
Hierarchical Solution of Large Markov Decision Processes

Jennifer Barry and Leslie Pack Kaelbling and Tomás Lozano-Pérez
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA
{jbarry,lpk,tlp}@csail.mit.edu

Abstract

This paper presents an algorithm for finding approximately
optimal policies in very large Markov decision processes by
constructing a hierarchical model and then solving it. This
strategy sacrifices optimality for the ability to address a large
class of very large problems. Our algorithm works efficiently
on enumerated-states and factored MDPs by constructing a
hierarchical structure that is no larger than both the reduced
model of the MDP and the regression tree for the goal in that
MDP, and then using that structure to solve for a policy.

1 Introduction
Our goal is to solve a large class of very large Markov de-
cision processes (MDPs), necessarily sacrificing optimality
for feasibility. We apply two types of leverage to the prob-
lem: we shorten the horizon using an automatically gener-
ated temporal hierarchy and we reduce the size of the state
space through state aggregation.

It is widely believed that hierarchical decomposition is a
key to solving very large planning problems. However find-
ing an appropriate hierarchy has proved challenging. Some
approaches (Jonsson and Barto 2006; Mehta et al. 2008) op-
erate over a relatively long time-frame to learn hierarchies
that pay off over several different, but related problems.
Others, as we will do, try to solve one large MDP quickly
by aggregating together local states and assigning them
the same sub-goal (Teichteil-Königsbuch and Fabiani 2005;
Wu, Kayanam, and Givan 2008) or by aggregating together
states that behave “similarly” under most actions (Givan,
Dean, and Greig 2003; Kim and Dean 2002). Aggregating
nearby states is most effective when a plan from a known
starting state is needed: when trying to find a policy, it is
often the case that states cannot reach their local sub-goal
under the optimal policy, resulting in a policy in which some
states cannot reach any goal state. Aggregating states with
similar behavior can be difficult if there are few states in the
domain that behave similarly: either the time taken to find
the solution is very long or the solution is very inaccurate.

We combine the two approaches. We create potential
cluster members, which we will call aggregate states, each
of which is a set of primitive states, guided by a truncated
regression algorithm. We ensure that each aggregate state
contains a collection of primitive states that behave identi-
cally under the transitions to other members of the cluster.

However, we do not require that primitive states contained
in an aggregate state behave identically under all transitions,
resulting in significantly smaller problem size than former
approaches to this type of aggregation. We also require that
all aggregate states in a cluster can transition easily among
themselves, guaranteeing that any sub-goal in the cluster can
be reached. Regressing factored MDPs has been used pre-
viously to approximate value functions (Boutilier, Dearden,
and Goldszmidt 2000), but not to create a hierarchy.

Once we have the hierarchy, we use a deterministic ap-
proximation to solve the upper levels quickly by finding
deterministic shortest paths. Different ways of determiniz-
ing MDPs have been explored (Lane and Kaelbling 2002;
Yoon et al. 2008), although not for generating cost estimates
between macro-states. At the bottom level, we treat each
cluster as a small sub-MDP and run value iteration, gener-
ating a policy that is more robust than can be obtained from
algorithms that use a purely deterministic approximation.

In this work, we focus on two types of MDPs: those
that are specified by listing every state in the domain
(“enumerated-states MDPs”) and those that can be speci-
fied by a factored representation (“factored MDPs”). We
begin by describing our conception of a hierarchical model
of an MDP and how we can create and solve this model for
enumerated-states MDPs. We then show how we can adapt
the algorithm to the factored representation.

2 Hierarchical Model
A Markov decision process (MDP) is defined by
〈S,A, T,R〉, where S is a finite set of states, A is a finite set
of actions, T is the transition model with T (i′, a, j′) speci-
fying the probability of a transition to i′ given that the sys-
tem starts in state j′ and selects action a, and R is the re-
ward model with R(i′, a) specifying the real-valued reward
of taking action a in state i′. In addition, we assume a pre-
specified set of goal states, G ⊂ S. Goal states are zero-
reward absorbing states: for every g ∈ G, T (g, a, g) = 1
and R(g, a) = 0, for all a. Further, we assume that all other
reward values are strictly negative. We solve this problem
under the undiscounted total reward criterion, making it a
‘stochastic shortest path’ problem. Any MDP can be trans-
formed into an ‘equivalent’ stochastic shortest path problem,
which can then be solved to produce the optimal policy for
the original MDP (Bertsekas and Tsitsiklis 1996).

