
Uncertainty Estimation in
Bayesian Neural Networks

And Links to Interpretability

Lucy R. Chai

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Churchill College August 2018

I would like to dedicate this thesis to my family. Thanks for the endless opportunities . . .

Declaration

I, Lucy R. Chai of Churchill College, being a candidate for the MPhil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose. This dissertation contains fewer than 14,950 words and has fewer than 20 figures.

Lucy R. Chai
August 2018

Acknowledgements

I would like to acknowledge my supervisor, Dr. Tameem Adel, for his guidance throughout
this project. I have learned a lot from him during the past few months. I would also
like to thank Stefan Depeweg and Dr. José Miguel Hernández-Lobato for their invaluable
discussions and insights on my project. Thanks to Daniel Rothchild, Michael Zhao, and
Charlie He for feedback on earlier versions of this work and the MLSALT staff for their
energy and patience in teaching us the newest topics in this field.

Secondly, I would like to acknowledge my peers in the MLSALT and Churchill Scholars
cohorts. I have learned so much from all of you, and I look forward to seeing the amazing
things you accomplish.

Finally, I would like to thank the Winston Churchill Foundation of the United States for
providing me with the opportunity to study at Cambridge. I am so incredibly grateful for this
opportunity.

Abstract

Bayesian neural networks, a hybrid of deep neural networks and probabilistic models,
combine the flexibility of deep learning with estimates of uncertainty in predictions. However,
like deep neural networks, they are often difficult to interpret – we do not know how correct
predictions are made and what makes the prediction uncertain.

Numerous approaches to interpreting neural network predictions have been studied, but
there is limited work on interpreting uncertainty in model predictions. Here, we propose a
method to visualise the contribution of individual features to predictive uncertainty, epistemic
uncertainty (from the model weights), and aleatoric uncertainty (inherent in the input). Our
approach measures the change in uncertainty when a given feature of the input is known,
compared to when it is unknown.

Applying our approach to the CIFAR10 and ISIC2018 skin lesion diagnosis datasets,
we generate smooth visualisations highlighting pixels in the input image that most impact
each type of uncertainty. On inputs that are difficult to classify, different areas of the image
contribute to epistemic and aleatoric uncertainties. This suggests that some areas of the
test image determine its classification (aleatoric uncertainty), other areas distinguish it from
the training distribution (epistemic uncertainty), and both contribute to overall predictive
uncertainty.

Table of contents

List of figures xiii

Nomenclature xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Aims . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Deep Neural Networks . 3

2.1.1 Convolutional Neural Networks 4
2.1.2 Error Backpropagation . 5

2.2 Bayesian Neural Networks . 6
2.2.1 Posterior Weight Distribution . 7
2.2.2 Variational Inference . 8
2.2.3 Bayesian Predictive Distribution 11

2.3 Uncertainty Estimation . 12
2.3.1 Why Should We Decompose Predictive Uncertainty? 12
2.3.2 Decomposing Predictive Uncertainty in Classification 13
2.3.3 Uncertainty Intuition . 15

3 Related Work 17
3.1 What is Interpretability and Why is it Hard? 17
3.2 How Do We Make Models Interpretable? 18
3.3 Additional Challenges with Interpretability in Images 19
3.4 Interpretations of Uncertainty . 20

xii Table of contents

4 Methodology 23
4.1 Approach . 23

4.1.1 Review of Predictive Difference 23
4.1.2 Extension to Uncertainty . 24
4.1.3 Implementation Details . 28

4.2 Bayesian Neural Network Implementation 29
4.3 Datasets . 31

5 Results 33
5.1 Uncertainty in Bayesian Neural Networks 33
5.2 Uncertainty Decomposition . 35

5.2.1 Uncertainty Decomposition with Synthetic Data 36
5.2.2 Uncertainty Decomposition in CIFAR10 38

5.3 Mapping Uncertainty onto Input Pixels . 38
5.3.1 Epistemic and Aleatoric Uncertainty 39
5.3.2 Comparison to Predictive Difference 41
5.3.3 Adding More Training Data . 43
5.3.4 Skin Lesion Diagnosis . 44

6 Conclusions 47
6.1 Limitations of our approach . 48
6.2 Future work . 48

References 51

Appendix A Sensitivity Analysis in Images 57

Appendix B Additional Salience Visualisations 59
B.1 Robustness Across BNN replicates . 59
B.2 Absolute Magnitudes of Uncertainty Change 60
B.3 Additional Visualisations . 62

List of figures

2.1 Deep Neural Networks . 4
2.2 Convolutional Neural Networks . 5
2.3 Bayesian Neural Networks . 7

4.1 Conditional Sampling and Multivariate Analysis 29
4.2 Early Stopping . 30

5.1 Bayesian Predictive Distribution . 34
5.2 Comparing Bayesian and Deep Network Decisions 35
5.3 Synthetic Data Distributions . 36
5.4 Trends in Epistemic and Aleatoric Uncertainty 37
5.5 Uncertainty Decomposition in CIFAR10 38
5.6 Visualising Uncertainty on Images with High Predictive Uncertainty 40
5.7 Visualising Uncertainty on Images with Low Predictive Uncertainty 41
5.8 Uncertainty and Predictive Difference . 42
5.9 Increasing Training Examples . 43
5.10 Visualising Uncertainty on Skin Cancer Images 45

A.1 Sensitivity Analysis in Images . 58

B.1 Robustness Across Runs . 59
B.2 Magnitude of Uncertainty Change . 61
B.3 Additional Visualisations . 62

Nomenclature

x(n) The n-th training input

y(n) The n-th training label

ŷ(n) The model prediction on n-th training input

x∗ Test input

y∗ Test label

ŷ∗ The model prediction on the test input

xi The i-th feature of input x

w Weights of a neural network

D Training data, tuples of (xn,yn)

Ez [f (z)] Expected value of f (z) with respect to z

H [z] Entropy of z

I [z1,z2] Information Gain of z1 and z2

N (z; µ,σ) Normal distribution for variable z

zk ∼ p(z) Sample z from distribution p(z)

Acronyms / Abbreviations

BNN Bayesian Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

MC Monte Carlo (Samples)

Chapter 1

Introduction

1.1 Motivation

Deep neural networks (DNNs) have achieved widespread popularity in various machine
learning applications [40, 32, 57]. However, these models can exhibit unintuitive behaviour
[52, 59], and how the model arrives at the correct answer often remains unknown.

With the success of DNNs and their potential to aid in making critical decisions, there is
increasing need for models that are both accurate and interpretable. For example, a DNN
can predict if patient has a medical condition [69], but because current models are imperfect,
interpretability helps doctors verify model correctness. Similar ideas apply when using
machine learning in public policy [19] or autonomous driving [35], in which interpretability
allows us check model decisions and build trust in the system [64].

Interpretable models can also alert us to potential failure cases, such as failure to gen-
eralise on unseen data. For instance, a model may attain high accuracy in distinguishing
images of wolves from huskies but rely on the presence of snow or grass in the background
for the classification [52]. An interpretation showing influential pixels in the decision allows
us to conclude that the model will fail on pictures of huskies in snow. Knowing this, we can
debug and improve the model by providing such images in training.

Interpretations of the pixels responsible for a decision are known as salience maps, and
have been widely investigated in computer vision. These visualisations have been generated
by tweaking existing neural network architectures [14, 67, 66] or by measuring model
response to slight perturbations [55, 21] or masking of the input [69, 66].

Previous methods of computing salience only use point estimates of the model weights
and predictions. However, we often want to know not only what the model prediction is, but
also how uncertain the prediction is. Uncertainty tells us if the prediction is potentially noisy.
Bayesian neural nets (BNNs) – a hybrid of DNNs and probabilistic models – address this

2 Introduction

predictive uncertainty and provide a theoretical framework for decomposing uncertainty into
uncertainty about the model weights (epistemic) and uncertainty in the input that the model
does not capture (aleatoric) [16]. Using these uncertainty estimates allows us to formulate a
new approach to interpreting deep Bayesian models.

1.2 Research Aims

In this work we aim to interpret BNN uncertainties by generating salience maps for uncer-
tainty. Depeweg et al. [17] have previously investigated the sensitivity of uncertainty to input
features using a gradient-based approach. However, here we focus on interpreting images
whose input pixels are highly correlated; using a gradient-based approach directly cannot
capture this structure. Our approach extends on the work of Zintgraf et al. [69] to generate
smooth salience maps for uncertainty. This project involves training BNN models, deriving
equations for uncertainty dependence on input pixels, and demonstrating the method on
image datasets.

1.3 Thesis Outline

We start with an overview of deep learning, BNNs, and uncertainty estimation (Chapter 2).
Then, we survey interpretability and related work (Chapter 3). We introduce our approach in
Chapter 4. Chapter 5 contains the experiments, starting with validation studies on BNNs and
uncertainty (§5.1-5.2), and then showing visualisations of uncertainty on the CIFAR10 and
ISIC2018 datasets (§5.3). We provide concluding remarks and avenues for future work in
Chapter 6.

Chapter 2

Background

This chapter covers background for the remainder of this work. We first discuss traditional
deep learning techniques (§2.1), then introduce Bayesian Neural Networks (BNNs) which
combine deep learning with probabilistic methods (§2.2). BNNs provide uncertainty esti-
mates on model predictions, which consist of epistemic uncertainty from model weights and
aleatoric uncertainty inherent in the input; these types of uncertainties should be considered
separately because they are reduced in different ways (§2.3).

2.1 Deep Neural Networks

In recent years, deep neural networks (DNNs) have emerged as top-performing models [41]
that serve as flexible function approximators [45] or automatic feature generators [50, 37].
The core unit of these models is the neuron – loosely based on the biological neuron – that
calculates a non-linear transformation of a weighted sum of its inputs. On a d-dimensional
input vector x = [x1,x2, . . . ,xd], the operation performed by each neuron is represented by:

act(
d

∑
i=1

Wixi +b) (2.1)

where each Wi is a scalar weight that multiplies an element of the input vector, b is a scalar
bias, and act(·) is any activation function such as sigmoid, tanh, or ReLU (Fig. 2.1a). Neurons
can be concatenated to form layers, and layers can be further hierarchically organised into
networks (Fig. 2.1b).

A forward pass through the network applies subsequent weighted summations and
activations through each layer, yielding ŷ = f w(x) where ŷ is the network output, x is the
input, w aggregates all weights over L layers in the network (w= {wl}L

l=1), and f encapsulates
all operations of the DNN. The weights w are adjusted via an optimisation algorithm to find a

4 Background

function f w that correctly identifies important features of the input while ignoring extraneous
information.

(a) Neuron (b) Deep Neural Network

Fig. 2.1 (A) Individual neurons perform a weighted summation and a nonlinear activation,
shown on a 3-dimensional input. (B) Neurons stacked into a DNN with two hidden layers.
Bias terms are omitted in this illustration.

2.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are variants of neural networks that are widely
applied to inputs in image format. Unlike neurons in fully-connected layers that sum over
all dimensions of the input as mentioned above, neurons in convolutional layers perform a
weighted summation over a local patch of the input (Fig. 2.2). This same local summation is
applied to all patches of the input. In essence, this performs a discrete convolution of the
weights with the input.

An advantage of the convolutional layer is a reduction in the number of parameters.
Unlike fully-connected layers which require a weight parameter for each dimension of the
input, convolutional layers only require a weight for each element of a local patch, and
weights are shared across all patches in the input. This reduction in the number of parameters
is key for high-dimensional image inputs. Furthermore, local connections and shared weights
allow for location invariance, so relevant objects can be detected regardless of where they
appear in the input image.

