
Learning in Worlds with Objects

Leslie Pack Kaelbling, Tim Oates, Natalia Hernandez and Sarah Finney
Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Introduction

We are interested in building systems that learn to in-
teract with complex real world environments, by rep-
resenting the dynamics of the world with models that
allow strong generalization through representation in
terms of objects1. Humans speak (and apparently
think) of the world as being made up of objects. There
are chairs and apples and clouds and meetings. Cer-
tainly, part of the basis for this view is that there are
clumps of coherent physical material that tend to be
well-described in the aggregate. Even without engag-
ing in the philosophical debate about whether objects
really exist (Smith 1996), it is hard to imagine a truly
intelligent agent that does not conceive of the world in
terms of objects and their properties and relations to
other objects.
For an agent to act e�ectively in our world, it must

know (or, to make a weaker statement, act as if it
knows) something of the form: If object A is on ob-
ject B, then if I move object B, object A will prob-
ably move too. Such statements o�er an ability to
compactly express generalized information that cannot
be approached without the description of the world in
terms of objects.
Currently, we have no e�ective techniques for ro-

bust learning and reasoning about objects in uncer-
tain domains. There are some theoretical founda-
tions in probabilistic logic (Nilsson 1986; Halpern 1990),
but they do not o�er practical implementable meth-
ods. We can take inspiration from some relevant
work in Bayesian networks (Koller & Pfe�er 1997;
Getoor et al. 1999) and also in probabilistic induc-
tive logic programming (Muggleton forthcoming), but
we will have to develop additional new techniques to
solve this problem. Our goal is to integrate representa-
tional ideas from classical AI with modern learning and
uncertain reasoning methods, avoiding logic's problems
of inferential intractability, perceptual ungroundedness,
and inability to represent uncertainty.

Copyright c 2001, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

1By \objects" we mean real things, like cups, tables, and
possibly meetings, rather than the computational entities of
object-oriented programming.

We wish to build an agent that is embedded in its
environment. The agent can take actions that change
the underlying state of the environment, and can make
observations of the environment's state. In general, the
observations will not reveal the true state of the envi-
ronment: they will be noisy, and many underlying en-
vironmental states will look the same. The agent will
also have a special scalar input signal, called reward,
which is correlated with the underlying state of the en-
vironment. The agent's goal is to act in such a way as
to gain a large amount of reward over time. It will have
to learn about its environment in order to learn how to
behave in a valuable way.
In all of this work, the goal is to learn to carry out

some externally rewarded task, by taking actions in the
environment based on perception. Although we will
try to specify the learning task in a representation-
independent way, we believe that the choice of internal
representation and associated learning algorithms will
have a huge e�ect on the eÆciency, and even possibility,
of the learning process.

Simple Example Domain

It is almost embarrassing to say this, but we are working
in a simple blocks-world domain, in which there are
multiple blocks, stacked in piles on a table. The blocks
are made of di�erent materials and are painted di�erent
colors.
We assume that the blocks are stacked in fairly or-

derly piles, so that each block is either on the table or
on a single other block. The agent can perceive all of
the blocks, their colors and materials, and their spatial
relations. It can take action by picking up any clear
block and putting it down on any other clear block or
on the table.
Unlike the traditional blocks-world model, this world

has substantial uncertainty. A real vision system will
deliver perceptual descriptions of (parts of) the state
of the world. As blocks are piled into higher towers,
there will be an increasing probability that the tower is
knocked over. Tall towers may be \buttressed" against
collapse by placing other towers near them.
Within this general domain, the agent is given a task

by rewarding it whenever it puts the blocks in front of



it into the appropriate con�guration. We use the term
\task" to describe the kinds of block con�gurations for
which the agent is rewarded and \initial state" to de-
scribe an initial con�guration of objects. Possible tasks
include:

� Pick up a green block.

� Cause every green block to have a red block on top
of it.

� Make a copy of the stack of blocks that is on the far
left of the table.

� Make a very high tower.

� Cause a very loud crash (by making a very high tower
and then knocking it down).