Algorithm 1
Input: Sl−1: level l − 1 states, A: primitive actions, T : transition
function, G: primitive goal states
Output: A g-connected clustering of level l macro-states

ESCLUSTER(Sl−1, A, T,G)

1 Sl ←
˘
{i′} | i′ ∈ Sl−1

¯
2 // create “goal macro-state” for level 1

if l = 1, g ← {i′ | i′ ∈ G}, S1 ←
`
S1 \ {{i′} | i′ ∈ G}

´
∪ g

3 else g ← {l − 1 goal macro-state} // goal state already exists
4 Adj l ← ADJMATRIX(Sl, A, T) // adjacency defn in Sec. 2
5 set g adjacent to every state
6 while |Sl| > MINCLUSTES and Sl

max < MAXSIZEES

7 {y1, y2, ..., yn} ← FINDCYCLE(Sl,Adj l)
8 Y ← {y1, ..., yn} \ g
9 create new macro-state u← Y

10 Sl ←
`
Sl \ Y

´
∪ u, remove Y from Adj l and add u

11 if g 6∈ {y1, ..., yn}
12 for i adjacent to some y ∈ Y , set i adjacent to u
13 else set only g adjacent to u
14 for i s.t. ∃y ∈ Y adjacent to i, set u adjacent to i
15 return Sl

From the input MDP, we construct and then solve a hier-
archically determinized MDP (HDMDP). An HDMDP with
L levels is given by a depth-L tree. The leaves of the tree,
at level 0, are the states of the original MDP, referred to as
primitive states. Internal nodes of the tree represent (possi-
bly overlapping) sets of nodes at the lower levels. We refer
to nodes of the HDMDP as macro-states. The set of macro-
states at level l is represented by Sl.

The solution process computes a hierarchical policy π
with L levels, each of which prescribes behavior for each
level l state. At levels l > 0, the policy πl maps each level l
macro-state i to some other level l macro-state j, signifying
that when the system is in a primitive state contained in i
it should attempt to move to some primitive state in j. At
level 0, the policy π0 is a standard MDP policy mapping the
primitive states to primitive actions.

At the primitive level, a state i′ is adjacent to a state j′ if
there is some action a such that T (j′, a, i′) > 0. At levels
l > 0, a macro-state i is adjacent to a macro-state j if there
is some i′ ∈ i and j′ ∈ j such that i′ is adjacent to j′. A
state j is reachable from a state i if j is adjacent to i or j is
adjacent to some state k which is reachable from i. If i′ ∈ i
is a level l − 1 sub-state of i then a level l − 1 state j′ is
reachable from i′ if j′ is adjacent to some state k′ ∈ i and k′
is reachable from i′ without leaving i.

3 Enumerated-States MDPs
3.1 Clustering Algorithm

We begin by discussing how we create and solve the hi-
erarchical model for an enumerated-states MDP. We view
creating the hierarchical model as clustering: macro-states
at level l of the tree are clusters of level l − 1 states. There
are many plausible criteria for clustering states of an MDP,
but we base our algorithm on one tenet: we want a structure

in which every state that could reach a goal state in the flat
MDP can reach a goal state under some hierarchical policy.

This criterion is not guaranteed by an arbitrary hierarchy
and the type of hierarchical policy described in Section 2.
That policy requires all sub-states of macro-state i at level
l to find a path through i to some sub-state of πl(i). In a
hierarchy where there is no level l state reachable from all
sub-states of i, there is no hierarchical policy under which
every sub-state of i can reach a goal state. To avoid such
hierarchies, we require that, at each level, all macro-states be
g-connected. A set U of macro-states with goal macro-state
g is g-connected if there exists a policy π : U → U such
that: (1) ∀i ∈ U , i can reach g under π, and (2) ∀i ∈ U , for
each i′ ∈ i that can reach a goal state in the flat MDP, there
exists j′ ∈ π(i) s.t. j′ is reachable from i′.

To create g-connected macro-states at level l from a set
of l − 1 macro-states, we run ESCLUSTER shown in Algo-
rithm 1, which creates macro-states consisting of cycles of
level l − 1 states after setting the level l goal macro-state
adjacent to all other level l macro-states. Setting the goal
macro-state adjacent to all other states allows domains that
contain few cycles to still be viewed hierarchically by group-
ing sets of states that are close together and lead to the goal.
Theorem 1: ESCLUSTER creates a g-connected clustering.
Proof Sketch: Each level l macro-state i is composed of a
cycle of level l− 1 states. If this is a true cycle, then all sub-
states of i can reach all other sub-states in i and therefore
a sub-state in any level l macro-state adjacent to i. Thus,
in this case, all sub-states of i can comply with any policy
that maps i to an adjacent macro-state. If i is composed of
a “cycle” that goes through the goal macro-state g, all sub-
states of i will be able to reach g. In this case, all sub-states
of i will be able to comply with a policy that maps i to g.
There is one subtlety: if i is composed of a cycle that goes
through g, all sub-states of i can reach g, but may not be able
to reach all macro-states adjacent to i. We acknowledge this
in line 13 by marking only g as adjacent to i. For a detailed
proof of this and all other theorems in this paper see (Barry,
Kaelbling, and Lozano-Pérez 2010).

The complexity of ESCLUSTER is dominated by finding
cycles, which is worst-case quadratic, but can be linear in
domains where many states can reach a goal state.
Theorem 2: If a fraction p of the states in the MDP can
reach a goal state, ESCLUSTER terminates in timeO(p|S|+
(1− p)p|S|2) where |S| is the size of the state space.

ESCLUSTER relies on two parameters, MINCLUSTES and
MAXSIZEES , defining the minimum number of macro-states
allowed and the maximum size of those macro-states. These
parameters can be set to control the time/accuracy trade-off
of the algorithm, as we will discuss in Section 3.3.