CNNs are hierarchically organised, reminiscent of the primate visual ventral cortex [20].
They combine convolutional layers with pooling layers that subsample the input and allow
the network to be robust to small shifts in the input. Subsequent dense layers on the reduced
feature spaces capture holistic information about the processed input. This architecture is
common across CNNs such as AlexNet [40], VGG Net [55], GoogLeNet [58], and ResNet
[30], which have achieved wide success in computer vision applications.

2.1 Deep Neural Networks 5

Fig. 2.2 Illustration of a CNN showing convolutional operations over patches of the input (in
red) and max-pooling (in green). Image from [32].

2.1.2 Error Backpropagation

The performance of DNNs relies on adjusting weight parameters to learn a desired input-
output mapping with respect to an appropriate loss function. We start with N input-
output pairs of labeled data: {(x(1),y(1)),(x(2),y(2)), . . . ,(x(N),y(N))}, where each x(n) is
a d-dimensional vector. A typical loss for regression tasks is the squared error:

Emse =
1
N

N

∑
n=1

(
y(n)− ŷ(n)

)2
(2.2)

in which ŷ(n) = f w(x(n)) is the model output of the n-th training input. A common loss for
classification is cross entropy:

Ece =− 1
N

N

∑
n=1

C

∑
c=1

y(n),c log ŷ(n),c (2.3)

in which ŷ(n),c is the predicted softmax of the c-th class, and the label y(n),c indicates whether
the n-th example truly belongs to the c-th class. In softmax, the predictions ŷ(n),c are
normalised to be greater than zero and sum to one across all c.

The value of the loss function is high upon random initialisation of the weights. The
objective of training is to adjust weights to reduce loss, using the gradient of the loss function
with respect to the weights. Gradients can be computed via the error backpropagation
algorithm, a recursive application of the chain rule of derivatives.

6 Background

Let yL represent the final output of a neural network with weights w. The gradient of the
loss with respect to the final layer of weights wL is:

∂E
∂wL

=
∂E
∂yL

× ∂yL

∂ zL
× ∂ zL

∂wL
(2.4)

in which E represents the loss function, yL = act(zL) represents the activation function,
and zL = wL × yL−1 represents the weighted summation over inputs to layer L via matrix
multiplication.

For every subsequent layer l in the network, the gradient of loss with respect to weights
wl follows a recursive formula:

∂E
∂wl

=
∂E
∂yL

×

(
L

∏
i=l+1

∂yi

∂ zi
× ∂ zi

∂yi−1

)
× ∂yl

∂ zl
× ∂ zl

∂wl
(2.5)

Frameworks such as Tensorflow [2] and PyTorch [48] compute gradients via automatic
differentiation. After obtaining gradients, the weights are shifted in the direction of the
gradient to reduce the loss toward a local optimum. Modifications such as momentum, which
accelerates gradient descent in relevant directions, and step size decay throughout learning
further quicken the progression toward a local optimum [4, 49].

2.2 Bayesian Neural Networks

In traditional deep neural networks, the trained weights of a DNN are a point estimate for
each parameter, leading to deterministic network outputs for a given input. On the other hand,
Bayesian neural networks – or BNNs – specify a distribution over the weight parameters
(Fig. 2.3) [46, 43]. Estimating this posterior weight distribution, p(w|D), allows BNNs to
capture uncertainty in the predictions.

2.2 Bayesian Neural Networks 7

Fig. 2.3 BNNs specify a distribution over the weights rather the point estimate used in DNNs.
Bias terms are omitted in the illustration.

2.2.1 Posterior Weight Distribution

Given N training inputs and outputs D = {(x(1),y(1)),(x(2),y(2)), . . . ,(x(N),y(N))}, a BNN
learns a posterior distribution over the network weights, p(w|D). As before, w aggregates all
weights over L layers in the network: w = {wl}L

l=1. This distribution represents how likely a
particular setting of weights are after seeing the training data, instead of the point estimate of
weights in DNNs. A direct application of Bayes’ rule yields:

p(w|D) =
p(D|w)p(w)

p(D)
(2.6)

In the numerator, the first term p(D|w) reflects the likelihood of the training data given
a particular weight setting w. Assuming that each training data point is independent, this
quantity becomes the product of likelihoods for each individual training point:

p(D|w) =
N

∏
n=1

p(y(n)|w,x(n)) (2.7)

For regression tasks, the likelihood term may refer to Gaussian likelihood, in which p(y|w,x)=
N (y; µ,Σ). Depending on the specific implementation, the quantities µ , Σ, or both can
predicted from the input x via a neural network. Classification tasks may use the softmax
predictions of the neural network directly as the likelihood: p(y = c|w,x) = f w(x)c, where c
is the true class of the input, and the softmax predictions for each class f w(x)c are normalized
to be greater than zero and sum to one.

8 Background

The second term of the numerator, p(w), is the prior distribution over the weights. It
reflects our belief in the distribution of the weights without seeing any data. One example
prior distribution is the Gaussian distribution.

Both terms in the numerator are tractable to compute for a particular setting of w.
However, the problem with attaining the posterior distribution is the denominator, p(D).
Computing p(D) involves marginalising over all weight settings:

p(D) =
∫

p(D|w)p(w)dw (2.8)

In many models this integral is intractable, motivating the need for approximations of
the posterior. Sampling methods, such as Metropolis Hastings or Hamiltonian Monte Carlo,
yield unbiased estimates of the true posterior but may be slow to converge. An alternative
approach is variational inference, in which the true posterior distribution is approximated
with a simpler variational distribution [34, 7]. This approximation is biased, but is often
faster than sampling methods. In the remainder of this work, we use a variational distribution
to approximate the posterior weight distribution of BNNs.

2.2.2 Variational Inference

Variational inference approximates the intractable posterior distribution p(w|D) with a
simpler tractable distribution over the model weights, q(w), with variational parameters
ν . The variational parameters ν are fitted so that q(w) approximates the desired posterior
p(w|D). This fitted variational distribution, rather than the true posterior, is then used for
model predictions.

One way to measure the distance between two probability distributions q(x) and p(x) is
using Kullback-Leibler divergence, or KL-divergence, defined as:

KL(q(x)||p(x))≡ Eq(x)

[
log

q(x)
p(x)

]
=
∫

q(x) log
q(x)
p(x)

dx (2.9)

2.2 Bayesian Neural Networks 9

To make the variational distribution q(w) close to the posterior p(w|D), we want to minimise
the KL-divergence between these two distributions:

KL(q(w)||p(w|D)) = Eq(w)

[
log

q(w)
p(w|D)

]
=
∫

q(w) log
q(w)

p(w|D)
dw

=
∫

q(w) log
q(w)p(D)

p(D|w)p(w)
dw

=
∫

q(w) log
q(w)
p(w)

dw+
∫

q(w) log p(D)dw−
∫

q(w) log p(D|w)dw

= KL(q(w)||p(w))+ log p(D)−Eq(w) [log p(D|w)] (2.10)

Due to the log p(D) term, the KL-divergence cannot be computed directly. However, by
rearranging terms, we obtain:

log p(D) = KL(q(w)||p(w|D))+Eq(w) [log p(D|w)]−KL(q(w)||p(w)) (2.11)

Because log p(D) is a (albeit intractable) constant, minimising KL(q(w)||p(w|D)) is equiva-
lent to maximising Eq(w) [log p(D|w)]−KL(q(w)||p(w)). This latter expression is referred
to as the evidence lower bound, or ELBO, and can be also derived from the log probability
of the data:

log p(D) = log
∫

p(D|w)p(w)dw

= log
∫ q(w)

q(w)
p(D|w)p(w)dw

Applying Jenson’s inequality:

≥
∫

q(w) log
p(D|w)p(w)

q(w)
dw

=−
∫

q(w) log
q(w)
p(w)

dw+
∫

q(w) log p(D|w)dw

=−KL(q(w)||p(w))+Eq(w) [log p(D|w)]

Thus we have that:

log p(D)≥−KL(q(w)||p(w))+Eq(w) [log p(D|w)] (2.12)

10 Background

Unlike (2.11), inequality (2.12) lacks the term KL(q(w)||p(w|D)). However, due to the
non-negative properties of KL-divergence, we conclude that the ELBO is less than or equal
to the log probability of the data.

Therefore, finding variational parameters ν to minimise the KL divergence is the same as
maximising the ELBO. In effect, variational inference translates the problem of inference
over the weight distribution into the optimisation problem of maximising the ELBO. Once
the ELBO objective is defined, we can sample from q(w) and use backpropagation, like in
DNNs, to find optimal values of the variational parameters that maximise the ELBO.

Alternative Divergences

The KL-divergence is only one way of capturing the distance between distributions. An
alternative metric is the more general α-divergence [3, 68]:

Dα(p(x)||q(x)) = 1
α(1−α)

(
1−

∫
p(x)αq(x)1−αdx

)
(2.13)

Using the same distributions q(w) and p(w|D) as before, as limα → 0 we recover
KL(q(w)||p(w|D)) used in variational inference, but this KL-divergence encourages q(w) to
be zero everywhere p(w|D) is zero. Consequently, a variational distribution fitted with the
KL-divergence criteria tends to underestimate uncertainty because it fits a local mode of the
posterior [42, 31].

The motivation for using α-divergence is to obtain better uncertainty estimates by re-
laxing this constraint. A small value of α encourages the variational distribution to fit
the highest mode of the posterior, and a large α encourages the variational distribution to
cover the entire posterior mass [31]. When α = 0.5, the divergence is symmetric such that
D0.5(p||q) = D0.5(q||p). The α-divergence objective has been applied to BNNs in both
regression and classification contexts, with the intermediate value of α = 0.5 observed
to produce better predictions than α = 0 used in variational inference and α = 1 used in
expectation propagation [42, 31, 15].

Variational Distribution

The essence of the variational distribution is that it is similar enough to the posterior weight
distribution after minimisation of divergence, but easy to sample from. A common form of
the variational distribution is the mean-field approximation, in which we assume that the
variational distribution factorizes into the product of distributions by treating the weights as
independent variables [7]. Furthermore, we can use a Gaussian as the variational distribution,

2.2 Bayesian Neural Networks 11

allowing one to more easily sample from a Normal distribution rather than the exact weight
posterior [8]. In this case, the variational distribution becomes [16]:

q(w) =
L

∏
l=1

Vl

∏
i=1

Vl−1+1

∏
j=1

N (wi jl; µ
w
i jl,σ

2,w
i jl) (2.14)

There are two variational parameters, µw
i jl and σ

2,w
i jl for each weight between the j-th neuron

of layer l −1 and the i-th neuron of layer l, effectively doubling the number of parameters.
For large networks, doubling the number of parameters is costly. Another practical

distribution is the dropout approximate variational distribution, where the distribution for
each weight can be interpreted as a mixture of two Gaussians with small spread (essentially
delta peaks) and one component is centered at zero [42, 23, 24]. Here, the variational
distribution becomes [26]:

q(w) =
L

∏
l=1

Ml ·diag
[
Bernoulli(1− p)Vl

]
(2.15)

Ml is a Vl−1 ×Vl sized matrix of variational parameters, and Vl is the number of neurons
in layer l. The variational parameters are multiplied by a diagonal masking matrix which
zeroes out columns of Ml with probability 1− p. The attractiveness of this approach is that
previously trained models with dropout (stochastically zeroing out neurons [56]), simply with
dropout on at test time, can be used to approximate sampling from the weight posterior [27].
This dropout approximate variational distribution can be implemented simply by adding a
dropout layer before each neural network layer [42], thus avoiding a two-factor increase in
the number of parameters required by the mean-field Gaussian approximation.