There are endless small extensions that can make this
domain much more interesting and complex. Blocks
of di�erent materials may be more or less slippery or
deformable, changing the stability of the stacks. Blocks
might come in di�erent sizes; might open and close; and
might be put inside other blocks.
Our �rst goal will be to learn general strategies for

solving individual tasks from all (or many) initial con-
�gurations. Even within a single task, we can inves-
tigate \transfer" of knowledge to see whether learning
to solve one initial state will allow the agent to solve
other, similar, initial states more quickly. We are also
interested in the more general question of how learning
to solve a particular task can speed learning of other
tasks in the same domain.
This kind of toy domain has been used in a huge

amount of widely known planning research. It has
also been used in some work on learning. Particu-
larly relevant is work by (Whitehead & Ballard 1991)
on partially-observable blocks worlds and by (Baum &
Durdanovic 2000) and by (Dzeroski, de Raedt, & Bloc-
keel 1998) on learning truly general block-stacking be-
haviors.

Perception and Action

Most work on reinforcement learning assumes that the
agent has complete, perfect perception of its environ-
ment state. In the simple blocks world described above,
that might not be implausible; but in any kind of realis-
tic domain, it is. You can't see everything that is going
on in your building; there are occlusions and distant
objects. Furthermore, if you could see everything, you
would still have to focus your attention on some small
subset of the available information.
Ideas of attention, both physical attention due to

moving gaze and implicit attention to areas within a
�xed visual �eld, have been captured in work on active
perception. The idea is that an agent makes observa-
tions of its environments through a fairly narrow chan-
nel, such as a visual fovea, and can take action to move
the channel around. This converts the perceptual prob-
lem from one of dealing with a vast amount of data in
parallel to a sequential control problem that explicitly
selects the data required.

(Ullman 1984) characterized a basic set of visual
primitives and described their aggregation into visual
routines. (Chapman 1991) took these ideas and applied
them in the visual system for a video-game player. We'll
use a similar set of visual primitives in thinking about
the blocks world.
One important idea is that of a visual marker. The

agent is assumed to be able to keep track of a small
number (say �ve) of objects in its visual �eld. It does
so by \putting a marker" on an object. Having a marker
on an object allows it to be the subject of visual queries,
such as \What is the color of the marked object?" or
\Is marked object 1 above marked object 2?" Mark-
ers can be placed on objects by relative motion: \move
marker 2 to the top of the stack" or \move marker 3
one square to the left." Markers can also be placed
on objects via visual search. For simple image prop-
erties, called \pop-out" properties, this search can be
done very quickly in the human visual system (Tries-
man 1985). Thus, we can have as a visual primitive
\move marker 3 to a red object" or \move marker 4
to a vertically-oriented object". More complex image
properties require a slower search process. We may in-
clude them in our visual repertoire, but perhaps model
their use with an additional time cost.
With just a small set of visual markers, the amount

of information available in a single observation is fairly
small; but by moving the markers around, it is possible,
over time, to gain a fairly complete picture of the envi-
ronment. This kind of partial observability requires the
agent's strategy to have memory, allowing it to com-
bine observations over time into an internal \view" of
the current situation. It also requires a much more so-
phisticated set of learning techniques, which we discuss
in more detail later.

What to Learn?

An agent embedded in a complex environment, trying
to act so as to gain reward, can learn knowledge about
its environment in di�erent forms. There are trade-o�s
involved in learning the di�erent forms of knowledge.
The most general thing an agent can learn is a model

of the world dynamics. That is, a predictive model that
maps a state of the world and an action of the agent into
a new state of the world (or a probability distribution
over new states of the world). Such a model can be used
as the basis for planning (calculating which action to
take given the current situation and a goal), and may be
completely independent of the agent's particular reward
function. Thus, knowledge gained about the general
workings of the environment when learning to do one
task may be directly applied to another task.
When the environment is completely observable, this

learning problem is not (conceptually) too diÆcult.
When it is partially observable, learning the world dy-
namics is equivalent to learning a complex �nite-state
automaton or hidden Markov model (HMM). In highly
complex domains, however, the entire world model will
simply be too complex for the agent to represent. It



will have to learn aspects of the world dynamics that
are relevant to achieving its goals. Thus simply learn-
ing world dynamics may be too un-focused a problem.
When the agent's reward function is �xed, it is not

necessary to learn a model of the world dynamics. Al-
though the world dynamics, coupled with the reward
function, entail an optimal behavior for the agent, it
may be possible to simply learn the policy directly. In a
completely observable environment, a policy is a map-
ping from states of the world to actions (or a distri-
bution over actions); in a partially observable environ-
ment, it is typically some kind of �nite state machine
that takes in observations and generates actions.
In general, it is hard to learn policies directly. In

completely observable environments, it is much easier
to learn a value function and derive a policy from it, as
described below. In partially observable environments,
it remains diÆcult to learn policies directly, but there
are fewer good alternative strategies.
The one general-purpose policy-learning method is