3.2 Solver
The hierarchical model created in ESCLUSTER is input

for a solver that uses the g-connectedness to quickly find an
approximate solution for the MDP. In solving, we approx-
imate the cost of transitioning between upper-level macro-
states as deterministic. This allows us to find policies for
l > 0 quickly using a deterministic shortest path algorithm.

Algorithm 2
Input: S0, ..., SL−1: hierarchical model, A: primitive actions, T :
transition function, R: reward function, G: primitive goal states
Output: A hierarchical policy for S0, ..., SL−1

UPWARDPASS(S0, ..., SL−1, A, T,R)

1 for l = 0 to L− 1
2 for i ∈ Sl

3 for j adjacent to i
4 if l = 0, C0(i, j)← mina∈A− R(i,a)

T (i,a,j)

5 else Cl(i, j)←
1
|i|
P

i′∈i minj′∈j [DIJKSTRA(i′, j′, Cl−1)]

6 return C

DOWNWARDPASS(S0, ..., SL−1, A, T,R,G,C)

1 for l = L− 1 to 1
2 for i′ ∈ Sl contained in i ∈ Sl+1

3 if l = L− 1, g ← level L− 1 goal macro-state
4 else g ← πl+1(i)
5 πl(i′)←

arg minj′∈Sl Cl(i′, j′) + DIJKSTRA(j′, g, Cl)
6 for i ∈ S1

7 M ← CREATEMDP(i, π1(i), A, T,R,∆)
8 π0

i ← VALUEITERATION(M)
9 for i′ ∈ S0, π0(i′)← π0

arg min{i∈S1|i′∈i} D1(i)(i
′)

10 return π

We run the algorithm in two passes as shown in Algo-
rithm 2. In UPWARDPASS, we compute an approximation
for the cost of transitioning between two macro-states. We
assume that, at the primitive level, any action a taken in state
iwith the goal of ending in state j does make a transition to j
with probability T (i, a, j); but that with the remaining prob-
ability mass, it stays in state i. Executing such an action
a repeatedly will, in expectation, take 1/T (i, a, j) steps to
move to state j, each of which costs −R(i, a). We can se-
lect whichever action would minimize this cost, yielding the
cost estimate shown on line 4 of UPWARDPASS. Once we
have level 0 costs, we can solve deterministic shortest path
problems to compute costs at all levels.

Next, we execute DOWNWARDPASS to find the hierarchi-
cal policy π. At the top levels, we use a deterministic short-
est path algorithm to assign the policy. At level 0, rather than
using the expected costs to solve a shortest-paths problem,
we take the actual transition probabilities over the primitive
states into account. In order to do this, we construct an MDP
that represents the problem of moving from a macro-state i
to a macro-state π1(i). Most of the transition probabilities
and reward values have already been defined in the origi-
nal MDP model. We treat all states in π1(i) as zero-reward
absorbing local goal states. We model transitions to states
that are neither in π1(i) nor in node i itself as going to a
single special out state and incurring a fixed, large, negative
penalty ∆. We use value iteration to solve for the policy.

The cost of solving at the upper levels is dominated by a
quadratic deterministic shortest path algorithm. The time at
the bottom level is dominated by value iteration, which Bert-

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Uncertainty

Er
ro

r

HDet Average Error
Det Average Error

Figure 1: Average deviation from the optimal policy as a func-
tion of uncertainty in the grid world domain. Here x% uncertainty
refers to the probability an action transitions to a wrong square.
The probability of transitioning to the correct square is 1− 0.03x.

sekas (1995) showed is cubic in the size of the state space for
stochastic shortest path problems.
Theorem 3: Algorithm 2 has time complexity quadratic in
the size of the largest macro-state and the number of L −
1 macro-states and cubic in the size of the largest level 1
macro-state.

3.3 Results
We tested the algorithm described above (consisting first of
clustering and then of solving), called HDet for hierarchi-
cally determinized, on several different enumerated-states
domains, and compared its performance to that of value it-
eration and HVI (Bakker, Zivkovic, and Krose 2005). HVI
originally used spectral clustering, reported as HVI (S); we
also tried it with g-connected clustering, reported as HVI
(G). We also tried a version of HDet, Det, which does not run
the clustering algorithm at all but instead treats each state as
its own cluster. Det never solves any MDPs.

We used three experimental domains. Grid world is a typ-
ical grid world with four actions each with an 85% chance
of transitioning to the expected square and a 5% chance of
transitioning to each of the other adjacent squares. The Grid
World had 1040 states and the Large Grid World had 62500
states. Factory is a version of the common Builder factored
MDP problem (Dearden and Boutilier 1997), run on the
fully enumerated state space of 1024 states. Mountain Car
is a discretized, randomized version of the Mountain Car do-
main ((Sutton and Barto 1998), section 8.2) with 1024 states.
For full explanations of these domains see (Barry 2009).