2.2.3 Bayesian Predictive Distribution

With a posterior distribution over the weights, the output y∗ of a test input x∗ can be predicted
by marginalizing over the weights, using the posterior weight distribution:

p(y∗|x∗,D) =
∫

p(y∗|x∗,w)p(w|D)dw (2.16)

Due to the intractability of the exact posterior, we replace p(w|D) with its approximate
variational distribution q(w) after the variational parameters ν have been fitted:

p(y∗|x∗,D)≈
∫

p(y∗|x∗,w)q(w)dw (2.17)

12 Background

Rather than direct integration over the weight-space, a common approximation is Monte
Carlo (MC) sampling, in which K samples are drawn from the weight distribution, wk ∼ q(w),
and each sample is used to calculate the likelihood p(y∗|x∗,wk). Using this approximation,
the distribution over the output becomes:

p(y∗|x∗,D)≈ 1
K

K

∑
k=1

p(y∗|x∗,wk) (2.18)

2.3 Uncertainty Estimation

While DNNs provide point estimates for predictions, BNNs provide a predictive distribution.
The spread of this distribution captures the certainty or lack thereof in the model’s predictions.
But why do we care about uncertainty? Measuring uncertainty tells us when predictions on
an test input are potentially noisy because the input falls outside the training distribution, or
because there are unobserved variables that the model fails to capture. The point predictions
from DNNs cannot tell us about these properties of the input [23].

The total uncertainty in the prediction, i.e. the predictive uncertainty, is the sum of
epistemic and aleatoric uncertainty [16, 18]. Epistemic uncertainty refers to our uncertainty in
the model parameters. This can be imagined as the spread of the posterior weight distribution
p(w|D), in which a flatter posterior distribution reflects higher epistemic uncertainty, while a
peaked posterior distribution reflects lower epistemic uncertainty. On the other hand, aleatoric
uncertainty refers to uncertainty originating from the input. Given the input instance and
fixed weight parameters, high aleatoric uncertainty means that we have a noisy estimate of its
output (for regression) or we do not know what class it belongs to (for classification). High
aleatoric uncertainty suggests that we do not have enough information to predict the output
value for an input with fixed weight settings, due to unobserved or latent variables that the
model cannot capture [16, 17].

2.3.1 Why Should We Decompose Predictive Uncertainty?

Decomposing overall predictive uncertainty is important because epistemic and aleatoric
uncertainty tell us about different facets of an input. High epistemic uncertainty suggests
that the test input is an outlier relative to the training distribution. We can reduce epistemic
uncertainty by collecting more training data near the test region, such that in the limit of
infinite data, epistemic uncertainty collapses to zero [26, 35] (i.e. if we know all data in
the universe, we are confident of the function mapping input to output, and thus the weight
distribution becomes a delta peak). More data does not help aleatoric uncertainty; to reduce

2.3 Uncertainty Estimation 13

it, we need knowledge about unobserved variables via additional features or more refined
measurements (e.g. more precise sensors) [17, 26]. In practice, these measurements are often
unavailable, so it is not always possible to reduce aleatoric uncertainty.

A second argument for decomposing uncertainty is that depending on our application,
we may prioritise one type of uncertainty over another. In reinforcement learning, we aim to
efficiently explore the state-action space. Here, we want to collect data in regions of high
epistemic uncertainty (places where data is scarce), allowing us to know about previously
unseen parts of the space. We would not prioritise collecting data in regions of high aleatoric
uncertainty, as we cannot reduce the noise in our estimates with more data. Alternatively, if
we want to predict our return from different types of stocks, we care more about aleatoric
uncertainty. If we want to make a risk-adverse investment, we prioritise stocks with low
aleatoric uncertainty and high return over those with higher aleatoric or epistemic uncertainty.
These distinctions cannot be made from predictive uncertainty alone; inputs with high
predictive uncertainty can have contributions from epistemic, aleatoric, or both types of
uncertainty.

2.3.2 Decomposing Predictive Uncertainty in Classification

In classification problems, we can measure uncertainty as the entropy of the softmax distribu-
tion [27]:

H [ŷ∗|x∗,D]

which decomposes into the sum of two terms:

H [ŷ∗|x∗,D] = I [ŷ∗,w|x∗,D]+Ew∼p(w|D) [H [ŷ∗|x∗,w]] (2.19)

where I represents information gain, E is expected value, and ŷ∗ represents the model’s
output softmax on input x∗.

Depeweg et al. [16] interpreted (2.19) as a decomposition of uncertainty into its aleatoric
and epistemic components. Namely, H [ŷ∗|x∗,D], the entropy in the output classification, is
the predictive uncertainty.

On the right-hand side of (2.19), Ew∼p(w|D) [H [ŷ∗|x∗,w]] is the average entropy when
the weights are fixed, and thus the uncertainty arises from the input x∗ rather than the
weights. Therefore, Ew∼p(w|D) [H [ŷ∗|x∗,w]] can be interpreted as the aleatoric uncertainty.
This quantity reflects our uncertainty in the predicted class of the input using only the
available features and a fixed weight setting.

14 Background

Lastly, if we rearrange the equation and subtract aleatoric uncertainty from predictive
uncertainty [33], we have: I [ŷ∗,w|x∗,D] = H [ŷ∗|x∗,D]−Ew∼p(w|D) [H [ŷ∗|x∗,w]]. This dif-
ference represents epistemic uncertainty because it is the remaining uncertainty from the
model weights, not from the input. High epistemic uncertainty means that, on each sample
from the weight posterior, the model predicts a different class with high confidence for the
same input [27].

Because we cannot tractably integrate over all settings of the weights, we rely on sampling
values for the weights from the simpler variational distribution wk ∼ q(w).

Estimating Predictive Uncertainty

To approximate the predictive uncertainty for an input x∗:

H [ŷ∗|x∗,D] =−∑
c

p(ŷ∗ = c|x∗,D)× log p(ŷ∗ = c|x∗,D)

We expand p(ŷ∗ = c|x∗,D) as a marginalisation over weights:

=−∑
c

(∫
p(ŷ∗ = c|x∗,w)p(w|D)dw

)
× log

(∫
p(ŷ∗ = c|x∗,w)p(w|D)dw

)
and replace the exact posterior with the variational distribution:

≈−∑
c

(∫
p(ŷ∗ = c|x∗,w)q(w)dw

)
× log

(∫
p(ŷ∗ = c|x∗,w)q(w)dw

)
Finally, rather than direct integration, we take K MC samples of the weights:

≈−∑
c

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
log

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
(2.20)

where p(ŷ∗ = c|x∗,wk) is the predicted softmax output for class c using the k-th sample of
weights wk from q(w).

2.3 Uncertainty Estimation 15

Estimating Aleatoric Uncertainty

The aleatoric uncertainty is the average entropy for a particular setting of the weights:

Ew∼p(w|D) [H [ŷ∗|x∗,w]] =−
∫

p(w|D)

[
∑
c

p(ŷ∗ = c|x∗,w) log p(ŷ∗ = c|x∗,w)
]

dw

≈−
∫

q(w)
[
∑
c

p(ŷ∗ = c|x∗,w) log p(ŷ∗ = c|x∗,w)
]

dw

≈− 1
K ∑

k
∑
c

p(ŷ∗ = c|x∗,wk) log p(ŷ∗ = c|x∗,wk) (2.21)

We apply the same steps of replacing the exact posterior with the variational distribution and
taking K weight samples from the variational distribution.

Estimating Epistemic Uncertainty

Finally, the epistemic uncertainty is the difference between (2.20) and (2.21):

I [ŷ∗,w|x∗,D] =H [ŷ∗|x∗,D]−Ew∼p(w|D) [H [ŷ∗|x∗,w]]

≈−∑
c

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
log

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
+

1
K ∑

k
∑
c

p(ŷ∗ = c|x∗,wk) log p(ŷ∗ = c|x∗,wk)

(2.22)

2.3.3 Uncertainty Intuition

Two inputs may have the same predictive uncertainty, but have differing epistemic and
aleatoric uncertainties. The following hypothetical example demonstrates this phenomena in
a simple 2-class scenario to motivate why we consider the uncertainties separately.

Suppose we want to classify an input between two classes. On the first input x(1), we take
K = 4 samples from q(w) and obtain softmax output over the four stochastic forward passes:

[0.0 1.0]
[0.0 1.0]
[0.0 1.0]
[0.0 1.0]

16 Background

By applying (2.20) and (2.21), we have that both epistemic and aleatoric uncertainty are zero,
resulting in zero predictive uncertainty.

With a stochastic neural network, it is possible for each sample wk from q(w) to yield very
confident predictions, and for the predicted class to change on every sample. For example, if
on input x(2) we obtain:

[1.0 0.0]
[0.0 1.0]
[1.0 0.0]
[0.0 1.0]

then by a similar approach, epistemic uncertainty will be one (with log base 2), but aleatoric
uncertainty will still be zero.

Finally, for a point x(3), we obtain output of:

[0.5 0.5]
[0.5 0.5]
[0.5 0.5]
[0.5 0.5]

where epistemic uncertainty is zero, but aleatoric uncertainty is one.
For both x(2) and x(3), the predictive uncertainty is the same. However, the stochastic

forward passes illustrate the decomposition of predictive uncertainty into epistemic and
aleatoric components – uncertainty is entirely from the model weights for x(2), and entirely
from the input for x(3) . Intuitively, aleatoric uncertainty measures uncertainty in the softmax
classification on individual weight samples, while epistemic uncertainty captures how much
the predictions deviate across weight samples.

Chapter 3

Related Work

In this chapter we survey recent work in interpretability in machine learning. Inherent
difficulties in interpretability are the lack of concrete definitions and limitations in evaluation
(§3.1). Despite these difficulties, several interpretable models have been proposed, either
by incorporating interpretability into the model architecture or by explaining a black-box
model (§3.2). Interpretability on datasets with highly correlated features presents additional
challenges (§3.3), and so far there is only limited work on interpreting uncertainty in model
decisions (§3.4).

3.1 What is Interpretability and Why is it Hard?

As data-driven algorithms become more widespread in automating everyday decisions, there
is growing pressure on the interpretability of such approaches. One far-reaching example is
the European General Data Protection Regulation, implemented in 2018, which states that
users have a right to “obtain an explanation of the decision reached” based on automated
processing [47, 28]. The right to explanation is not just a recent concept; under the United
States Equal Credit Opportunity Act of 1974, creditors must notify applicants of adverse
action taken, accompanied by a “statement of reasons for adverse action” [1]. Yet, as more
everyday decisions become digitised with machine learning, model interpretability becomes
crucial for regulation compliance and client-side satisfaction.

Motivations for interpretable models are numerous. For instance, Weller [64] suggests
that explanations can allow developers to debug a system, users to rationalise predictions,
experts to audit decisions, or system deployers to guide customer behavior. However, a crucial
challenge is that interpretability itself is difficult to define. Unlike related areas of fairness
and privacy, rigorous criteria for interpretability do not yet exist [19]. Rather, interpretability
is often defined relative to qualitative and human-driven standards: Biran and Cotton [6]

18 Related Work

define interpretable models as those whose “operations can be understood by a human,”
while Ribeiro et al. [52] state that explaining a prediction means “presenting textual and
visual artifacts that provide qualitative understanding” of the model. To further complicate
matters, interpretability is used interchangeably with other words such as understandability,
comprehensibility, and explanability [5], and forms only one subcomponent of overall model
transparency [64].

The lack of concrete definitions for interpretability makes it highly subjective; interpre-
tations for a model must center around the requirements of the intended audience. Model
explanations for experts are unintelligible for laymen, and vice versa. Overly simplistic
explanations are not trusted [22], but explanations must also be concise enough for users’
limited “perceptual budgets” [51]. Doshi-Velez and Kim [19] propose a three-class taxonomy
for evaluating interpretability including 1) using domain expert knowledge on real tasks, 2)
conducting experiments with non-experts on simplified tasks, or 3) comparing to models
already vetted to be interpretable via prior human experiments, like sparse logistic regression
and decision trees [52]; all three modes of evaluation require a human in the loop, either
directly or indirectly.