gradient descent. If the general structure of the policy
is given as a parametrized model, in which the proba-
bilities of taking actions are di�erentiable functions of
the parameters, then the agent can adjust those pa-
rameters based on its experience in the world. These
methods seem to work well for simple policy classes, but
may have serious problems with local optima in larger
policy classes.
An advantage of learning a policy is that, once

learned, a policy may be executed very quickly, with
no deliberation required to choose an action. A disad-
vantage is that there is usually no knowledge transfer.
Having learned a policy for one task, it is not easy to
use it to advantage in learning a policy for another task.
In completely observable environments, it is often ad-

vantageous to learn a value function rather than a pol-
icy. A value function maps states of the environment to
a measure of the long-term reward available from that
state (assuming the agent acts optimally thereafter).
Given a value function, it is easy to compute the opti-
mal policy, which is to take the action that leads to the
highest expected value. Basic reinforcement-learning
methods, such as Q-learning (Watkins & Dayan 1992),
can e�ectively learn the value function from experience.
In partially observable environments, value functions

are not de�ned over observations. One set of learning
methods attempts to partially reconstruct the state of
the environment based on the history of observations
and then to apply standard reinforcement learning to
this space. We �nd this technique to be particularly
attractive and will discuss it further below.

Representational Strategies

We need to choose a method for representing the agent's
observations, actions, and internal representations of
states of the world; and to build on those represen-
tations to encode the knowledge that the agent learns
about the world over time. The choice of representation

may give opportunities for generalization (make learn-
ing easier in terms of number of examples required);
make learning computationally easier or harder; or
make planning (using the learned knowledge to choose
actions) computationally easier or harder.

Propositional vs First-Order A state of the simple
blocks world is a con�guration of the blocks, including
their colors, materials, and support relationships. Let
us assume that individual blocks of the same material
and color are completely interchangeable; there is no
reason to distinguish particular individuals.2

The most naive representational strategy would as-
sign an atom to each possible con�guration. We could
speak of con�guration 5434, for example, leading to
con�guration 10334 after taking a particular action.
This representation is simple in the sense that a sin-
gle number can represent an entire state. Because it is
completely unstructured, however, it doesn't give any
leverage for generalization; there is no reasonable notion
of two states being similar, based on this representation.
The next level of representational structure would be

to encode a state of the world using a set of Boolean-
valued variables corresponding to propositions that are
true or false of the current con�guration of the world.
Example propositions would include: block10-is-green,
block2-is-plastic, and block3-is-on-block5. A particular
state of the world would be a vector of bits, one cor-
responding to each possible primitive proposition that
could be true in the world.
Propositional representations a�ord much opportu-

nity for generalization; the distance between states can
be measured in terms of the number of bits that are
di�erent in their encodings. Learning algorithms such
as neural networks and decision trees take advantage of
propositional structure in the encoding of objects. It
might be possible to learn, for instance, that any state
in which all of the blocks are green has high reward,
independent of the values of the stacking propositions.
This knowledge could be stored much more compactly
and learned from many fewer examples in the proposi-
tional rather than the atomic representation.
In the propositional representation, only part of the

structure is revealed. That the propositions are derived
from properties and relations among underlying objects
is lost. In a relational representation, we retain the
idea of objects. Thus, rather than having a �xed bit to
stand for block4-is-on-block2, we would encode that fact
relationally as on(block4,block2). A state is typically
encoded by listing the true (or known) propositions,
but this time describing the propositions using their
relational structure.
Such a representation a�ords even more opportunity

for generalization. We might be able to learn and rep-
resent much more eÆciently that, for example, states
in which any block is on top of block 2 are rewarding.

2Note that this would not be true if, for instance, we
could put things inside the boxes; then it might be of crucial
importance which green plastic box contains my house key.



We can get further generalization if we allow quan-
ti�cation in our representation. So far, we have had
to name the individual blocks and haven't been able
to directly take advantage of the idea, described at the
beginning of this section, of interchangeability. If we
allow individual states to be described using existential
quanti�cation over the objects, then we don't have to
name them. We can say

9x; y:red(x) ^ blue(y) ^ on(x; y)

to describe a situation in which a red block is on a blue
block, generalizing over which particular red and blue
blocks are on one another. Of course, general quan-
ti�cation leads to a very rich, but possibly inferentially
diÆcult language.
We propose to investigate relational representations,

with a particular emphasis on those that can be learned
and used eÆciently. Here is one example of a re-
stricted but useful quanti�ed relational description. If
the agent's information state (either delivered directly
from its perceptual system or resulting from an aggre-
gation of percepts over time) can be represented as an
existentially quanti�ed statement of the form

9x; y:p(x) ^ q(y) ^ r(x; y)

and the world dynamics are described by universally
quanti�ed rules of the form

8x; y:p(x) ^ r(x; y) ! next b(y)

then given an information state, predictions about the
next information state will have the same existentially
quanti�ed form. Thus, the resulting state description
can be the basis of the same type of predictive inference
step with no additional complexity.

