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Abstract Autonomous mobile-manipulation robots need to sense and interact with
objects to accomplish high-level tasks such as preparing meals and searching for ob-
jects. To achieve such tasks, robots need semantic world models, defined as object-
based representations of the world involving task-level attributes. In this work, we
address the problem of estimating world models from semantic perception mod-
ules that provide noisy observations of attributes. Because attribute detections are
sparse, ambiguous, and are aggregated across different viewpoints, it is unclear
which attribute measurements are produced by the same object, so data association
issues are prevalent. We present novel clustering-based approaches to this problem,
which are more efficient and require less severe approximations compared to ex-
isting tracking-based approaches. These approaches are applied to data containing
object type-and-pose detections from multiple viewpoints, and demonstrate compa-
rable quality to the existing approach using a fraction of the computation time.

1 Introduction

Much of the everyday human physical environment is made up of coherent phys-
ical objects. Environmental dynamics are well described in terms of the effects of
actions on those objects. Perceptual systems are able to report detections of objects
with type, location, color, and other properties. Humans naturally designate both
goals and prior information in terms of objects. Thus, it is appropriate for robots to
construct ‘mental models’ of their environment that are structured around objects,
their properties, and their relations to one another.

In this work, we define it a semantic world model to be a set of objects with
associated attributes and relations. For concreteness, consider the following tasks
and their potentially relevant objects and attributes:
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• Cooking steaks on a pan: Objects — Steaks, pan, stove, etc.
Attributes — CookedTime, Thickness, SteakPositionRelativeToPan

• Finding chairs for guests: Objects — Furniture, people
Attributes — IsChair, Sittable (if ¬IsChair), Movable, Location, SittingOn

• Rearranging objects on a table: Objects — Items on table
Attributes — Shape, Type, RelativePositionAndOrientation, GraspPoints

A common theme underlying these tasks, and many others, is that successful plan-
ning and execution hinges on good world-state estimation and monitoring. Dynamic
attributes listed above also highlight why object-based representations are uniquely
suitable for dynamic tasks: transition dynamics tends to operate on the level of ob-
jects. For example, it is much more natural to express and reason about a piece of
steak that is being cooked, as opposed to points in a point cloud or cells in an occu-
pancy grid that are ‘cooked’. Although we focus on the static case in this paper, our
ultimate goal is to provide a framework for estimating and monitoring large seman-
tic world models involving objects and attributes that change over time as a result
of physical processes as well as actions by the robot and other agents.

In this work, we address the problem of constructing world models from se-
mantic perception modules that provide noisy observations of attributes. Due to
noise, occlusion, and sensors’ limited field of view, observations from multiple
viewpoints will typically be necessary to produce a confident world model. Because
attribute detections are sparse, noisy, and inherently ambiguous, where it is unclear
which attribute measurements were produced by the same object across different
views, data association issues become critical. This is the greatest challenge; if
the measurement-object correspondences were known, the resulting object-attribute
posterior distributions would be efficiently computable.

We begin by stating a formal model for a simplified 1-D version of the world-
model estimation problem in Sect. 2, and then review a classic solution approach
based on tracking in Sect. 3. The main contribution of this work is the develop-
ment of several novel clustering-based data association approaches, described in
Sects. 4 and 5. Application of the semantic world-modeling framework to object
type-and-pose estimation is then briefly discussed in Sect. 6, followed in Sect. 7 by
experimental results using data collected with a Kinect sensor on a mobile robot.

2 The 1-D Colored-Lights Domain

The approaches described in this paper apply to domains of arbitrary complexity.
For clarity of explanation we begin by introducing a model of minimal complexity
and then use it for an initial demonstration of the methods.

The world consists of an unknown number (K) of stationary lights. Each light is
characterized by its color ck and its location lk ∈ R. A finite universe of colors of
size T is assumed. A robot moves along this 1-D world, occasionally gathering par-
tial views of the world with known field of views [av,bv]⊂R. Within each view, Mv
lights of various colors and locations are observed, denoted by ov

m ∈ [T ], {1, . . . ,T}
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and xv
m ∈ R respectively. These (ov

m,x
v
m) pairs may be noisy (in both color and lo-

cation) or spurious (false positive – FP) measurements of the true lights. Also, a
light may sometimes fail to be perceived (false negative – FN). Given these mea-
surements, the goal is to determine the posterior distribution over configurations
(number, colors, and locations) of lights in the explored region of the world.