An interpretable model is generally viewed as advantageous, but we must be careful
that the additional transparency yielded by the interpretation does not cause harm [64].
One potentially harmful scenario occurs when the audience of an explanation differs from
the beneficiaries; such is the case when recommender systems provide explanations to
manipulate user actions [64]. A second consideration is the balance between interpretability
and model performance. The main goal is to maximise accuracy and reliability – e.g. in
aircraft autopilot systems we prefer less interpretable systems resulting in fewer crashes than
more interpretable ones causing more accidents [64]. Thus, we may not always desire the
most interpretable model but rather a model that is both high-performing and understandable
for the desired audience.

3.2 How Do We Make Models Interpretable?

One of the most successful modern models, the deep neural network, is inherently unin-
terpretable. Szegedy et al. [59] observed that combinations of neurons in DNNs – not just
single neurons – are sensitive to meaningful patterns of the input and that barely-visible
perturbations of the input drastically change the predicted class. How do we explain model
decisions in the face of these challenges?

Approaches to interpretability are broadly categorised as model-based or model-agnostic.
Model-based approaches focus on algorithms that are inherently explainable, including

3.3 Additional Challenges with Interpretability in Images 19

decision trees [52], falling rule lists [63], sparse linear models [61], and nearest neighbors
[22]. The challenge with these fixed classes is balancing interpretability and accuracy with
limited model complexity; to avoid overwhelming a human user, a decision tree must not
have too many leaves, or a nearest neighbor model too many neighbors. Such restrictions
may reduce accuracy due to lesser model complexity, but accuracy is also important to avoid
generating trivial explanations which are easy to understand yet yield no connection to the
data [54, 5].

Model-based interpretations are not limited to these fixed categories of algorithms. One
can construct models parametrised by example instances, which serve as explanations without
sacrificing accuracy. Chen et al. [10] construct a deep network that learns prototypical parts
of training images, such as characteristics of birds, and identifies prototypes in a test image
to classify the instance. A related model is the generative Bayesian Case Model, which infers
clusters on data parametrised by a prototypical example and a subspace of relevant features
important for that cluster [36].

Alternatively, model agnostic approaches build ad-hoc interpretations of already high-
performing models by treating the model as a black box, thus avoiding the accuracy vs.
interpretability tradeoff. The model and the explanation are disjoint – one can use the same
model with different levels of explanation catered to the user and easily switch models while
retaining the same method of explanation [51]. Model-agnostic explanations can either
be local explanations of a particular instance or global explanations of the overall system
[19, 52, 64]. Local explanations focus on a provided test input. They may determine the
features of the input influencing a prediction [53] or the training instances contributing to the
decision on a test input (Koh and Liang [38] take the latter approach using influence functions
[12]). Global explanations provide an understanding of the model as a whole. For example,
Ribeiro et al. [52] propose SP-LIME, which highlights features important to the classifier
and example instances that maximise coverage over all features. Similarly, the DEMUD
algorithm selects interesting instances for the model based on singular value decomposition
reconstruction error and generates feature-based explanations via the residual vectors of the
decomposition [62].

3.3 Additional Challenges with Interpretability in Images

In images, we often aim to determine which input pixels are most responsible for a model
decision; such explanations are termed salience maps in computer vision. However, inter-
preting model decisions on images presents additional challenges, as images are very high
dimensional inputs with highly correlated pixels. Due to spatial correlations among pixels,

20 Related Work

we desire salience maps that are smooth; because patches of neighboring pixels are often
similar, it is unintuitive when one pixel contributes to a decision but similar neighbors do not.
While we focus on images in this work, it is important to note that smoothly varying metrics
of feature importance are relevant for any dataset with spatial or temporal correlations, not
just images in particular.

Image salience maps can be generated by isolating the intermediate activations of a
network and mapping them into the input pixel space. For instance, Zeiler and Fergus [66]
propose a deconvolutional architecture to identify pixels contributing to individual neuron
responses. A related method also focusing on intermediate activations is the Class Activation
Map, which rewrites the CNN pooling operation to highlight class-discriminative regions in
an image [67]. These approaches of upsampling from intermediate activations yields smooth
salience maps.

When we do not have access to intermediate activations of a CNN, we can determine
the input pixels that impact the final classification. Simonyan and Zisserman [55] take
a gradient-based approach, generating salience maps that roughly localise the pertinent
object, but are not necessarily smooth and contain strong responses in pixels irrelevant to
the classification [21]. Smoothness has been addressed by adding a total-variation penalty
to the loss function in a gradient-based iterative procedure [21] and a real-time masking
model approach [14]. Both approaches generate masks which obscure key parts of the image,
finding either the smallest region which maximally reduces class score when obscured or the
smallest region sufficient to preserve the prediction when everything else is covered. One can
also study model saliency by obscuring parts of an image and recording changes in model
output [66, 69], in which the smoothness of salience map depends on the size of the obscured
patch [69].

3.4 Interpretations of Uncertainty

These previous approaches depend on the predictive output, and in some cases the interme-
diate activations, of deep neural networks. But often we care about not only the prediction
of a model, but also how uncertain the prediction is, to know if the prediction is potentially
noisy. Bayesian neural networks address the inherent uncertainty in model predictions, but
factors that contribute to uncertainty have not been extensively investigated. Depeweg et al.
[17] examine the sensitivity of uncertainty to changes in individual features by taking the
gradient of uncertainty with respect to the input. Their method works well for datasets
in which features measure individual human-understandable values, like temperature and
pressure. However, there are limitations when applying this approach on images because it

3.4 Interpretations of Uncertainty 21

considers the sensitivity of features in isolation, ignoring the highly correlated structure of
image pixels (see Appendix A). Furthermore, each pixel we perceive is the combination of
three color channels, so meaningful interpretations should consider channels jointly rather
than producing a salience map separately for each channel.

In this work, we follow the approach of Depeweg et al. [17] in understanding how
uncertainty changes due to input pixels, but derive the change in uncertainty by extending
the prediction difference approach from Robnik-Šikonja and Kononenko [53] and Zintgraf
et al. [69]. This approach generates smooth visualisations that highlight parts of an image
contributing to uncertainty in the model prediction. Our methodology is further described in
the following chapter.

Chapter 4

Methodology

In this chapter we introduce a method to generate salience maps for natural images using
Bayesian neural networks (§4.1), extending the ideas of predictive difference (§4.1.1) and
uncertainty decomposition (§4.1.2). This model-agnostic approach does not depend on
the specific implementation of Bayesian neural network, so we will then describe a BNN
implementation used in the following experiments, chosen for improved uncertainty estimates
via α-divergences and a reduced parameter space via dropout (§4.2). We also overview the
datasets used in experiments (§4.3).

4.1 Approach

Following the approach of Depeweg et al. [17], we seek to determine which input dimensions
affect the uncertainty of the Bayesian model and to decompose this uncertainty into its epis-
temic and aleatoric components. To circumvent the limitations of sensitivity analysis (taking
the gradient of uncertainty with respect to the input), we use model-agnostic explanations
inspired by predictive difference analysis [53, 69], as explained below.

4.1.1 Review of Predictive Difference

On a test input x∗, the predictive difference approach estimates the relevance of each feature
x∗i to the prediction by comparing the model output when feature x∗i is known, to the model
output when x∗i is unknown [53]. The original implementation uses point estimates for
weights rather than a weight distribution. For models that output a softmax probability
distribution, p(ŷ∗ = c|x∗) represents the softmax output of class c when all features are
known, and p(ŷ∗ = c|x∗−i) is the softmax output of class c when all features in x∗, except the
i-th feature, are known. Thus, we have:

24 Methodology

pdi,c(x
∗)≡ p(ŷ∗ = c|x∗)− p(ŷ∗ = c|x∗−i) (4.1)

In practice, rather than taking the direct difference of probabilities, one can also measure
the difference in log probabilities, or the difference in log odds [53]. Regardless of the
exact metric of difference, all approaches require knowing p(ŷ∗ = c|x∗) and p(ŷ∗ = c|x∗−i).
The probability of the input x∗ belonging to class c, p(ŷ∗ = c|x∗), is directly obtained via
a forward pass of the model. When we do not know feature x∗i , we cannot take the same
approach. Instead, we estimate p(ŷ∗ = c|x∗−i) by marginalisation over xi:

p(ŷ∗ = c|x∗−i) =
∫

p(ŷ∗ = c,xi|x∗−i)dxi

=
∫

p(ŷ∗ = c|xi,x∗−i)p(xi|x∗−i)dxi (4.2)

In effect, (4.2) simulates the counterfactual of not knowing the i-th feature by marginalising
over all values of that feature, whose distribution p(xi|x∗−i) is estimated from the training
data. Note that we use x∗i to refer to the value of the i-th feature of a test input, and xi to refer
to the value of the i-th feature estimated from training inputs (we further address estimating
p(xi|x∗−i) in §4.1.3).

Rather than summing over all values of xi, we take an MC sampling approach. We draw
M samples xm

i ∼ p(xi|x∗−i) and perform forward passes replacing x∗i with xm
i :

p(ŷ∗ = c|x∗−i)≈
1
M

M

∑
m=1

p(ŷ∗ = c|xm
i ,x

∗
−i) (4.3)

4.1.2 Extension to Uncertainty

Applying this method to uncertainty of BNNs in classification, we quantify the change in
uncertainty due to knowing feature x∗i by:

∆Ui(x∗)≡U [ŷ∗|x∗,D]−U
[
ŷ∗|x∗−i,D

]
(4.4)

in which U is a placeholder for epistemic, aleatoric, or predictive uncertainty. Similar to
before, U [c|x∗] can be evaluated via forward passes through the BNN, while the evalua-
tion of U

[
c|x∗−i

]
requires marginalisation over xi. With BNNs there is also an additional

marginalisation over weights.

4.1 Approach 25

Predictive Uncertainty

Recall that the predictive uncertainty on an input image x∗ is the entropy of the categor-
ical softmax after marginalising over the weight settings. Thus, the change in predictive
uncertainty due to feature x∗i is:

∆Ui,predictive(x∗) =H [ŷ∗|x∗,D]−H
[
ŷ∗|x∗−i,D

]
(4.5)

First, from (2.20), we evaluate H [ŷ∗|x∗,D] when all features are known by MC sampling
wk ∼ q(w):

H [ŷ∗|x∗,D]≈−∑
c

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
log

(
1
K ∑

k
p(ŷ∗ = c|x∗,wk)

)
(4.6)

Second, when the feature x∗i is unknown, the derivation for predictive uncertainty is:

H
[
ŷ∗|x∗−i,D

]
=−∑

c
p(ŷ∗ = c|x∗−i,D) log p(ŷ∗ = c|x∗−i,D)

Expanding out p(ŷ∗ = c|x∗−i,D) as a marginalisation over weights w and the feature xi:

=−∑
c

[∫ ∫
p(ŷ∗ = c,xi,w|x∗−i,D)dxidw

]
× log

[∫ ∫
p(ŷ∗ = c,xi,w|x∗−i,D)dxidw

]
Decomposing the joint distribution:

=−∑
c

[∫ ∫
p(ŷ∗ = c|x∗−i,xi,w)p(xi|x∗−i)p(w|D)dxidw

]
× log

[∫ ∫
p(ŷ∗ = c|x∗−i,xi,w)p(xi|x∗−i)p(w|D)dxidw

]

26 Methodology

Replacing the weight posterior with the variational distribution:

≈−∑
c

[∫ ∫
p(ŷ∗ = c|x∗−i,xi,w)p(xi|x∗−i)q(w)dxidw

]
× log

[∫ ∫
p(ŷ∗ = c|x∗−i,xi,w)p(xi|x∗−i)q(w)dxidw

]
Finally, replacing the integration with K MC samples of the weights and M samples of xi

from wk ∼ q(w) and xm
i ∼ p(xi|x∗−i), we have that:

H
[
ŷ∗|x∗−i,D

]
≈−∑

c

[
1

MK

M

∑
m=1

K

∑
k=1

p(ŷ∗ = c|x−i,xm
i ,w

k)

]

× log

[
1

MK

M

∑
m=1

K

∑
k=1

p(ŷ∗ = c|x−i,xm
i ,w

k)

]
(4.7)

Aleatoric Uncertainty

Aleatoric uncertainty is uncertainty from the input when the weights are held fixed. In
classification, aleatoric uncertainty comes from the softmax; it measures the uncertainty of
the input in belonging to each class given a particular weight setting. The change in aleatoric
uncertainty due to feature x∗i is:

∆Ui,aleatoric(x∗) = Ew∼p(w|D) [H [ŷ∗|x∗,w]]−Ew∼p(w|D)

[
H
[
ŷ∗|x∗−i,w

]]
(4.8)

From (2.21), when we know x∗i , we draw samples wk ∼ q(w) to compute the aleatoric
uncertainty:

Ew∼p(w|D) [H [ŷ∗|x∗,w]]≈− 1
K ∑

k

[
∑
c

p(ŷ∗ = c|x∗,wk) log p(ŷ∗ = c|x∗,wk)

]
(4.9)

When we do not know x∗i , the derivation for aleatoric uncertainty is:

Ew∼p(w|D)

[
H
[
ŷ∗|x∗−i,w

]]
≈ Ew∼q(w)

[
−∑

c
p(ŷ∗ = c|x∗−i,w) log p(ŷ∗ = |x∗−i,w)

]

4.1 Approach 27

Expanding the p(ŷ∗ = c|x∗−i,w) marginal distribution:

= Ew∼q(w)

[
−∑

c

(∫
p(c|xi,x∗−i,w)p(xi|x∗−i)dxi

)
× log

(∫
p(c|xi,x∗−i,w)p(xi|x∗−i)dxi

)]
Replacing the integration over xi with M samples xm

i ∼ p(xi|x∗−i):

≈ Ew∼q(w)

[
−∑

c

(
1
M ∑

m
p(c|xm

i ,x
∗
−i,w)

)
× log

(
1
M ∑

m
p(c|xm

i ,x
∗
−i,w)

)]
Finally, replacing the integration over w with K samples wk ∼ q(w):

Ew∼p(w|D)

[
H
[
ŷ∗|x∗−i,w

]]
≈− 1

K ∑
k

[
∑
c

(
1
M ∑

m
p(c|xm

i ,x
∗
−i,w

k)

)
× log

(
1
M ∑

m
p(c|xm

i ,x
∗
−i,w

k)

)]
(4.10)

Note that computing (4.10) involves drawing K samples of weights and M samples for xm
i ,

but all M samples for xm
i are evaluated with the same weight sample wk. This process is

repeated K times, once for each weight sample wk.

Epistemic Uncertainty

Taking the epistemic uncertainty as the difference between predictive and aleatoric uncertain-
ties, the change in epistemic uncertainty due to feature x∗i is:

∆Ui,epistemic(x∗) =
(
H(ŷ∗ = c|x∗)−Ew∼p(w|D) [H [ŷ∗ = c|x∗,w]]

)
−
(
H(ŷ∗ = c|x∗−i)−Ew∼p(w|D)

[
H
[
ŷ∗ = c|x∗−i,w

]]) (4.11)

Expressions for the four terms in (4.11) can be estimated by applying (4.6) and (4.7) for
predictive uncertainty, and (4.9) and (4.10) for aleatoric uncertainty.

28 Methodology

4.1.3 Implementation Details

We follow the improvements demonstrated by Zintgraf et al. [69] for evaluating predictive
difference on images, and apply these ideas to compute ∆Ui(x∗) due to individual pixels of a
test image.

The first heuristic by Zintgraf et al. [69] involves the estimation of p(xi|x∗−i). Rather
than estimating pixel xi given the values of all other pixels x∗−i in the image, we restrict the
dependencies of pixel xi to only a local neighbourhood around xi. Thus, we approximate
p(xi|x∗−i)≈ p(xi|x̂∗−i) in which x̂∗−i refers to those pixels in an l× l patch around the i-th pixel,
rather than all remaining pixels. The extent of l is a hyperparameter. This treats the pixels
near xi as a Markov blanket, and the remaining image pixels are conditionally independent
of xi given the local neighbours. This approximation is sensible for images because the
intensities of pixels in an image are highly correlated with nearby pixels, but do not depend
on their position within the overall image (which would be the case if we took x∗−i as all
remaining pixels). We approximate the joint distribution of xi and its local neighbourhood
patch x̂−i as a multivariate Gaussian:

p(xi, x̂−i) = N

([
xi

x̂−i

]
; µ,Σ

)
= N

([
xi

x̂−i

]
;

[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(4.12)

in which the parameters µ and Σ are estimated from patches of the training images, with µ

a vector of length l × l for an l × l-sized patch, and Σ matrix with (l × l)2 elements. Then,
given a neighbouring pixels of a test image, x̂∗−i, we estimate the conditional distribution of
feature xi as:

p(xi|x̂∗−i) = N
(
xi; µ1 +Σ12Σ

−1
22 (x̂

∗
−i −µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
(4.13)

The second heuristic introduced by Zintgraf et al. [69] is multivariate analysis, rather than
univariate analysis in [53]. Instead of marginalising over a single pixel xi, we marginalise
over a patch of k×k adjacent pixels. This is motivated by the observation that neural network
outputs are fairly robust to perturbations in a single pixel, and that individual pixels are
often surrounded locally by pixels of similar colour. Thus, it is expected that obscuring
a larger patch of k× k pixels via marginalisation affects resulting uncertainty more than
obscuring a single pixel. Then, ∆Ui(x∗) is taken as the average contribution of all patches
containing the i-th pixel. With this approach, the user determines the size of the feature patch;
however if k is small the salience maps capture finer textures in the image, and if k is too
large the salience maps are blurred [69]. Thus, the size of the feature patch can be selected to

4.2 Bayesian Neural Network Implementation 29

roughly approximate the size of key patterns in the image. Figure 4.1 illustrates the relative
positioning of the k× k feature patch and the l × l neighbourhood patch in the input image.

Fig. 4.1 Conditional sampling approximates p(xi|x∗−i) using a local l × l patch (in green)
rather than the full image (in grey). Multivariate analysis marginalises over a k× k feature
patch (in magenta) rather than an individual pixel xi, such that k < l. Image from [69].

4.2 Bayesian Neural Network Implementation

The above approach in computing ∆Ui(x∗) does not rely on a specific implementation of BNN;
it only requires weight samples from a variational distribution and stochastic feed-forward
passes that yield softmax activations.

In this work we use the BNN implementation from Li and Gal [42], which reparametrises
the α-divergence objective – rather than KL-divergence typically used in variational inference
– to be compatible with the dropout approximate variational distribution. Combining these
two ideas with the assumption of sufficient data such that α << N, the relevant α-divergence
objective with cross entropy loss becomes [42]:

Lα(q)≈
1
α

∑
n

y(n)T ∗ log

(
1
K ∑

k
p(ŷ(n)|x(n),wk)α

)
+L2(m) (4.14)

in which y(n)T refers to a one-hot vector of labels for the n-th training input, p(ŷ(n)|x(n),wk)

refers to the C × 1 vector of predicted softmax activation over C classes using the n-th
training input and the k-th sample of the weights, and L2(m) is an L2 regularisation term on
the weights without dropout, a result of approximating the divergence between the variational
and prior distributions [24]. For a full derivation of the objective function refer to [42]. We
select this implementation of BNN due to the practical properties of the dropout approximate
variational distribution in the number of variational parameters, and the improved uncertainty

30 Methodology

estimates offered by α-divergence; however, the same approach of calculating ∆Ui(x∗) can
be performed with any BNN implementation.

We minimise the objective function by performing K = 10 stochastic forward passes
at training time and using automatic differentiation to update the variational parameters.
Specifically, we use a Stochastic Gradient Descent optimiser with a learning rate of 0.01 and
Nesterov momentum parameter of 0.9. We use α = 0.5, which is shown to yield improved
predictions over α = 0 (standard variational inference objective) and α = 1 (expectation
propagation objective) [31, 15]. Our model architecture is identical to that of [42], containing
two 2D-convolutional layers of 32 filters and a 3×3 kernel with ReLU activation, followed
by a 2×2 max-pooling layer, and two Dense layers with dropout.

Training is terminated when the model reaches a minimum loss on a validation set, taken
as a reserved 10% of the training images (Fig. 4.2). We replicate the training procedure three
times, each yielding similar results.

Fig. 4.2 Validation loss (left) and validation accuracy (right) over training epochs. BNN
models with the dropout approximate variational distribution and the α-divergence objective
are trained on the CIFAR10 dataset. The minimum validation loss is reached at 18 epochs.
Accuracy on the test dataset is 71.5±7.4e-4%, but we focus on demonstrating interpretability
rather than optimising accuracy.

At test time, we perform K = 100 stochastic forward passes using dropout as samples
from the variational distribution, similar to [42]. Note that in the computation of aleatoric
uncertainty when feature xi is unknown, we require using the same weight sample over
multiple samples of the missing feature xi. In Tensorflow, this can be accomplished by setting
the noise_shape argument in dropout to use the same dropout mask over images containing
the xi samples [2].

4.3 Datasets 31

4.3 Datasets

A commonly used dataset for machine learning classification is the CIFAR10 dataset [39],
which is a collection of 60,000 colour images belonging to ten classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. All images are 32 × 32 pixels in size. There
are 10,000 test images, with 1,000 examples from each class, and the remaining 50,000
images are used for training. Of the training images, 10% were reserved as a validation set
during training of the BNN model.

A related dataset is the CIFAR100 dataset [39], also containing 60,000 32 × 32 colour
images. Each images belongs to one of 100 “fine” classes, and one of 20 “coarse” classes,
which are disjoint from the classifications of CIFAR10. Examples from the CIFAR100
dataset are used only when testing the model, after the model is trained on images from
CIFAR10, to demonstrate uncertainty in classifying out-of-distribution images.

A third dataset used in this work is the ISIC 2018 Lesion Diagnosis Challenge training
dataset for skin cancer [11, 60]. This publicly-available dataset contains 10015 images of
skin lesions spanning seven cancerous and benign categories: Nevus (NV), Dermatofibroma
(DF), Melanoma (MEL), Actinic keratosis (AKIEC), Benign keratosis (BKL), Basal cell
carcinoma (BCC), and Vascular lesion (VASC). All images are 600 ×450 JPEG images,
and are resized to 150 × 113 pixels for faster computation in experiments. Note that not
all skin conditions are equally represented in this dataset. For example, there are 6705
examples of the Nevus category, and 115 examples of the Benign keratosis category. For
experiments here, we selected the NV, MEL, BKL, and BCC categories, the four groups with
the most examples (6705, 1113, 1099, and 514 respectively), and performed naive random
subsampling to equalise the number of examples in each category. We leave experimentation
with more sophisticated data resampling techniques, such as SMOTE [9] or ADASYN [29],
and additional disease categories for future work.

All images were 3-channel 8-bit RGB images, thus having intensity values of each pixel
ranging from zero to 255. Prior to model training and evaluation, all intensity values were
divided by 255, such that the range for each pixel in each colour channel was between zero
and one.

Chapter 5

Results

This chapter begins with two sections of validation experiments to motivate a Bayesian ap-
proach. First, unlike DNNs, BNNs integrate over weights to yield more uncertain predictions
when both models are incorrect (§5.1). Second, BNNs provide uncertainty estimates in their
decisions, which can be decomposed into epistemic and aleatoric uncertainty – each type of
uncertainty is reduced differently, but this cannot be addressed when the uncertainties are
combined (§5.2). In §5.3, we show results on changes in uncertainty due to individual pixels
on the CIFAR10 and ISIC2018 datasets. We also compare the uncertainty-based approach to
the method of predictive difference [69].