Deictic Representations From the perspective of
opportunity to generalize, relational representations
seem like the best choice. However, we have much more
experience and facility with learning and with proba-
bilistic representation in propositional representations.
We may be able to have the best of both worlds by tak-
ing advantage of deictic or indexical-functional repre-
sentations. Deictic representations may also help solve
the problem of naming objects without necessarily iden-
tifying them as individuals (such as block7).
A deictic expression is one that \points" to some-

thing; its meaning is relative to the agent that uses or
utters it and the context in which it is used or uttered.
\Here," \now," and \the book that is in front of me"
are examples of deictic expressions in natural language.
Two important classes of deictic representations are

derived directly from perception and action relations
between the agent and objects in the world. An
agent with directed perception can sensibly speak of (or
think about) the-object-I-am-�xated-on. An agent that
can pick things up can name the-object-I-am-holding.
The objects that are designated by these expres-
sions can be directly \gotten at" by perception. It
should be easy to answer the question of whether
the-object-I-am-�xated-on is red.

Given a few primitive deictic names, such as those
suggested above, we can make compound deictic ex-
pressions using directly perceptible relations. So, for
example, we might speak of

the-object-on-top-of(the-object-I-am-�xated-on)

or

the-color-of(the-object-to-the-left-of(

the-object-I-am-�xated-on))

We can evaluate predicates, such as

bigger-than(the-object-I-am-�xated-on,

the-object-to-the-left-of(the-object-I-am-�xated-on))

(Benson 1996) describes an interesting system for syn-
thesizing complex deictic expressions on demand.
One interesting property of these expressions is that

they are perceptually e�ective; that is, that the agent
can always foveate (or mark) them by taking a sequence
of perceptual actions that is derived directly from the
expression. It is easy for the agent to test for equal-
ity of two of these expressions by: following the �rst
expression, putting a marker on the resulting object,
following the second expression, putting a marker on
the resulting object, and then testing to see whether
the two markers are on the same object. Not all deictic
expressions are perceptually e�ective. We are all famil-
iar with situations in which the-box-I-put-my-keys-in or
my-glasses are not perceptually e�ective.
Another important property of these deictic rep-

resentations is that they implicitly perform a great
deal of generalization. It is true, for instance, that
holding(the-object-I-am-holding) no matter what partic-
ular object I am holding. Using deictic representations,
we have a method for naming, and for generalizing over,
objects without resorting to ad hoc names like block5.
Deixis can also be used in the action space. Rather

than have an action like pickup(block) that takes the
particular block to be picked up as a parameter, we
might instead have a single action, pickup that always
picks up the block that is currently �xated (or that has
the \action" marker on it). In such a situation, we
might be able to learn the rule:

red(the-block-I-am-�xated-on) ^ pickup !

next red(the-block-I-am-holding)

Although it has no quanti�ers, it expresses a universal
property of all blocks.3

3This example illustrates a number of other questions
we'll have to deal with eventually. We happen to know that,
in fact, the block I am holding now is the same block as the
one that I was �xated on a minute ago. How we can learn
that is not clear. It requires a strong inductive leap. Even if
we can't learn that, we'd like to learn the second-order fact
that all of the properties of the block I'm holding now held
of the block I was �xated on a minute ago.



Partial Observability When the agent is unable to
observe the entire true state of the world at each time
step, it must remember something about its history of
actions and observations in order to behave e�ectively
in the world. There are two ways to think about this
aggregation: histories and belief states.

In the history-based model, the agent really does re-
member all, or as much of its history as it can. It may
be selective about what it remembers, but the knowl-
edge is represented in its historical context: \two time
steps ago I was looking at a red block," or \the last
block I was holding was green."

An alternative method is to aggregate the percep-
tual information into a belief state, which encodes what
the agent currently knows about the state of the world.
The fact that two time steps ago I was looking at a
red block may actually mean that there is a red block
to the left of my hand. Aggregating information into
belief states may perform a useful kind of generaliza-
tion, in that two di�erent observation sequences with
the same information content would result in the same
belief state.