We assume the following form of noise models. For color observations, for each
color t, there is a known discrete distribution φ t ∈ ∆ T (estimable from perception
apparatus statistics) specifying the probability of color observations:

φ
t
i =

{
P(no observation for color t light) , i = 0
P(color i observed for color t light) , i ∈ [T ]

. (1)

A similar distribution φ 0 specifies the probability of observing each color given
that the observation was a false positive. False positives are assumed to occur in
a proportion pFP of object detections. For location observations, if the observation
corresponds to an actual light, then the observed location is assumed to be Gaussian-
distributed, centered on the actual location. The variance is not assumed known and
will be estimated for each light from measurement data. For false positives, the
location is assumed to be uniformly distributed over the field of view (Unif[av,bv]).

Next, we present the core problem of this domain. Given sets of color-location
detections from a sequence of views, {{(ov

m,x
v
m)}

Mv
m=1}Vv=1, we want to infer the pos-

terior distribution on the configuration of lights {(ck, lk)}K
k=1, where K is unknown

as well. If we knew, for each light, which subset of the measurements were gener-
ated from that light, then we would get K decoupled estimation problems (assuming
lights are independent from each other). With suitable priors, these single-light es-
timation problems admit efficient solutions; details can be found in the appendix.

The issue is that these associations are unknown. Therefore, we must reason over
the space of possible data associations. For each observation, let zv

m be the index
of the light that the observation corresponds to (ranging in [K] for a configuration
with K lights), or 0 if the observation is a false positive. zv

m is the latent association
for measurement (ov

m,x
v
m). Let zv be the concatenated length-Mv vector of all zv

m
variables in view v, and let {zv} be the collection of all correspondence vectors
from the V views. We then aggregate estimates over all latent associations1:

P
(
{(c, l)}k

∣∣{{(o,x)}m}v

)
= ∑
{zv}

P({(c, l)}|{z} ,{{(o,x)}}) P({z}|{{(o,x)}}) .

(2)

The first term is given by the decoupled estimation problems mentioned above,
and results in a closed-form posterior distribution given in the appendix. The de-
sired posterior distribution on the left is therefore, in exact form, a mixture over the
closed-form posteriors. The problem is that the number of mixture components is
exponential in Mv and V , one for each full association {zv}, so maintaining the full

1 Indices have been dropped to reduce clutter, and will continue to be omitted in the future if clear
from context. For this case, please refer to two paragraphs above for the full set of indices.
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posterior distribution is intractable. Finding tractable approximations to this light
configuration posterior distribution is the subject of Sects. 3–5.

3 A Tracking-Based Approach

If we consider the lights to be stationary targets and the views to be a temporal
sequence, a tracking filter approach can be used. Tracking simultaneously solves
the data association (measurement correspondence) and target parameter estimation
(light colors and locations) problems. Of the wide variety of existing approaches for
this classic problem [4], the multiple hypothesis tracking (MHT) filter [17] is most
appropriate because it allows for an unknown number of targets. In fact, Elfring et al.
[11] recently adopted this approach to the semantic world-modeling problem, and
have provided extensive rationale for using MHTs over other tracking approaches.

We provide a gist of the MHT approach and discuss a problematic issue below;
readers are referred to Elfring et al. [11] for details. The MHT algorithm maintains,
at every timestep (view) v, a distribution over all possible associations of measure-
ments to targets up to v. At each view, MHT therefore needs to propagate each
previous hypothesis forward with each possible association in view v. One way to
consider this is as a tree, where nodes of depth v are associations up to view v, and a
distribution is maintained on the leaves. Each view introduces a new layer of nodes,
where the branching factor is the number of valid associations in that view.

Estimating this branching factor highlights the intractability of the MHT. As-
sume we know which of the existing targets are within the current field of view
based on the hypothesis on previous views (this can be found by gating). Denote the
indices of these targets as the size-Kv set {k}v. Another common assumption used
in the tracking literature is that in a single view, each target can generate at most
one non-spurious measurement. We will refer to this as the one-measurement-per-
object (OMPO) assumption. We now define validity of correspondence vectors zv.
First, by the OMPO assumption, no entry may be repeated in zv, apart from 0 for
false positives. Second, an entry must either be 0, and target index in {k}v, or be
a new (non-existing) index; otherwise, it corresponds to an out-of-range target. A
correspondence zv is valid if and only if it satisfies both conditions.