5.1 Uncertainty in Bayesian Neural Networks

Softmax output probabilities are one way of measuring uncertainty in classification tasks.
A softmax output that places all probability mass on a single class can be interpreted as
“confident” in its decision, and one that divides probability mass equally among all classes
can be seen as “unconfident.” The entropy of the softmax output distribution describes this
confidence, with the former having low entropy, and the latter having high entropy. In BNNs
after we integrate over the weight distribution, entropy in the softmax output is precisely the
predictive uncertainty.

Here, we compare the softmax output of DNNs and BNNs when evaluated on a test
instances outside the training distribution. We train DNNs and BNNs with identical model
architecture on the CIFAR10 dataset, and evaluate them on images from CIFAR100. These
two datasets do not contain overlapping classes.

In Fig. 5.1, we show DNN and BNN predictions on a “large natural outdoor scene”
from CIFAR100. The DNN predicts the image as a “bird,” placing 80% of the softmax
output on that class. Because the DNN does not have dropout at test time, its predictions are

34 Results

deterministic. The BNN also predicts erroneously because none of the CIFAR10 classes fit
the input. However, the predictive softmax, p(ŷ∗ = c|x∗), is the average output over multiple
samples from the weight distribution (error bars show one standard deviation over 100 weight
samples). Because the BNN aggregates the softmax outputs over multiple draws from the
variational weight distribution, its predictive softmax output is less peaked than that of the
DNN.

Fig. 5.1 DNN and BNN predictions on an out-of-distribution image. (Left) The out-of-
distribution CIFAR100 image. (Middle) Softmax output of a DNN trained on CIFAR10.
(Right) A BNN (also trained on CIFAR10) provides a distribution over softmax predictions
by taking samples from a weight distribution. The predictive softmax (in blue) involves
MC integration over the weights. Errorbars represent one standard deviation across weight
samples.

Next, we took the first 100 images of the CIFAR100 test set and performed a similar
experiment. We compared the softmax probability mass assigned to the predicted class (taken
as the maximum softmax activation over all classes) and the entropy of the predictive softmax
across both models (Fig. 5.2). DNNs tend to place more probability mass on the incorrectly
predicted class compared to BNNs, resulting in higher maximal softmax activations (most
points fall below the diagonal). On the other hand, the predictions of BNNs marginalise over
a weight distribution, leading to more entropic softmax distributions than DNNs (most points
fall above the diagonal).

These results suggest that, when both models are forced to make an erroneous decision
on out-of-distribution image, the predictive softmax distribution captures higher entropy and
more uncertainty in BNNs than DNNs, because BNNs consider predictions over the weight
distribution. The predictions of DNNs are more confident because the model uses a point
estimate of weights.

5.2 Uncertainty Decomposition 35

Fig. 5.2 Comparing DNN and BNN predictions. (Left) Softmax activation of the predicted
class (taken as the maximal softmax activation over all classes) for a BNN and a DNN on the
first 100 test images in CIFAR100. (Right) Entropy of the softmax distribution for a BNN
and DNN on the same test images. Both models are trained on CIFAR10; there is no overlap
with classes in CIFAR100.

5.2 Uncertainty Decomposition

The entropy of the softmax predictive distribution alone is insufficient to fully characterise
uncertainty in a BNN because there is uncertainty from the model weights and from the
classification of the input. Using different weight settings could produce very confident,
yet disagreeing decisions [27], but after performing MC integration over the weights, we
cannot distinguish the uncertainty in the weights from the intrinsic uncertainty in the input.
Uncertainty in the weights is exclusive to BNNs; in DNNs there is no concept of a weight
distribution.

Recall from §2.3 that epistemic uncertainty, measured by the the information gain
between the weights and the model output, captures the uncertainty in the weights. Intuitively,
epistemic uncertainty measures the deviation in the output using different weight settings.
Aleatoric uncertainty captures our uncertainty in the classification of the input with a fixed
weight setting, i.e. if there exists enough information in the features to fully classify the
output. Empirically, epistemic uncertainty is high for test points far from the training
distribution, while aleatoric uncertainty is high for test points on the decision boundaries
[44, 26].

In the following experiments with synthetic data, we motivate why epistemic and aleatoric
uncertainties should be addressed separately. Epistemic uncertainty is reduced with more

36 Results

data, but aleatoric uncertainty is reduced with more knowledge about latent variables. We
cannot make these distinctions from predictive uncertainty alone.

5.2.1 Uncertainty Decomposition with Synthetic Data

We generate 2-dimensional synthetic data belonging to three classes. In the first experiment,
we isolate epistemic uncertainty. Here, the first and second classes are isotropic Gaussians
with µ1 = (2,2), µ2 = (−2,2), and identical σ = 0.25. The third class is Normally distributed
in the first feature with µ = 0 and σ = 0.25, and exponentially distributed in the second
feature. When we increase the lengthscale of the exponential distribution from l = 1 to
l = 2, there is greater probability mass on points further from zero (Fig. 5.3a). In the
second experiment, we isolate aleatoric uncertainty. We fix the lengthscale of the exponential
distribution at l = 1.5 and vary the spread of the classes between σ = 0.1 and σ = 0.9 (Fig.
5.3b). The means of all normally distributed features remain the same as before.

(a) Increasing Lengthscale

(b) Increasing Spread

Fig. 5.3 (A) To isolate epistemic uncertainty, we increase the lengthscale of the exponential
distribution for the third class. (B) To isolate aleatoric uncertainty, we increase the spread of
all classes.

For both experiments, we train networks with two fully-connected layers with the α-
divergence objective and dropout at training and test time to simulate samples from the weight
distribution. For every value of the lengthscale l and the spread σ of the training distribution,
we train three model replicates, and evaluate the epistemic and aleatoric uncertainty of a test
point at (0,2).

As the lengthscale of the training distribution increases, the epistemic uncertainty de-
creases, but aleatoric uncertainty remains similar (Fig. 5.4a). This is consistent with the

5.2 Uncertainty Decomposition 37

notion of higher epistemic uncertainty capturing uncertainty in regions where data is scarce.
Therefore, epistemic uncertainty at a test point is reduced when there is more data in the
vicinity of that point. On the other hand, aleatoric uncertainty measures latent interactions
intrinsic in the data that are not captured by the model. For example, when the spread of the
class distributions is large, the distributions overlap at the test point so there is insufficient in-
formation to classify it. Aleatoric uncertainty is reduced by more informative measurements,
such as reducing the spread of the class distributions (Fig. 5.4b). Note that in this synthetic
dataset we can reduce aleatoric uncertainty by reducing the noise in our measurements, but
in real-life datasets or complex processes, aleatoric uncertainty is irreducible when we do
not know the latent variables involved in the inputs. In both cases, predictive uncertainty
decreases as we increase l or reduce σ , so from predictive uncertainty alone we cannot
distinguish uncertainty due to model weights from uncertainty inherent in the input.

(a) Increasing Lengthscale

(b) Increasing Spread

Fig. 5.4 (A) Epistemic uncertainty decreases as the lengthscale increases, but aleatoric
uncertainty remains similar. (B) Aleatoric uncertainty decreases as the spread decreases;
epistemic uncertainty remains similar. Errorbars show one standard deviation over model
replicates.

38 Results

5.2.2 Uncertainty Decomposition in CIFAR10

Next we show the decomposition of uncertainty on CIFAR10 test images. Similar to
before, we decompose the predictive uncertainty into its epistemic and aleatoric components
following the derivations in §2.3. We plot these uncertainties against the softmax output of
the predicted class, which is the maximum softmax activation across all classes (Fig. 5.5).
The predictive softmax of a BNN, p(ŷ∗ = c|x∗), involves averaging over weight samples,
so attaining a maximum p(ŷ∗ = c|x∗) = 1 means that all weights samples place softmax
probability mass entirely on one class, and all weight samples agree on the same class.
Therefore, to attain p(ŷ∗ = c|x∗) = 1 , all three types of uncertainty are zero.

On the other hand, when the softmax activation of the predicted class is low, the predictive
uncertainty contains contributions from both epistemic and aleatoric sources. For example,
on test images when the softmax activation of the predicted class is near 0.2 (on the y-axis),
we observe a range of values for epistemic and aleatoric uncertainties (see Fig. 5.5). This
suggests that when the predictions are uncertain, this may be due to seeing an example unlike
previously seen images (epistemic), or seeing an example which is difficult to categorise into
a single class with the given features (aleatoric). Again, these differences are obscured when
solely looking at predictive uncertainty.

Fig. 5.5 Softmax output of the predicted class) against predictive (left), epistemic (middle),
and aleatoric (right) uncertainties on CIFAR10 test images. Each point represents a test
image.

5.3 Mapping Uncertainty onto Input Pixels

Following the methodology in Chapter 4, we visualise the contributions of individual pixels
to epistemic, aleatoric, and predictive uncertainties. Because we gain additional insights by
decomposing overall predictive uncertainty into its epistemic and aleatoric components, we

5.3 Mapping Uncertainty onto Input Pixels 39

generate salience maps for each type of uncertainty separately. Our approach computes the
change in uncertainty due to individual pixels via:

∆Ui(x∗)≡U [ŷ∗|x∗,D]−U
[
ŷ∗|x∗−i,D

]
(5.1)

A positive change (shown in red) means that knowing the pixel value makes the decision
more uncertain and uncertainty increases, while a negative change (in blue) means that
knowing the pixel value makes the decision more confident and uncertainty decreases.

5.3.1 Epistemic and Aleatoric Uncertainty

We start by investigating ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) using parameters k = 8 and
l = 10 for patch size and padding, respectively (see §4.1.3).

Images that are difficult to classify

In Fig. 5.6 we show the results for CIFAR10 test images with high predictive uncertainty.
In these images, the softmax output after integrating over weights has high entropy, so the
softmax probability assigned to the predicted class is low. Examining these salience maps
shows us the pixels contributing to uncertainty, despite a correct or incorrect classification.

Aleatoric uncertainty is reduced over key identifying parts of the image, while epistemic
uncertainty is increased over the background. This suggests that both the background and
foreground influence uncertainty. The reduction in aleatoric uncertainty over key objects
is sensible because when these objects are unknown, the remaining pixels do not provide
enough information to fully classify the image regardless of the weight setting. The increased
epistemic uncertainty over the background suggests that the background in the image is
unlike those seen in training, so epistemic uncertainty is higher when these pixels are known.
Thus, the predictions on these images may be uncertain due to unconventional backgrounds.
We further discuss these trends in the following paragraphs.

In example (A) of 5.6, the ship’s bow reduces aleatoric uncertainty, suggesting that know-
ing these pixels helps to predict the class (on individual weight settings). The surrounding
water increases epistemic uncertainty. Because many ship images in the CIFAR10 dataset
appear on blue backgrounds [65], it is plausible that a grey background is not seen often in
training, thus increasing epistemic uncertainty in this region.

Examples (D) and (E) are instances of incorrect predictions, and the salience maps offers
insight on pixels contributing to uncertainty. In (D) the true label is “cat”, and the prediction
is “automobile,” but the image contains a large mechanical object. Aleatoric uncertainty

40 Results

is reduced over the mechanical object, suggesting that these pixels provide information to
classify the image. The cat increases epistemic uncertainty, suggesting that knowledge of
these pixels, together with the foreground object, makes the image unlike training examples.
In example (E) the true label is “horse” and the prediction is “deer”. The salience map for
aleatoric uncertainty shows us that the horse head and the human’s legs (erroneously) help to
classify the image on individual weight samples, but epistemic uncertainty increases over the
fence, suggesting that fences are infrequent in the training data.

