ’quick and dirty’ com-
putation to suggestion how we will want to move objects
through space or to select an ’out of the way’ location
to put something. Our current approach to the suggesters
is entirely heuristic: we have implemented them directly,
based on a visibility-graph planner. However, it is our
vision that the suggesters could actually learn appropriate
behavior from experience: every time a plan is successfully
or unsuccessfully executed, it constitutes training examples
for the suggesters, which could eventually come to learn to
make good suggestions in related situations.

In the current system, there is a risk that, if the suggesters
are too liberal, we will plan successfully at the high level
but fail at geometric planning time. Although it is not
implemented, it would be straightforward to detect such
failures and invoke the detailed geometric planner in place
of the suggester to get a feasible suggestion.

The second assumption is embodied in the abstract han-
dling of subtasks. When we decline to consider the detailed
preconditions of a subtask, we are implicitly asserting that
the subtask is independent of other subtasks: that is, it can
be achieved in a way that does not depend on the method by
which any of the other subtasks at that level are achieved.
When this is true, it makes planning nearly trivial: a small set
of subtasks must be selected and ordered at the high level,
and can be planned for completely independently.

Completeness and suggestions This planner is not com-
plete, in the sense that it considers only finitely many sugges-
tions in an infinite domain. If the suggesters were extended
to the form of ’generators’, that could be called repeatedly to
generate new suggestions, ultimately via statistical sampling
or systematic enumeration, we conjecture that the planner
would be complete.

Completeness and serializability: Our approach is ag-
gressive about treating subtasks as being serializable: this
allows very fast planning when subtasks are, in fact seri-
alizable. What happens when they are not? We make the
following conjecture: When primitive actions are reversible,
then this planning and execution algorithm is complete with
respect to any necessary interleaving of subtasks.

Rather than providing a formal proof, we illustrate this
property in an example problem containing only blocks a and
b, configured as they are initially in the washing domain. The
goal is to swap the locations of the two blocks. The planning
and execution tree is shown in figure 4. The process operates
as follows:

in(b, GoalB)
in(a, GoalA)

A:PickPlace(a, ?, GoalA) A:PickPlace(b, ?, GoalB)

in(a, GoalA) in(a, GoalA)
in(b, GoalB)

A:clearX(Swept_a, (a)) PickPlace(a, a, GoalA)

in(a, a)
clearX(Swept_a, (a)) PP(a,GoalA)

A:remove(b, Swept_a)

in(a, a)
overlaps(b, Swept_a) = False

PickPlace(b, b, PS3152:)

PP(b,PS3152:)

PickPlace(a, aX, PS3162:) PickPlace(b, bX, GoalB) PickPlace(a, PS3162:, GoalA)

PP(a,PS3162:) PP(b,GoalB) PP(a,GoalA)

Fig. 4. Planning and execution tree for swapping the position of two objects
with strong ordering constraints.

• At the highest level, an arbitrary serialization of the
steps of putting each of the objects, a and b, in its
target region is chosen. The locations from which the
objects will be moved into the goal locations are, as yet,
unbound and shown as ’?’.

• A detailed plan is made for putting a in its destination
location, consisting of clearing a path from a’s starting
location to some location in its destination region, and
then executing a pick-and-place operation.

• Clearing the path for a requires causing object b not to
overlap with the path.

• A ’parking place’ for b is suggested, and a plan is
made to move b from its starting location to its parking
location.

• Object b is actually moved to a parking place.
• Object a is then actually moved to its goal location.
• Now, it is time to refine the step of putting b in its goal

location; the planner adds the regression condition that
a be in its target region.

• Because it is impossible to put b in its target location
without moving a, a new plan is made, involving three
pick-and-place operations, that results in a correct final
configuration.

Had the subgoals been completely serializable, then the
planning process would have been extremely efficient, and
no extra actions would have been taken. But, because serial-
ization fails in this case, the planner is able to fall back on
doing general purpose regression to generate an interleaved
plan.

VII. GEOMETRIC LEVEL

Our implementation uses two simple motion planners. As
a basis for the geometric suggesters, we use a planner that
focuses on the motions of objects, and for executing primitive
operations, we use a traditional planner that focuses on the
motions of the robot (potentially with object in hand). Our



figures are showing two projected views of what is, in fact,
a three-dimensional domain.

A. Geometric suggestions

The subtask definitions in our domain use two suggesters:
suggestPaths and SuggestParking. These suggesters are con-
structed using some additional suggesters: suggestGrasps,
suggestPoses and suggestPathTo.
• suggestGrasps(O) – find grasps for O (gripper poses

relative to O) with sufficient overlap of the fingers and
an available approach configuration of the robot. The
implementation enumerates pairs of faces to generate
candidate grasps and discards those that fail the acces-
sibility tests.

• suggestPoses(O,R,Tabus) – find a set of poses for O
where it is completely inside region R, there is no
collision with tabu regions, and there is some valid
grasp (as per suggestGrasps) for the object in that pose.
The implementation generates poses in the region and
discard those that fail that grasping accessibility tests.

• suggestPathTo(O,R) – find a path from O’s current pose
to some pose within region R (as per suggestPoses). An
enlarged volume that includes space for the gripper to
approach the object is used as the moving object. The
implementation uses a motion planner that lazily builds
a 4-dof visibility-graph during the search for a path.
x,y translation constraints are represented as C-space
polygons for discrete ranges of z and θ . Links in the
visibility graph represent either pure x,y translation, z
offset or θ offset.

• suggestPaths(O,R1,R2) – find a region such that having
that region clear enables the robot to reach the object
O and move it from some location in R1 to some
location in R2. This is implemented with two calls to the
suggestPathTo suggester, one to R1 and the other to R2.
The result region is the swept-volume of the enlarged
object along the paths.

• suggestParking(O,Tabus) – find an “out of the way”
location for O that does not overlap any of the re-
gions in Tabus. The implementation currently is simply
suggestPoses in some designated parking regions; in fu-
ture, the parking regions should be chosen dynamically.

B. Motion planner

Any approach to finding concrete plans for single pick-
and-place operations can be used as the geometric level of
this approach. The motion planner for the pick-and-place
primitives is asked to:
• Find poses in regions, which it does using suggestPoses.
• Find grasp poses, which it does using suggestGrasps.
• Find robot paths, which it does using an RRT-based

planner in 8 dof (3 dof of base, 4 dof of hand relative
to base, and grip opening).

VIII. EXAMPLE RESULTS

The plan for washing block a requires 6 primitive actions.
A flat symbolic planner would have required significant

search to find the plan; a geometric planner in the full
configuration space could never have started. Here, we solved
8 small planning problems, the biggest of which required a
two-step plan, and also solved many simple motion plans
for suggestions. Finally, we solved detailed robot-motion
planning problems for each primitive action separately.

The web site
http://people.csail.mit.edu/tlp/hierarchicalVideos/

contains movies of the robot solving the swap and wash
examples, as well as several more complex problems. In all
of these cases, we find a considerable decrease in planning
horizon, which comes with an exponential decrease in the
size of the space to be searched.

IX. CONCLUSIONS

This paper hints that a strong hierarchical planning and
execution approach may be feasible for solving very large,
long-horizon problems in complex (but not intricate or dan-
gerous) domains. It will have to be augmented with reasoning
about present and future uncertainty, and with the ability
to refine and acquire the planning models at every level of
abstraction, to be of real future use.
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