The following quantities can be found directly from zv:

n0 , Number of false positives (0 entries) ; (3)

n∞ , Number of new targets (non-existing indices) ;

δk , I{Target k is detected (∃m.zv
m = k)} ,k ∈ {k}v ;

n1 , Number of matched targets = Mv−n0−n∞ = ∑
k

δk ,

where I{·} denotes the indicator function and Mv is the number of measurements in
view v. The number of valid associations is given by the following expression:
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Mv

∑
n0=0

Mv−n0

∑
n∞=0

(
Mv

n0,n1,n∞

)
×
(

Kv

n1

)
×n1! =

Mv

∑
n0=0

Mv−n0

∑
n∞=0

Mv!
n0!n∞!

× Kv!
n1!(Kv−n1)!

. (4)

Even with 4 measurements and 3 within-range targets, the branching factor is 304,
so considering all hypotheses is clearly intractable. Many hypothesis-pruning strate-
gies have been devised (e.g., [13, 6]), the simplest of which include keeping the best
hypotheses or hypotheses with probability above a certain threshold. More complex
strategies to combine similar tracks and reduce the branching factor have also been
considered. In the experiments of Sect. 7 we simply keep hypotheses with prob-
ability above a threshold of 0.01. As we will demonstrate in the experiments, an
MHT filter using this aggressive pruning strategy can potentially cause irreversible
association errors and make overconfident conclusions.

4 A Clustering-Based Approach

If we consider all the measurements together and disregard their temporal relation-
ship, we expect the measurements to form clusters in the product space of colors and
locations ([T ]×R), allowing us to derive estimates of the number of lights and their
parameters. In probabilistic terms, the measurements are generated by a mixture
model, where each mixture component is parameterized by the unknown parame-
ters of a light. Since the number of lights in the world is unknown, we also do not
want to limit the number of mixture components a priori.

A useful model for performing clustering with an unbounded number of clusters
is the Dirichlet process mixture model (DPMM) [2, 14], a Bayesian non-parametric
approach that can be viewed as an elegant extension to finite mixture models. The
Dirichlet process (DP) acts as a prior on distributions over the cluster parameter
space. A random distribution over cluster parameters G is first drawn from the DP,
then a countably infinite number of cluster parameters are drawn from G, from
which the measurement data is finally drawn according to our assumed observa-
tion models. Although the model can potentially be infinite, the number of clusters
is finite in practice, as they will be bounded by the total number of measurements
(typically significantly fewer if the data exhibits clustering behavior). The flexibil-
ity of the DPMM clustering model lies in its ability to ‘discover’ the appropriate
number of clusters from the data.

We now derive the DPMM model specifics and inference procedure for the
colored-lights domain. A few more assumptions need to be made and parameters
defined first. Our model assumes that the cluster parameter distribution G is drawn
from a DP prior DP(α,H), where H is the base distribution and α is the concentra-
tion hyperparameter (controlling the similarity of G and H, and also indirectly the
number of clusters). H acts as a ‘template’ for the DP, and is hence also a distri-
bution over the space of cluster parameters. We set it to be the product distribution
of π , the prior on colors, and a uniform distribution over the explored region. To
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accommodate false positives, which occur with probability pFP, we scale G from
the DP prior by a factor of (1− pFP) for true positives.

For ease of notation when deriving the inference procedure, we express the DP
prior in an equivalent form based on the stick-breaking construction [18]. The idea
is that the sizes of clusters are determined by a random process that first selects
some proportion of the whole (‘breaks the stick’), uses one part to define the size
of a cluster, and then recursively subdivides the rest. Parameters are drawn from the
base distribution H and associated with each cluster. More formally:

θ ∼ GEM(α) ; (5)

(cs, ls)∼ H , π×Unif[A;B] ,

where GEM (Grifths-Engen-McCloskey) is the distribution over stick weights θ ,
and π ∈ ∆ (T−1) is a prior distribution on colors, reflecting their relative prevalence.
By defining G(c, l), ∑

∞
s=1 θs×I [(c, l) = (cs, ls)], G is a distribution over the cluster

parameters and is distributed as DP(α,H). The rest of the generative process is:

θ
′
k =

{
pFP , k = 0
(1− pFP)θk , k 6= 0

; Cluster proportions (with FPs) (6)

µk,τk ∼ NormalGamma(ν ,λ ,α,β ) ; Cluster location distr. params.
zv

m ∼ θ
′ , m ∈ [Mv] , v ∈ [V ] ; Cluster assignment (for each obs.)