Fig. 5.6 Visualisation of epistemic and aleatoric uncertainties for selected CIFAR10 test
images. The original images, with the true class, predicted class, and softmax activation of
the predicted class, are in the top row. ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) are in the middle
and bottom rows, respectively. These examples are images with high predictive uncertainty.
Colorscale contrast is increased in the salience maps for improved visibility. These overlaid
images highlight areas of greatest uncertainty change; for raw magnitudes of ∆Ui,epistemic(x∗)
and ∆Ui,aleatoric(x∗) see Fig. B.2.

Images that are easily classified

Next we turn to examples with low predictive uncertainty (Fig. 5.7). These images are
classified correctly, and the softmax activation of the predicted class is near 100%. The
salience maps for both uncertainties are similar, and uncertainty is reduced over key identify-
ing regions such as the horse’s legs or the automobile’s wheel. This suggests that for images

5.3 Mapping Uncertainty onto Input Pixels 41

that are confidently predicted, the same pixels that provide information for the classification
also make the test instance more similar to the training distribution, and when we do not
know these pixels, the image is more unlike those seen in training. Obscuring background
pixels does not change uncertainty when the main object is known.

Fig. 5.7 Visualisation of epistemic and aleatoric uncertainties for selected CIFAR10 test im-
ages with low predictive uncertainty. The original images with the true class, predicted class,
and categorical softmax activation of the predicted class, are in the top row. ∆Ui,epistemic(x∗)
and ∆Ui,aleatoric(x∗) are in the middle and bottom rows, respectively. Colorscale contrast is
increased in the salience maps for improved visibility. See also Fig. B.2.

From these examples, it may be most informative to consider the salience maps of
examples for which the predictive uncertainty is high, i.e. borderline cases, which show
a separation of the uncertainty into epistemic and aleatoric components. ∆Ui,epistemic(x∗)
highlights regions that differentiate an image from training instances, and ∆Ui,aleatoric(x∗)
highlights regions contributing to or detracting from the classification of the image with
individual weight settings.

5.3.2 Comparison to Predictive Difference

For the same images in Fig. 5.6, we generated salience maps for ∆Ui,predictive(x∗). Predictive
uncertainty is the sum of epistemic and aleatoric uncertainties, and the predictive uncertainty

42 Results

salience map is the composite of the previous epistemic and aleatoric salience maps (Fig.
5.8). ∆Ui,predictive(x∗) captures both the regions that reduce aleatoric uncertainty, and regions
that increase epistemic uncertainty.

We compare the predictive uncertainty salience maps to visualisations of predictive
difference [69]. In predictive difference, red indicates evidence for a class, and blue indicates
evidence against. Note that predictive difference requires specification of a target class, and
evidence for/against is relative to the target class. In Figure 5.8 the predictive difference is
computed relative to the predicted class (the class with the maximal softmax activation).

Fig. 5.8 Visualisation of predictive uncertainty (middle) and predictive difference (bottom)
as implemented in [69]) of the same CIFAR10 images in Fig. 5.6.

Here, regions that provide evidence for a particular class reduce the predictive uncertainty,
and regions that are evidence against increase the predictive uncertainty. This suggests
that pixels that reduce the softmax activation of a particular class also increase entropy in
the overall softmax distribution. One interesting exception is example (C), in which the
dog’s face contributes evidence for the deer classification, but it also increases the predictive
uncertainty. This suggests that, despite using the dog’s face incorrectly to classify the image
as a deer, there is also greater uncertainty in this region.

Because predictive difference is computed relative to a target class, when the classifier
is incorrect, it may be showing evidence for/against the wrong class. This itself is still

5.3 Mapping Uncertainty onto Input Pixels 43

informative in understanding why the classifier is incorrect. However, if predictive uncertainty
is high and the softmax output is near-uniform, the predictive difference approach omits
crucial information about the remaining classes. ∆Ui,predictive(x∗) summarises the effect of
individual pixels on the entire softmax distribution rather than a single class, and avoids the
alternative of visualising all classes separately.

5.3.3 Adding More Training Data

We seek to visualise how ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) change as more training data
is added in the CIFAR10 dataset. For this experiment, we subsample the training examples
for the “ship” class in increments of 10% while using all examples for the remaining classes
to simulate adding more data similar to the “ship” test images.

(a) Epistemic and Aleatoric Uncertainties

(b) Salience Maps

Fig. 5.9 (A) The test image (left) and epistemic (middle) and aleatoric (right) uncertainties as
more training data in the “ship” class is added. Errorbars show one standard deviation over
three model replicates. (B) Visualisations of ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) with more
training data. Colorscale limits are the same across all plots each row.

On a correctly-predicted test image, the epistemic uncertainty decreases as more “ship”
examples are seen in training (Fig. 5.9a). Interestingly, there is also a decrease in aleatoric
uncertainty. This may happen if there is not enough information to classify the instance

44 Results

inherent in the model prior, so as we add more data, we shift further away from the prior and
the model better captures the information inherent in the input.

With just 10% of the ship examples in training, ∆Ui,epistemic(x∗) is positive in many pixels
of the image. Because there are fewer examples of ships in training, slight perturbations in
any direction may result in the test example moving farther training distribution due to the
limited data in that class. As we add data, ∆Ui,epistemic(x∗) decreases to zero in these pixels,
suggesting that perturbing these pixels no longer moves it out of the training distribution.
Also, ∆Ui,epistemic(x∗) becomes negative in other pixels that help classify the image. Positive
∆Ui,epistemic(x∗) highlights regions of an image that make it unlike training examples, and
Fig. 5.9b suggests that we can eliminate these regions by adding more training examples.

In ∆Ui,aleatoric(x∗), as we add data the predictions become more robust to perturbations –
the magnitude of ∆Ui,aleatoric(x∗) decreases from left to right, which means that obscuring
image patches has a smaller impact on the classification (on individual weight samples).
This suggests that as data is added, the model better captures information in the remaining
pixels, so when patches are obscured, the prediction is less dependent on specific local image
regions.

5.3.4 Skin Lesion Diagnosis

In medicine, interpretable models are necessary for patients to trust diagnoses and doctors
to verify the decisions. Visualising regions of uncertainty medical images is one way of
increasing the interpretability of these models. For this experiment we focus on classifying
skin lesions from the ISIC2018 dataset in four classes: NV, MEL, BKL, and BCC [60,
11]. We use the same convolutional BNN architecture as in the CIFAR10 experiments,
reserve 50 images in each class for validation and testing, and use a balanced subset of
414 images per class for training. This model attains an accuracy of 58.5%. We then
compute ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) using parameters k = 20 and l = 22. We focus
on demonstrating interpretability rather than true medical diagnosis or optimal accuracy.

Similar to the CIFAR10 images, we observe that ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗)
highlight different regions of the image when predictive uncertainty is high (Fig. 5.10).
Uncertainty does not change due to background pixels, suggesting that surrounding skin
does not impact uncertainty, as desired. Pixels that increase epistemic uncertainty may
highlight parts of the lesion that are unlike the training examples, and can potentially be
reduced by providing more training instances similar to these highlighted areas. On the
other hand, aleatoric uncertainty is irreducible unless we obtain more refined measurements;
these are regions where doctor input is needed. Our ∆Ui(x∗) approach eliminates the need
to consider each class individually; instead, it considers pixel contributions over the entire

5.3 Mapping Uncertainty onto Input Pixels 45

softmax distribution and separates the uncertainty in prediction into reducible and irreducible
components.

Fig. 5.10 Visualisation of epistemic and aleatoric uncertainties for selected ISIC skin lesion
test images, for examples with high predictive uncertainty. The original images, labeled
as true class → predicted class with softmax activation of the predicted class, are in the
top row. The first two examples show correct model predictions, and the remaining are
incorrect predictions. ∆Ui,epistemic(x∗) and ∆Ui,aleatoric(x∗) are in the middle and bottom
rows, respectively. Colorscale contrast was increased in the salience maps for improved
visibility.

Chapter 6

Conclusions

In this project we provide a method for visualising the contribution of individual pixels to
uncertainty in image classification. Our approach relies on BNNs to provide uncertainty
estimates in the prediction, but is otherwise model-agnostic, independent of the specific
implementation of the BNN. We focus on local explanations – providing explanations for
specific test instances.

Our approach quantifies the change in uncertainty due to individual features. We estimate
the difference in epistemic, aleatoric, and predictive uncertainty in classifying a test instance
when we know the value of all pixels, compared to when we do not know the values of a patch
of pixels. While a feature-based change in uncertainty can also be estimated via a gradient
[17], our approach yields smooth saliency maps consistent with the spatially correlated
structure of images. In this work we focus on classifying images, but this approach is also
applicable to any inputs with correlated features, such as those with temporal correlations in
speech-processing domains.

We apply our methodology on the CIFAR10 and ISIC2018 lesion diagnosis datasets.
In both datasets, we observe that when predictive uncertainty in the classification high,
the salience maps for epistemic and aleatoric uncertainty capture different aspects of the
image. In CIFAR10, aleatoric uncertainty is reduced over the central object of the image,
while epistemic uncertainty increases in the background, suggesting that unconventional
backgrounds are a source of uncertainty because they are unlike the examples seen in
training. In the skin lesion dataset, we observe that aleatoric and epistemic uncertainty
highlight different areas of the lesion, but uncertainty does not change when obscuring parts
of the background skin, suggesting that the background does not contribute to uncertainty.
Separating aleatoric and epistemic uncertainty, particularly on borderline cases when the
output softmax distribution is near-uniform, shows us regions that make the test instance an

48 Conclusions

outlier (increased epistemic uncertainty), and regions that help the classification (reduced
aleatoric uncertainty) or require expert annotation (increased aleatoric uncertainty).

6.1 Limitations of our approach

We acknowledge some limitations of our current methodology. Our approach relies on
obscuring k×k square patches of adjacent pixels to simulate unknown values for a patch, and
computes the change in uncertainty based on these patches. However this approach is limited
for images with multiple discriminative regions. For example, in an image with two cars, a
single patch may not cover both cars, so we cannot measure the change in uncertainty when
both cars are unknown. The number of configurations with multiple obscuring patches in
multiple locations grows exponentially, and thus is too costly to compute directly. Secondly,
BNNs can produce uncertainty estimates of varying quality depending on the divergence
objective [31] and an approximation gap (the inability of the variational family to truly
approximate the posterior distribution) [13]. Because our approach is model-agnostic, the
resulting salience maps heavily depend on the quality of uncertainty estimates from the BNN.

6.2 Future work

Our approach leaves several avenues for further investigation:
Given that our approach is model-agnostic, it would be fascinating to compare salience

maps using different variational distribution families. If the resulting salience maps are similar
across different variational families, we can use more efficient variational approximations
in place of ones that better approximate the weight posterior, allowing us to reduce the
computational load of generating salience maps.

Our current approach is entirely qualitative, and there are limited quantitative metrics
of interpretability. Given two different explanations for uncertainty in a classifier, such as
using different variational distributions or divergence objectives, we would like to determine
which interpretation is more understandable. The most appropriate way of comparing
interpretability is via user studies, but these experiments are time-intensive and limited in
scope. However, we could use properties like total variation and information concentration
as proposed in [14] as proxies for interpretability, in which we desire salience maps that are
smooth and sparse in the input pixel space. This allows us to quantitatively compare different
interpretations of uncertainty.

Finally, while we focus entirely on image data in this work, it would also be interesting
to investigate this approach on data with temporal correlations, like speech data. Audio data

6.2 Future work 49

often relies on recurrent models, and Bayesian variants of recurrent architectures have been
investigated [25]. With our approach, one could investigate the spectral features contributing
to model decisions on an audio signal, with interpretations that have smooth variations in
feature importance over time.