We evaluated the policies in each domain by running 1000
simulations of each policy starting from each state in the do-
main and averaging together the total reward from the sim-
ulations to find a policy value for every state in the domain.
We report the average deviation of these policy values from
the optimal values. Results on the algorithms on each of the
domains are shown in Table 1.
Running time vs. accuracy The results show that HDet is
substantially faster than value iteration with a modest de-
crease in the quality of the solution. HDet also substantially
outperforms HVI. The closest competitor to HDet is, in fact,
Det, the purely deterministic, non-hierarchical, version of

Grid World Large Grid World Factory Mountain Car
Algorithm Run Time (s) Avg. Dev. Run Time (s) Avg. Dev. Run Time (s) Avg. Dev. Run Time (s) Avg. Dev.

Value Iteration 20.46 0 > 104 – 25.22 0 83.00 0
HDet 1.41 0.48 74.21 0 2.58 0.49 25.79 4.14
Det 0.19 0.18 94.73 0.2 0.25 0.35 0.51 15.55

HVI (G) 10.66 0.84 > 104 – 40.72 0.62 78.94 12.94
HVI (S) 24.40 0.66 > 104 – 81.32 2.36 124.08 236.58

Table 1: Results for three domains. Run time gives the total running times, which for HDet and HVI includes clustering time as well as
solution time. Avg. Dev. is the deviation from the reward of the optimal policy divided by the length of the corresponding path. HVI and
value iteration did not converge on the large grid world so we report average deviation from the policy found by HDet, which had the highest
value. All algorithms were implemented by us and run on the same computer.

HDet. The speed of execution of Det on most of the prob-
lems is due to the relatively small size of these problems,
chosen to enable value iteration to terminate in reasonable
time. In the larger Grid World problem, Det required more
time than HDet. We expect HDet’s advantage to increase
with the size of the problem.

Similarly, as the non-determinism in the domain in-
creases, we expect the accuracy of both Det and HDet to
suffer, but the average deviation of Det increases faster than
that of HDet, so that when there is only a 40% chance of end-
ing up in the intended square, the average deviation of Det
is close to 5, but that of HDet is closer to 3 (Figure 1). We
can control how accurate HDet is by setting the parameters
MINCLUST and MAXSIZE. With fewer and larger clusters
HDet will be more accurate, but slower.

Thus, when run on enumerated-states MDPs, HDet finds
good approximate solutions and has total running times (for
clustering and solving) that improve substantially on com-
peting methods. It is important to note that the time taken
to create the hierarchy need not be amortized over several
problem instances: it pays off on a single instance.

4 Factored MDPs
4.1 Clustering Algorithm

A factored MDP is defined by 〈X,A, T,R,G〉whereX is
a finite set of discrete state variables. The state space S of the
MDP can be obtained from X; a state of the MDP, i′ ∈ S,
is an assignment to all state variables. Components A, T ,
R, and G are as described in Section 2. We modify HDet
(FHDet) to take advantage of the factored representation.

To create clusters for a factored MDP, we first run
CREATECRG (Algorithm 3) and then FCLUSTER (Algo-
rithm 4). HDet relies on examining every state, which
is clearly not practical in the factored MDP case. There-
fore, we begin our clustering algorithm using goal regres-
sion (Russell and Norvig 2003) to encode every action each
primitive state could take that could possibly lead to the goal.
However, CREATECRG, which creates a compact regres-
sion graph (CRG) terminates much earlier than standard re-
gression. The CRG consists of nodes that represent possibly
overlapping sets of states. Each node η has a set of actions
A(η) that are enabled for it. If there is no node η in the
compact regression graph containing a primitive MDP state
i′ with action a enabled, then i′ cannot reach a goal by tak-
ing action a. For the rest of this section, node will refer to

Algorithm 3
Input: X: state variables, A: primitive actions, T : transition func-
tion, G: primitive goal states
Output: A compact regression graph (CRG)

CREATECRG(X,A, T,G)

1 // Initialize the CRG with the goal node
Υ← {G}, Υ0 ← {G}, k ← 0

2 repeat
3 k ← k + 1, Υk ← ∅
4 for η ∈ Υk−1

5 for a ∈ A
6 node ν ← {states to which η is adjacent under a}
7 if all states in ν are in some node in Υ
8 enable a in smallest set of nodes Λ ⊆ Υ

s.t. all states in ν now have a enabled
9 else Υ← Υ ∪ ν, Υk ← Υk ∪ ν

10 until no new nodes were added to Υ
11 return Υ

a formula defining a set of states, such as the nodes in the
CRG, and macro-state will refer to a collection of nodes.