These two styles of representation may be equivalent
at an information-theoretic level; however, the choice
between them seems to have important consequences
for learning and planning. An important part of this
research program will be to study further the relative
advantages and disadvantages of these two approaches.

The Role of Probability An independent represen-
tational question is whether, and, if so, how, to rep-
resent the uncertainty in the domain. There may be
uncertainty in the agent's perception, in the e�ects of
its actions, or in the dynamics of the environment, in-
dependent of the agent's actions.

Markov models capture uncertain world dynamics
with atomic state representations. Dynamic Bayesian
networks do the same for propositional representations.
There is some work on extending Bayesian networks to
probabilistic relational models (Koller & Pfe�er 1997;
Getoor et al. 1999), but these models are not yet rich
enough to capture probabilistic world dynamics we're
interested in.

These models allow representation of any probabilis-
tic world dynamics; to the extent that there are inde-
pendence relations in the propositional and relational
cases, the models can be represented compactly. How-
ever, there is considerable overhead in learning and
working with such models. On the other hand, strictly
logical models have serious problems with inconsistency
when applied to real environments.

Real world environments tend to be neither com-
pletely deterministic nor so unpredictable that actions
have a huge number of possible outcomes. Of course,
clever choice of the terms used in articulating the world
dynamics can mean the di�erence between a nearly de-
terministic and a highly stochastic world model: con-
sider the di�erence between describing the location of a
book as in my backback versus as occupying some par-

ticular volume in three-dimensional space. Similarly,
the result of putting a block on top of a tower may be
that the block stays there, or that the tower falls over.
At one level of description, the tower falling over is an
enormous number of possible arrangements of blocks,
each with its own probability. It is neither possible, nor
even desirable, to learn the world model at this level of
abstraction.
We would like to �nd a representation that is appro-

priate for this middle ground. One idea would be to
learn and use a model that is a deterministic idealiza-
tion of the true stochastic world model, and to degrade
gracefully when the idealization is violated. Rather
than modeling all possible outcomes of an action, we
might simply model a few of the most likely ones (which
will probably cover most of the probability mass). And
when a non-modeled outcome occurs, the agent will
simply have to react to the new circumstances.

Learning Algorithms

In this section we consider which learning algorithms
would be appropriate for learning policies (possibly via
a value function) and world models, based on the choice
of representation of observations.

Policy learning Most current research in reinforce-
ment learning addresses the problem of learning in a
propositional representation. The goal is to learn a
value function, mapping state of the world into long-
term values, but to do so in a compact way that a�ords
generalization. Two main approaches are neurodynamic
programming (ndp) (Bertsekas & Tsitsiklis 1996) and
decision-tree methods (Chapman & Kaelbling 1991). In
ndp, the value function is stored in a feed-forward neu-
ral network. An alternative is to incrementally build a
decision tree, with values stored at the leaves. An ad-
vantage of this method is that it has a direct extension
to the partially observable case; in addition, it makes
clear which of the propositional attributes are impor-
tant.
There has been very little work on relational rein-

forcement learning. One promising idea is to adapt
methods from inductive logic programming to the
task (Dzeroski, de Raedt, & Blockeel 1998), but the
initial work still exhibits fairly weak generalization abil-
ities.
The question of most interest to us, for now, is how to

do reinforcement learning with a deictic representation,
which is by its very nature partially observable. There
are two general strategies for learning in partially ob-
servable environments. The �rst is to learn policies di-
rectly, typically by performing local search in the space
of policies (pursued by (Baum & Durdanovic 2000) in
a similar domain). The second is to try to reconstruct
the underlying world state from histories of actions and
observations, then to do standard propositional RL on
a representation of the reconstructed state. We feel
that this second approach will be more generally ap-
plicable, and o�ers more opportunity for between-task



transfer. We are initially using McCallum's (McCal-
lum 1995) utree algorithm, which is an extension of
decision-tree reinforcement-learning that also considers
properties of historic actions and observations.