ov
m ∼

{
φ 0 , zv

m = 0
φ cz , zv

m 6= 0
; Color observation

xv
m ∼

{
Unif[av,bv] , zv

m = 0
N
(
µk,τ

−1
k

)
, zv

m 6= 0
. Location observation

The most straightforward way to perform inference in a DPMM is by Gibbs
sampling. In particular, we derive a collapsed Gibbs sampler for the cluster corre-
spondence variables z and integrate out the other latent variables c,µ,τ,θ . In Gibbs
sampling, we iteratively sample from the conditional distribution of each zv

m, given
all other correspondence variables (which we will denote by z−vm). By Bayes’ rule:

P
(
zv

m = k
∣∣z−vm,{{(o,x)}}

)
(7)

∝P
(
ov

m,x
v
m
∣∣zv

m = k,z−vm,{{(o,x)}}−vm) P
(
zv

m = k
∣∣z−vm,{{(o,x)}}−vm)

∝P
(
ov

m,x
v
m
∣∣{{(o,x)}}−vm

z=k
)
P
(
zv

m = k
∣∣z−vm) .

In the final line, the first term can be found from the posterior predictive distribu-
tions described in the appendix (Eqs. 14 and 17), noting that the observations being
conditioned on exclude (ov

m,x
v
m) and depend on the current correspondence variable

samples (to determine which observations belong to cluster k).
The second term is given by the Chinese restaurant process (CRP), obtained by

integrating out the DP prior on θ . Together with our prior on false positives:
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P
(
zv

m = k
∣∣z−vm)=


(1− pFP)

N−vm
k

α+N−1 , k exists
(1− pFP)

α

α+N−1 , k new
pFP , k = 0

, (8)

where N−vm
k is the number of observations currently assigned to cluster k (excluding

(v,m)), and N is the total number of non-false-positive observations across all views.
By combining Eqs. 7 and 8, we have a method of sampling from the conditional

distribution of individual correspondences zv
m. Although the model supports an in-

finite number of clusters, the modified CRP expression (Eq. 8) shows that we only
need to compute k+2 values for one sampling step, which is finite as clusters with-
out data are removed. One sampling sweep over all correspondence variables {{z}}
constitutes one sample from the DPMM. Given the correspondence sample, finding
the posterior configuration sample is simple. The number of lights is given by the
number of non-empty clusters. Eq. 14 applied with all data belonging to one cluster
provides the posterior distribution on the light’s color. The hyperparameter updates
in Eq. 16 similarly gives the posterior joint distribution on the light’s location and
precision of the observation noise model.

5 Incorporating View-Level Information and Constraints

The DPMM-based solution to the colored-lights problem is a straightforward appli-
cation of the DPMM, but ignores two fundamental pieces of information:

• False negatives (FN): The DPMM does not consider which clusters are visible
when a measurement is made. It may therefore posit a cluster for a spurious
measurement when its absence in other views would have suggested otherwise.

• One-measurement-per-object (OMPO) assumption: Consider the scenario de-
picted in Fig. 1(c), where two blue lights are placed close to each other and hence
easily confusable. The DPMM ignores the OMPO assumption and may associate
both to the same cluster, even if they were both observed in every view.

Both are consequences of the DPMM’s conditional independence assumptions.
To see this, consider the concrete example depicted in Fig. 1, where we wish to

sample cluster assignments for an entire view’s Mv = 4 measurements. The DPMM
Gibbs sampler samples the cluster assignment for each measurement individually,
as shown in Fig. 1(b). This causes the two right-most measurements to be assigned
to the same cluster, a violation of the OMPO assumption. The assumption states
that at most one measurement in a single view can be assigned to each cluster; this
view-level constraint cannot be incorporated on the level of individual measure-
ments (DPMM). Likewise, a false negative only arises if none of the measurements
in a view are assigned to a cluster within the field of view. To handle these con-
straints we must couple the measurements and sample their assignments jointly.
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FP New

(a) View before sampling

FP New

FP New

FP New

FP New

(b) DPMM

FP New

(c) OMPO Violation

FP New

(d) DPMM-FullView

FP New

FP New
FP New

(e) DPMM-Factored

Fig. 1: A concrete example for illustrating concepts in Sect. 5. (a) Each thick outer box depicts
measurements in the same single view (inner box), and the clusters that each measurement can
be assigned to (row below inner box). The view we consider has 4 measurements of lights’ loca-
tions and colors. The existing clusters within the field of view are shown as colored circles (these
were determined from other views). Measurements can also be assigned to the two ‘clusters’ to
the left and right, for false positives and new clusters respectively. The task is to assign one of
the 5 clusters in the bottom row to each measurement in the inner box. (b) The DPMM samples
cluster assignments for each measurement independently. (c) This causes potential violations of the
one-measurement-per-object (OMPO) assumption, where each cluster generates at most one obser-
vation within each view. (d) One solution is to consider all measurement assignments in the view
jointly. However, as explained in Sect. 5.1, this is inefficient. (e) A more efficient approximation is
derived in Sect. 5.2 by jointly considering only measurements that are OMPO-violating. Measure-
ments that are unlikely to cause constraint violation, such as the two left ones in the example, are
considered independently. This provides a trade-off between DPMM and DPMM-FullView.