We will eventually want to treat the CRG as an MDP
where each “primitive state” of that MDP is a node. There-
fore, we wish to be able to specify the transition probabilities
between nodes. Before we can do that, however, we must be
able to specify the transition of a primitive state i′ into a
node η under an MDP action a. We might wish to consider
that the transition probability is the sum of the probabili-
ties that i′ can transition under a to any primitive state in η.
However, because nodes do not partition the state space, this
would double count some primitive states. Therefore, if a
primitive state j′ belongs to two nodes, the algorithm may
choose which node to place it in for the purposes of transi-
tion probability. Let the set of nodes be Υ. A “graph action”,
α = 〈a, τ〉, consists of an MDP action a and a partitioning
of primitive states into nodes, τ : Υ → S0. For a node η,
τ(η) ⊆ η defines which primitive states in η we consider
as contributing probability to transitions into η under α. To
avoid double counting states, we impose the restriction on
τ that for any primitive state j′ present in the CRG, there
is exactly one node ηj′ such that j′ ∈ τ(ηj′). The reward
R(i′, α) and transition probability T (i′, α, η) from a primi-

mop (0.8),
vac (1.0)

clean

dirty

wet

cl-sp (0.1)mop (0.2)

all (1.0)

g-v (1.0)
a-v (1.0)

cl-sp (0.9)

(a) Compact regression graph.

mop (0.8),
vac (1.0)

clean

dirty, hv

wet, hv

mop (0.8)

dirty,
~hv

g-v (1.0)

a-v (1.0)

cl-sp (0.9)

all (1.0)

cl-sp (0.1) mop (0.2)mop (0.2)cl-sp (0.1)

wet,
~hv

cl-sp (0.9)

(b) Refined compact regression graph, with one
cluster.

clean

dirty, hv

mop (0.8),
vac (1.0)

mop (0.8)

dirty,
~hv

g-v (1.0)

a-v (1.0)

cl-sp (0.9)

all (1.0)

cl-sp (0.1)
mop (0.2)

mop (0.2)

wet

(c) Graph sufficient for hierarchical policy.

Figure 2: An example of clustering in domain in which a robot is trying to clean a room. There are two state variables in this domain: the
room-state variable can take on three values, clean, dirty, and wet; the hv variable, indicating whether the robot has the vacuum, can be either
true (hv) or false (∼hv). To achieve the goal of a clean room, the robot can either mop it using mop or, if hv is true, vacuum it using vac. The
vacuum can be obtained using g-v and put down using a-v. Vacuuming cleans the room with probability 1, but mopping has a 20% chance
of spilling water, transitioning from dirty to wet. In wet, the robot must try to clean up the spill using cl-sp before it can attempt to clean the
room again. All rewards in the domain are -1. Directed edges represent graph actions.

Algorithm 4
Input: Υ0: set of nodes, A: primitive actions, T : transition func-
tion, R: reward function, G: primitive goal states
Output: A g-connected, locally stable clustering and a refinement
of Υ0

FCLUSTER(Υ0, A, T,R)

1 Υ1 ← Υ0, Adj ← ADJMATRIX(Υ1, A, T)
2 while |Υ1| > MINCLUSTF and Υ1

max < MAXSIZEF

3 Λ1 ← FINDCYCLE(Υ1,Adj)
4 Λ0 ← nodes in Λ1 // Λ1 is level 1 macro-states
5 Θ0 ← REFINE(Λ0, A, T,R)
6 Θ1 ← ESCLUSTER(Θ0, A, T,G)
7 Υ1 ←

`
Υ1 \ Λ1

´
∪Θ1, Υ0 ←

`
Υ0 \ Λ0

´
∪Θ0

8 Adj ← ADJMATRIX(Υ1, A, T)
9 return Υ1, Υ0

tive state i′ into a node η via graph action α = 〈a, τ〉 is

R(i′, α) = R(i′, a) (1)

T (i′, α, η) =
∑

j′∈τ(η)

T (i′, a, j′). (2)

A node η ∈ Υ is stable w.r.t. a graph action α if

∃r, t ∈ R s.t. ∀i′ ∈ η, ∀η′ ∈ Υ
T (i′, α, η′) = t and R(s, α) = r. (3)

The CRG may have nodes that are unstable with respect to
graph actions. For example, in Figure 2(a), there is an edge
from (dirty) to (clean) annotated with vac (1.0), but only
the state (dirty, hv) can transition to (clean) using vac with
probability 1.0. To remove instabilities from a set of nodes
Υ we run REFINE (Algorithm 5). If Υ does not span all the
primitive states so that some actions transition a node out of
Υ, we treat all of those transitions as terminating in the same
node, which we will refer to as the out node. The result of

Algorithm 5
Input: Υ: set of nodes,A: primitive actions, T : transition function,
R: reward function
Output: A set of nodes Υ′ s.t. Υ′ contains the primitive states in
Υ′ and all nodes in Υ are stable w.r.t. each other and the out node.

REFINE(Υ, A, T,R)

1 out← new node, Γ← GRAPHACTIONS(Υ, A, T)
2 while ∃ η ∈ Υ, α = 〈a, τ〉 ∈ Γ, ν ∈ Υ0

s.t. η is unstable w.r.t. α and ν
3 {η1, ..., ηn} ← partition of η s.t. each ηi is max size to be

stable w.r.t. α and ν if transitions out of Υ go to out
4 for i = 1 to n
5 if all states in ηi are in some node in Υ \ η
6 enable a in smallest set of nodes Λ ⊆ (Υ \ η)

s.t. all states in ν now have a enabled
7 else Υ← Υ ∪ ηi

8 Υ← Υ \ η, Γ← GRAPHACTIONS(Υ, A, T)
9 return Υ

refining the entire CRG in the cleaning domain is shown in
Figure 2(b) (ignore the rectangle).
Theorem 4: Solving the refined CRG as an MDP gives the
optimal solution to the original MDP.
Theorem 5: The number of nodes in the refined CRG for
an MDP is upper bounded by the number of states in the
reduced MDP proposed by Givan et al. (2003).
Proof Sketch: Each node in the refined CRG contains some
primitive state not contained in any other node in the graph
and is a union of states of the reduced MDP. Since the states
of the reduced MDP partition the primitive state space, the
theorem follows from the pigeon-hole principle.