World model Learning a world model is fundamen-
tally a supervised learning problem, making it easier,
at some level, than the policy-learning problem. How-
ever, as we mentioned earlier, the entire world dynamics
model will be huge in any interesting domain. It will be
important to use the agent's goals to focus the model
learning so that only the useful and important aspects
of the world dynamics are represented.
There has been a lot of work on supervised learn-

ing in the propositional case. Methods that focus on
learning prediction rules for dynamic events include the
method of (Oates, Jensen, & Cohen 1998) for generat-
ing association rules to predict asynchronous events, the
schema mechanism of (Drescher 1991), and Bayesian
network learning methods (Heckerman 1995) applied to
dynamic Bayesian networks (Dean & Kanazawa 1989).
Each of these methods has strengths and weaknesses.
The schema method and association-rule learning are
appealing because they learn rules independently, al-
lowing the agent to accrete knowledge of the model
over time, initially ignoring many aspects. However,
the probabilistic foundations of learning and reasoning
in this way are much weaker (it is not clear exactly
how the rules specify a joint probability distribution
over outcomes, for example). The Bayesian network
method is much stronger foundationally, but does not
have built-in frame assumptions and is harder to use
incrementally.
These methods can all deal with partial observability

to some degree, but not suÆciently well for our pur-
poses. Thus, an important part of our research is to
�nd a method of incremental model learning in par-
tially observable propositional domains, and to charac-
terize formally its probabilistic semantics.
Ultimately, of course, we would like to extend this

to the relational and to the restricted quanti�ed case.
To do so, we will build on work from probabilistic
ILP (Muggleton forthcoming) and relational Bayesian
networks (Getoor et al. 1999).

References

Baum, E. B., and Durdanovic, I. 2000. Evolution of
cooperative problem-solving in an arti�cial economy.
http://www.nec.com/homepages/eric/hayek32000.ps.

Benson, S. 1996. Learning Action Models for Reac-
tive Autonomous Agents. Ph.D. Dissertation, Stanford
University.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-
Dynamic Programming. Belmont, Massachusetts:
Athena Scienti�c.

Chapman, D., and Kaelbling, L. P. 1991. Input gen-
eralization in delayed reinforcement learning: An al-
gorithm and performance comparisons. In Proceedings

of the International Joint Conference on Arti�cial In-
telligence.

Chapman, D. 1991. Vision, Instruction, and Action.
Cambridge, Massachusetts: The MIT Press.

Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation. Computational
Intelligence 5:142{150.

Drescher, G. L. 1991. Made-up Minds: A Construc-
tivist Approach to Arti�cial Intelligence. Cambridge,
Massachusetts: The MIT Press.

Dzeroski, S.; de Raedt, L.; and Blockeel, H. 1998. Re-
lational reinforcement learning. In Proceedings of the
Fifteenth International Conference on Machine Learn-
ing, 136{143. Morgan Kaufmann.

Getoor, L.; Friedman, N.; Koller, D.; and Pfe�er, A.
1999. Learning probabilistic relational models. In Pro-
ceedings of the Sixteenth International Joint Confer-
ence on Arti�cial Intelligence.

Halpern, J. Y. 1990. An analysis of �rst-order logics
of probability. Arti�cial Intelligence 46:311{350.

Heckerman, D. 1995. A tutorial on learn-
ing with bayesian networks. Technical Re-
port MSR-TR-95-06, Microsoft Research, Red-
mond, Washington. Revised June 96. Avail-
able at ftp://ftp.research.microsoft.com/pub/
techreports/winter94-95/tr-95-06.ps.

Koller, D., and Pfe�er, A. 1997. Object oriented
bayesian networks. In Proceedings of the Thirteenth
Annual Conference on Uncertain ty in Arti�cial Intel-
ligence.

McCallum, A. K. 1995. Reinforcement Learning with
Selective Perception and Hidden State. Ph.D. Disser-
tation, University of Rochester, Rochester, New York.

Muggleton, S. H. forthcoming. Statistical aspects of
logic-based machine learning. ACM Transactions on
Computational Logic.

Nilsson, N. J. 1986. Probabilistic logic. Arti�cial
Intelligence 28:71=87.

Oates, T.; Jensen, D.; and Cohen, P. R. 1998. Discov-
ering rules for clustering and predicting asynchronous
events. In Danyluk, A., ed., Predicting the Future:
AI Approaches to Time-Series Problems. AAAI Press.
73{79. Technical Report WS-98-07.

Smith, B. C. 1996. On the Origin of Objects. Cam-
bridge, Massachusetts: The MIT Press.

Triesman, A. 1985. Preattentive processing in vi-
sion. Computer Vision, Graphics, and Image Process-
ing 31:156{177.

Ullman, S. 1984. Visual routines. Cognition 18:97{159.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning 8(3):279{292.

Whitehead, S. D., and Ballard, D. H. 1991. Learn-
ing to perceive and act by trial and error. Machine
Learning 7(1):45{83.