References

[1] (1974). United states equal credit opportunity act, title 12, part 1002.9.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. (2016). Tensorflow: a system for large-scale machine learning.
In OSDI, volume 16, pages 265–283.

[3] Amari, S.-i. (2012). Differential-geometrical methods in statistics, volume 28. Springer
Science & Business Media.

[4] Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2012). Advances in optimiz-
ing recurrent networks. arXiv preprint arXiv:1212.0901.

[5] Bibal, A. and Frénay, B. (2016). Interpretability of machine learning models and
representations: an introduction. In Proceedings on ESANN, pages 77–82.

[6] Biran, O. and Cotton, C. (2017). Explanation and justification in machine learning: A
survey. In IJCAI-17 Workshop on Explainable AI (XAI), page 8.

[7] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112(518):859–877.

[8] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424.

[9] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357.

[10] Chen, C., Li, O., Barnett, A., Su, J., and Rudin, C. (2018). This looks like that: deep
learning for interpretable image recognition. arXiv preprint arXiv:1806.10574.

[11] Codella, N. C., Gutman, D., Celebi, M. E., Helba, B., Marchetti, M. A., Dusza, S. W.,
Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al. (2018). Skin lesion analysis toward
melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (isbi), hosted by the international skin imaging collaboration (isic). In Biomedical
Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, pages 168–172. IEEE.

[12] Cook, R. D. (1977). Detection of influential observation in linear regression. Techno-
metrics, 19(1):15–18.

[13] Cremer, C., Li, X., and Duvenaud, D. (2018). Inference suboptimality in variational
autoencoders. arXiv preprint arXiv:1801.03558.

52 References

[14] Dabkowski, P. and Gal, Y. (2017). Real time image saliency for black box classifiers.
In Advances in Neural Information Processing Systems, pages 6970–6979.

[15] Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2016). Learning
and policy search in stochastic dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127.

[16] Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2017a). Uncer-
tainty decomposition in bayesian neural networks with latent variables. arXiv preprint
arXiv:1706.08495.

[17] Depeweg, S., Hernández-Lobato, J. M., Udluft, S., and Runkler, T. (2017b). Sensi-
tivity analysis for predictive uncertainty in bayesian neural networks. arXiv preprint
arXiv:1712.03605.

[18] Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105–112.

[19] Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable
machine learning.

[20] Felleman, D. J. and Van, D. E. (1991). Distributed hierarchical processing in the primate
cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47.

[21] Fong, R. C. and Vedaldi, A. (2017). Interpretable explanations of black boxes by
meaningful perturbation. arXiv preprint arXiv:1704.03296.

[22] Freitas, A. A. (2014). Comprehensible classification models: a position paper. ACM
SIGKDD explorations newsletter, 15(1):1–10.

[23] Gal, Y. (2016). Uncertainty in deep learning. University of Cambridge.

[24] Gal, Y. and Ghahramani, Z. (2016a). Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059.

[25] Gal, Y. and Ghahramani, Z. (2016b). A theoretically grounded application of dropout in
recurrent neural networks. In Advances in neural information processing systems, pages
1019–1027.

[26] Gal, Y., Hron, J., and Kendall, A. (2017a). Concrete dropout. In Advances in Neural
Information Processing Systems, pages 3584–3593.

[27] Gal, Y., Islam, R., and Ghahramani, Z. (2017b). Deep bayesian active learning with
image data. arXiv preprint arXiv:1703.02910.

[28] Goodman, B. and Flaxman, S. (2016). European union regulations on algorithmic
decision-making and a" right to explanation". arXiv preprint arXiv:1606.08813.

[29] He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In Neural Networks, 2008. IJCNN 2008.(IEEE World
Congress on Computational Intelligence). IEEE International Joint Conference on, pages
1322–1328. IEEE.

References 53

[30] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[31] Hernández-Lobato, J. M., Li, Y., Rowland, M., Hernández-Lobato, D., Bui, T., and
Turner, R. E. (2016). Black-box α-divergence minimization.

[32] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
processing magazine, 29(6):82–97.

[33] Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745.

[34] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233.

[35] Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in Neural Information Processing Systems,
pages 5580–5590.

[36] Kim, B., Rudin, C., and Shah, J. A. (2014). The bayesian case model: A generative
approach for case-based reasoning and prototype classification. In Advances in Neural
Information Processing Systems, pages 1952–1960.

[37] Kim, Y., Lee, H., and Provost, E. M. (2013). Deep learning for robust feature generation
in audiovisual emotion recognition. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 3687–3691. IEEE.

[38] Koh, P. W. and Liang, P. (2017). Understanding black-box predictions via influence
functions. arXiv preprint arXiv:1703.04730.

[39] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Technical report, Citeseer.

[40] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[41] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

[42] Li, Y. and Gal, Y. (2017). Dropout inference in bayesian neural networks with alpha-
divergences. arXiv preprint arXiv:1703.02914.

[43] MacKay, D. J. (1992). A practical bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472.

[44] Malinin, A. and Gales, M. (2018). Predictive uncertainty estimation via prior networks.
arXiv preprint arXiv:1802.10501.

54 References

[45] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[46] Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer
Science & Business Media.

[47] Parliament and of the European Union, C. (2016). General data protection regulation,
recital 71.

[48] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

[49] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

[50] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

[51] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). Model-agnostic interpretability of
machine learning. arXiv preprint arXiv:1606.05386.

[52] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM.

[53] Robnik-Šikonja, M. and Kononenko, I. (2008). Explaining classifications for individual
instances. IEEE Transactions on Knowledge and Data Engineering, 20(5):589–600.

[54] Rüping, S. et al. (2006). Learning interpretable models.

[55] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

[56] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[57] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–3112.

[58] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1–9.

[59] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus,
R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

[60] Tschandl, P., Rosendahl, C., and Kittler, H. (2018). The ham10000 dataset: A large
collection of multi-source dermatoscopic images of common pigmented skin lesions.
arXiv preprint arXiv:1803.10417.

References 55

[61] Ustun, B. and Rudin, C. (2016). Supersparse linear integer models for optimized
medical scoring systems. Machine Learning, 102(3):349–391.

[62] Wagstaff, K. L. and Lee, J. (2018). Interpretable discovery in large image data sets.
arXiv preprint arXiv:1806.08340.

[63] Wang, F. and Rudin, C. (2015). Falling rule lists. In Artificial Intelligence and Statistics,
pages 1013–1022.

[64] Weller, A. (2017). Challenges for transparency. arXiv preprint arXiv:1708.01870.

[65] Wexler, J. (2017). Facets: An open source visualization tool for machine learning
training data.

[66] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer.

[67] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning
deep features for discriminative localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2921–2929.

[68] Zhu, H. and Rohwer, R. (1995). Information geometric measurements of generalisation.

[69] Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing deep neural
network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595.

Appendix A

Sensitivity Analysis in Images

Depeweg et al. [17] determine the features affecting uncertainty in BNNs using a gradient-
based approach, by taking the derivative of epistemic and aleatoric uncertainties with respect
to each input feature. Features with high aleatoric sensitivity suggest a dependence on
unobserved variables, while features with high epistemic sensitivity suggest that these
features should be monitored to remain in regions where the model is confident. This
approach works well when features can vary independently.

In Fig. A.1 we show the results of directly applying the gradient-based sensitivity
approach to images. In images, patches of neighboring pixels are often similar, but with
the gradient-based approach the sensitivity of a pixel is not similar to that of surrounding
pixels. Furthermore, images are a composite of three colour channels, and the sensitivity
approach considers each channel separately, thus generating three sensitivity maps. These
two limitations motivate an alternative approach to visualising uncertainty that is smooth in
the input features, which is the focus of our work.

58 Sensitivity Analysis in Images

(a) Original Image

(b) Sensitivity maps

Fig. A.1 (A) Original image from the CIFAR10 test set. (B) Sensitivity of epistemic uncer-
tainty (top row) and aleatoric uncertainty (bottom row) with respect to each pixel of the red,
green, and blue color channels.

Appendix B

Additional Salience Visualisations

B.1 Robustness Across BNN replicates

The visualisations shown previously compute ∆Ui(x∗) from a single BNN. However, we
trained three replicate BNNs on the same dataset, which only differ in random seeds. In
Fig. B.1 we show the salience maps generated from these model replicates, suggesting that
convergence of variational parameters and the visualisations are robust to random seeds.

Fig. B.1 Epistemic and aleatoric uncertainty salience maps generated three replicates of the
BNN on a CIFAR10 test image.

60 Additional Salience Visualisations

B.2 Absolute Magnitudes of Uncertainty Change

In Figs. 5.6 and 5.7 we overlay ∆Ui(x∗) on the input image. Here we show the magnitude
of ∆Ui(x∗) for the same images (Fig. B.2). The magnitude of ∆Ui(x∗) tends to be higher
for images with high predictive uncertainty (when the classification is uncertain) than those
with low predictive uncertainty. This suggests that for images that are confidently predicted,
uncertainty is robust to the obscuration of the object. Perhaps in these cases, the background
pixels provide enough information to classify the object, and are consistent with those seen
in training, unlike images with unconventional backgrounds that have higher predictive
uncertainty

B.2 Absolute Magnitudes of Uncertainty Change 61

(a) Examples with high predictive uncertainty

(b) Examples with low predictive uncertainty

Fig. B.2 Magnitudes of ∆Ui(x∗), rather than overlays, for when a feature is known compared
to when it is not.

62 Additional Salience Visualisations

B.3 Additional Visualisations

We show visualisations of uncertainty for random test images, rather than selecting for high
and low predictive uncertainty (Fig. B.3). The salience maps for epistemic and aleatoric
uncertainty are similar when the classification is certain (high maximal softmax and low
predictive uncertainty), but diverge in uncertain classifications.

Fig. B.3 Visualisations of epistemic and aleatoric uncertainty salience maps for 10 randomly
selected test images. Colorscale contrast increased for visualisation.

	Table of contents
	List of figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Research Aims
	1.3 Thesis Outline

	2 Background
	2.1 Deep Neural Networks
	2.1.1 Convolutional Neural Networks
	2.1.2 Error Backpropagation

	2.2 Bayesian Neural Networks
	2.2.1 Posterior Weight Distribution
	2.2.2 Variational Inference
	2.2.3 Bayesian Predictive Distribution

	2.3 Uncertainty Estimation
	2.3.1 Why Should We Decompose Predictive Uncertainty?
	2.3.2 Decomposing Predictive Uncertainty in Classification
	2.3.3 Uncertainty Intuition

	3 Related Work
	3.1 What is Interpretability and Why is it Hard?
	3.2 How Do We Make Models Interpretable?
	3.3 Additional Challenges with Interpretability in Images
	3.4 Interpretations of Uncertainty

	4 Methodology
	4.1 Approach
	4.1.1 Review of Predictive Difference
	4.1.2 Extension to Uncertainty
	4.1.3 Implementation Details

	4.2 Bayesian Neural Network Implementation
	4.3 Datasets

	5 Results
	5.1 Uncertainty in Bayesian Neural Networks
	5.2 Uncertainty Decomposition
	5.2.1 Uncertainty Decomposition with Synthetic Data
	5.2.2 Uncertainty Decomposition in CIFAR10

	5.3 Mapping Uncertainty onto Input Pixels
	5.3.1 Epistemic and Aleatoric Uncertainty
	5.3.2 Comparison to Predictive Difference
	5.3.3 Adding More Training Data
	5.3.4 Skin Lesion Diagnosis

	6 Conclusions
	6.1 Limitations of our approach
	6.2 Future work

	References
	Appendix A Sensitivity Analysis in Images
	Appendix B Additional Salience Visualisations
	B.1 Robustness Across BNN replicates
	B.2 Absolute Magnitudes of Uncertainty Change
	B.3 Additional Visualisations