We could create a hierarchical MDP model by running
ESCLUSTER on the nodes of the refined CRG. However,
this is impractical, since there is no guarantee that the re-
fined CRG has significantly fewer nodes than the original

MDP. It is also more work than generally necessary. Con-
sider the solving process at level 0 of the hierarchy: each
level 1 macro-state i is solved as its own small MDP. We
treat any transition to π1(i) as going to a zero-reward goal
state and any transition to any other macro-state as going to
the out state. Thus, more states behave equivalently accord-
ing to the hierarchy than do according to the flat MDP, as
illustrated in Figure 2(c). Therefore rather than refine and
then cluster, we refine as we cluster. The algorithm is given
in FCLUSTER and fulfills two basic criteria:
Theorem 6: The set of macro-states output by FCLUSTER
is g-connected.
Proof Sketch: The CRG is g-connected because each
macro-state contains only one node. All of the new macro-
states we create are created using ESCLUSTER. Therefore,
by Theorem 1, the set remains g-connected.
Theorem 7: The set of macro-states output by FCLUSTER
is locally stable. A macro-state is locally stable if all nodes
within the macro-state are stable with respect to all other
nodes in the macro-state assuming that any transitions out
of the macro-state go to an out node.
Proof Sketch: Each time we create a new macro-state, we
refine it until it is locally stable.

At termination of the clustering, we have locally stable,
g-connected macro-states. However transitions among the
macro-states may be unstable because, in creating these
macro-states, we ignored any transitions terminating outside
the macro-state. Since the solver produces a deterministic
policy at the upper levels, we do not need to refine all macro-
states with respect to each other now; instead the solver will
choose which macro-states to refine further. We have de-
scribed the process building a two-level hierarchy; more lev-
els can be built using a repeated application of this process.

4.2 Solver
The solver takes as input the output of FCLUSTER and

outputs a hierarchical policy and a set of g-connected, lo-
cally stable macro-states that may be further refined. The
FHDet solver is similar to the HDet solver, but rather than
executing the strict two-pass algorithm we described in Sec-
tion 3.2, we interweave the computations of the costs and
the hierarchical policy with each other and with refinement
of the lowest level state space. In fact, we do not run
UPWARDPASS at all, but begin with DOWNWARDPASS. We
can run DOWNWARDPASS almost exactly as in the enumer-
ated states case, except in line 5 where we require a cost
measure between macro-states. To compute this cost mea-
sure, we run FACSHORTESTPATH shown in Algorithm 6.
The reason for this change is that eventually we will need
to construct an MDP from a macro-state i. In this MDP
we require that all states be locally stable with respect to
each other and a goal node representing transitions to π1(i).
Since we wish to avoid refining nodes in i with respect to
nodes in every other macro-state, we wait until we have a
candidate for π1(i) before refining. Otherwise, the algo-
rithm is unchanged from DOWNWARDPASS.
Theorem 8: Let H be a hierarchy of nodes
with policy π found by running DOWNWARDPASS and

Algorithm 6
Input: i, j: level 1 macro-states, A: primitive actions, T : transition
function, R: reward function
Output: The distance from i to j and a partition of the nodes of i
that is locally stable with respect to j.

FACSHORTESTPATH(i, j, A, T,R)
1 pq ← PriorityQueue, d(i)←∞
2 pq .PUSH(j, 0)
3 while pq .NOTEMPTY()
4 η ← pq.POP()
5 for ν ∈ PREDECESSORS(η)
6 if ∃µ ∈ i s.t. ν ⊆ µ and d(µ) < d(η), continue
7 Λ← REFINE(ν ∪ η,A, T,R)
8 for λ ∈ Λ
9 d(λ)← mina∈A−T (λ,a,η)

R(λ,a) + d(η)
10 if ∀µ ∈ i s.t. λ ⊆ µ, d(µ) > d(λ)
11 pq .PUSH(λ, d(λ)))
12 i← (i \ ν) ∪ Λ
13 // |i| = number states in i, |η| = number states in η

return 1
|i|

∑
η∈i |η|d(η), i

FACSHORTESTPATH on an arbitrary hierarchy. If we cre-
ated a hierarchy of primitive states H ′ by expanding each
node in H , Algorithm 2 run on H ′ outputs π.
Proof Sketch: Consider a level 1 macro-state i. This macro-
state is its own refined CRG (all of its nodes are stable w.r.t.
all other nodes in the macro-state, a goal node representing
π1(i), and an out node). Therefore, the policy we find for
the MDP defined by i and π1(i) is optimal by Theorem 4,
and refining i any further would not change the policy.

The problems of partitioning, stability checking, and set
cover that must be solved in CREATECRG and REFINE
are worst case exponential in the number of state variables,
|X|. However, all three of these may be approximated with
heuristics. Since the running time will then depend on the
implementation chosen, we characterize it in terms of the
number of calls to partition, stability check, and set cover.
Theorem 9: In terms of the size of the largest macro-
state, running CREATECRG and FCLUSTER followed by
DOWNWARDPASS and FACSHORTESTPATH will terminate
after running a linear number of partitions and a quadratic
number of set cover problems and stability checks.

4.3 Results
The purpose of FHDet is to produce approximate solutions
on very large domains. Domains previously used to test pol-
icy solvers such as in Givan et al. (2003), Jonsson and Barto
(2006), and Kim and Dean (2002) are small and don’t test
the strengths of FHDet. Thus we first present results on a
large domain (> 2100 primitive states) of our own devising.

FHDet works best in well-connected domains that have
small CRGs and no irrecoverable outcomes. We created a
domain, House-Clean, with these properties. In this domain,
a robot is trying to clean a series of rooms. It can always
mop, but might have a costly mop water spill. In rooms with

10
3

10
4

10
5

10
6

−240

−220

−200

−180

−160

−140

Time (ms)

M
et

ric
 V

al
ue

House−Clean Time vs Metric Value

Figure 3: Time taken in the House-Clean domain versus the metric
value.

a supply closet, the robot can pick up a vacuum or clean-
ing solution. Getting the vacuum out of the closet is more
costly, but the robot can take it between rooms. The cleaning
solution once used cannot be used again. The supply closet
also contains another robot to which the agent can delegate
the room. Walking between rooms is costly unless the robot
takes a cart out of the supply closet. To transport the vacuum
quickly, the robot also has to take an extension to the cart. It
can abandon the vacuum, but once it does so, it cannot pick
it up again. If a robot re-enters a room, it must clean it again.

Results for a domain with 40 rooms and 20 supply closets
(over 2100 primitive states), are shown in Figure 3. Selecting
different values for MINCLUST and MAXSIZE in the cluster-
ing results in different points in the time/accuracy trade-off
as shown. We can solve this problem with many fewer ab-
stract states than primitive states. By varying the parameters,
we control the number of states in our representation. Det
solves a representation using 377 states, obtaining a met-
ric value of -230. With 562 states, FHDet finds a policy in
which it picks up the vacuum at the first room, but aban-
dons it later (value -200). At 1207 states—which actually
takes less time to solve—FHDet finds a policy in which it
takes the vacuum from the first room and later abandons it,
but not quite as early as before (value -150). At 1197 states,
FHDet finds the policy where it keeps the vacuum all the
way through (value -140). None of these points represents
the optimal policy, which takes the cart and the extension,
as well as the vacuum, from the first. Finding this policy
requires enough nodes that it cannot be stored in RAM on
a desktop PC. However, finding the optimal policy is not
our goal; we want to be able to find approximate policies
quickly. We have shown that FHDet can efficiently compute
policies that are a significant improvement over the com-
pletely deterministic approximation, in a problem whose
size puts it out of range for other MDP solution methods.

We also wished to do a comparison of our algorithm with
other state-of-the-art MDP solvers. However, the problem of
finding a full policy for an MDP is so difficult that there exist
very few solvers that attempt it. Rather, most of the results
we could find on large problems, solved the simpler prob-
lem of finding a good solution given an initial starting state
ahead of time. In many domains, this allows them to ignore
a large portion of the state space. Thus, these planners can
often quickly find a good solution for a given initial state,
but, if the initial state changes, must begin all over again.
Therefore, a policy that gives a good solution for every pos-

sible initial state and can be found in approximately the same
amount of time or a little slower is much preferable.

We tested FHDet and FDet on two domains written in
PPDDL, tireworld and exploding blocksworld, from the
ICAPs (Bonet and Givan 2006; Bryce and Buffet 2008)
competitions. We used a two level hierarchy for all prob-
lems, but set the parameters for FHDet empirically for
each problem. The other algorithms, with the exception of
FOALP (Sanner and Boutilier 2006), took advantage of the
provided initial state information. Thus we are comparing
the time it takes for us and FOALP to solve for a good pol-
icy over all states to the time it takes the other planners to
solve for one initial state.

The results on the ICAPS domains are shown in Figure 4.
The time shown for the planners that use the provided initial
state is the average time taken for one run; the time shown
for FDet, FHDet, and FOALP is the time to find an entire
policy. In the problems from 2006, the time for FHDet and
FDet to find a complete policy is comparable to the times the
other planners require for a single execution. FHDet finds
policies at least as good as the other planners, except on the
largest blocksworld instances. In the large blocksworld in-
stances, the CRGs were too large, and so our implementa-
tion of FHDet could not run to completion. This is also the
reason that FHDet, which is faster than FOALP on the tire-
world, is slower than FOALP in the blocksworld. We are
working on a version of FHDet that does not require a CRG.

In 2008, the ICAPS problem instances were specifically
created so that the paths with the shortest expected length
were the worst possible policies that could still reach the
goal. Thus, they are impossible for FDet and very hard even
for FHDet; even so, FHDet found policies comparable in
performance to those of many other planners in times only
a factor of 10-50 times longer than it took other planners to
solve a single instance (FOALP was not run in 2008).

5 Conclusion
Planning in very large MDPs is difficult because of long
horizons, uncertainty in outcomes and large state spaces.
The HDet and FHDet algorithms address each of these. By
constructing a temporal hierarchy, HDet and FHDet reduce
a single long-horizon planning problem to several planning
problems with much shorter horizons, considerably reduc-
ing planning time. Uncertain planning problems can always
be simplified by making a deterministic approximation, but
sometimes this simplification comes at a great cost. HDet
and FHDet make only a limited deterministic approxima-
tion, taking care to model stochasticity in the domain in the
short horizon by solving MDPs at the leaf nodes of the hi-
erarchy, but summarizing the cost of longer-term decisions
with their expectations. This strategy results in more accu-
rate, but still efficient, decisions.

There is an important synergy between hierarchy and
state-space abstraction: sub-problems in a hierarchical de-
composition can often be circumscribed in such a way that
allow special-purpose state-space abstraction. Thus, even in
domains where there is no opportunity for abstraction over
the whole state space, there may be considerable opportu-
nity for abstraction within each subproblem. FHDet con-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results in the tireworld and exploding blocksworld domain for the problem instances from ICAPs 2006 and 2008. Our algorithm
is FHDet (solid blue line). For comparison, we also run FDet, which is FHDet without any clustering: all clusters are size 1 (dash-dot green
line). FOALP, a first order MDP policy solver run only in 2006, is shown as a red dashed line. All other algorithms run in the ICAPs
competitions are shown as solid grey lines. Plots (a) - (d) show percentage of the time the planner was able to reach the goal in each domain.
Plots (e) - (h) show running times in these domains.

structs appropriate abstractions at the same time as it creates
the hierarchy, to maximize this synergy.

As a result, FHDet can find complete policies for many
domains in the time it takes other methods to solve a single
instance. This policy can be re-used for other starting states
and the same goal set. In addition, for other goals in the
same domain, much of the work of building the hierarchy
can be re-used to generate new policies extremely efficiently.

References
Bakker, B.; Zivkovic, Z.; and Krose, B. 2005. Hierarchical Dy-
namic Programming for Robot Path Planning. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 3720–
3725.
Barry, J.; Kaelbling, L.; and Lozano-Pérez, T. 2010. Hierarchical
Solution of Large Markov Decision Processes. Technical report,
Massachusetts Institute of Technology.
Barry, J. 2009. Fast Approximate Hierarchical Solution of
MDPs. Master’s thesis, Massachusetts Institute of Technology,
Cambridge, MA.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic Pro-
gramming. Belmont, Massachusetts: Athena Scientific.
Bertsekas, D. P. 1995. Dynamic Programming and Optimal Con-
trol. Belmont, Massachusetts: Athena Scientific.
Bonet, B., and Givan, B. 2006. Non-Deterministic Planning
Track of the 2006 International Planning Competition. www.
ldc.usb.ve/˜bonet/ipc5/.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000. Stochastic
Dynamic Programming with Factored Representations. Artificial
Intelligence 121:49–107.
Bryce, D., and Buffet, O. 2008. The Uncertainty Part of the
6th International Planning Competition 2008. ippc-2008.
loria.fr/wiki/index.php/Main_Page.

Dearden, R., and Boutilier, C. 1997. Abstraction and Approxi-
mate Decision-Theoretic Planning. Artificial Intelligence 89:219–
283.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence Notions
and Model Minimization in Markov Decision Processes. Artificial
Intelligence 142(1-2):163–223.
Jonsson, A., and Barto, A. 2006. Causal Graph Based Decompo-
sition of Factored MDPs. Journal of Machine Learning Research
7:2259–2301.
Kim, K.-E., and Dean, T. 2002. Solving Factored MDPs with
Large Action Space Using Algebraic Decision Diagrams. In
PRICAI-02, 80–89. Springer.
Lane, T., and Kaelbling, L. P. 2002. Nearly Deterministic Ab-
stractions of Markov Decision Processes. In AAAI-02.
Mehta, N.; Ray, S.; Tadepalli, P.; and Dietterich, T. 2008. Auto-
matic Discovery and Transfer of MAXQ Hierarchies. In ICML-
08.
Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A Mod-
ern Approach. New Jersey: Pearson Education, second edition.
Sanner, S., and Boutilier, C. 2006. Practical linear value-
approximation techniques for first-order mdps. In UAI-06.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Teichteil-Königsbuch, F., and Fabiani, P. 2005. Symbolic Heuris-
tic Policy Iteration Algorithms for Structured Decision-Theoretic
Exploration Problems. In Workshop on Planning Under Uncer-
tainty for Autonomous Systems at ICAPS-05, 66–74.
Wu, J.-H.; Kayanam, R.; and Givan, R. 2008. Planning using
stochastic enforced hill-climbing. In IPPC-08.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008. Prob-
abilistic planning via determinization in hindsight. In AAAI-08,
1010–1016. AAAI Press.