5.1 DPMM-FullView

More formally, consider the view’s joint correspondence vector zv. The induced
conditional distribution P(zv |z−v) that the DPMM Gibbs sampler uses is, by con-
ditional independence, the product of Mv copies of Eq. 8:

PDPMM
(
zv ∣∣z−v)= pn0

FP (1− pFP)
(n1+n∞) αn∞

[
∏{m}1 N−v

zm

]
∏

(n1+n∞)
m=1 α +N−m

, (9)

where the definitions of n0,n1,n∞ are given in Eq. 3, and {m}1 is the set of indices
that are matched to existing targets (i.e., n1 = |{m}1 |). To incorporate absence in-
formation, suppose we knew which Kv of the existing K lights are within the field
of view, i.e., {k}v from Sect. 3.2 This, together with zv, allows us to determine the
detection indicator variables {δk} (Eq. 3) and their probabilities:

2 The correct Bayesian approach is to integrate over the posterior distribution of each light’s loca-
tion, which is intractable. This can be approximated by sampling the locations, then averaging the
subsequent computations. In practice we found that using the posterior mean was sufficient.
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P({δk}) = ∏
k∈{k}v

[pD(k)]
δk [1− pD(k)]

1−δk , (10)

where pD is the (target-specific) detection probability defined in Eq. 15. We combine
the additional information with the DPMM conditional distribution in a conceptu-
ally simple fashion:

PFullView
(
zv ∣∣z−v,{k}v)

∝ PDPMM
(
zv ∣∣z−v) P({δk}) I [zv satisfies OMPO] . (11)

The final term evaluates to 1 if the joint correspondence satisfies the OMPO assump-
tion, and 0 otherwise. Hence by construction the correspondence variables sampled
from this conditional distribution will incorporate the FN and OMPO constraints.

Although PFullView combines all the desired information, the inherent difficulty
is hidden in the ‘∝’ sign. The distribution first needs to be normalized before we
can sample from it, which is inefficient now because the support of the distribution
is the set of correspondence vectors satisfying the OMPO assumption. The OMPO
constraint fully couples the measurements’ cluster assignments, and all assignments
must be considered jointly, as depicted in Fig. 1(d). We have essentially reverted to
the high branching factor of the MHT! (The exponential blowup of the hypothesis
tree is still avoided by sampling.) In the Fig. 1 example, PFullView must be evaluated
for 304 different values of zv, compared to the 4×5 = 20 required for the DPMM.

5.2 DPMM-Factored

A closer look at the nature of the OMPO violation suggests a potential approxi-
mation to PFullView. In Fig. 1(c), the violation is caused by only the two right-most
measurements; the two measurements on the left are not easily confusable with the
others and hence are easy to handle from a data association perspective. This sug-
gests coupling only those measurements that cause OMPO violations. More gen-
erally, suppose we can partition each view’s set of measurements into ‘violating’
subsets, where all OMPO violations are contained within a single subset (with high
probability). That is, a good partition has the property that any two measurements
belonging to different subsets will have low probability of being assigned to the
same cluster (and hence causing an OMPO violation). Let P denote such a parti-
tion, and let

{
zv

p
}

p∈P denote the restrictions of zv to each subset p ∈P . Then:

I [zv satisfies OMPO]≈ ∏
p∈P

I
[
zv

p satisfies OMPO
]
. (12)

Returning to Fig. 1(c), the most refined partition contains three subsets, where the
sole non-singleton contains the two right-most OMPO-violating measurements.

The other two terms in PFullView (Eq. 13) are product distributions that factor
nicely according to P . We therefore arrive at the following factored approximation:
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PFactored
(
zv ∣∣z−v,{k}v)

∝ ∏
p∈P

PDPMM
(
zv

p
∣∣z−vp) P({δk}|p) I

[
zv

p OMPO
]
. (13)

This form makes clear that each factor can be normalized and sampled indepen-
dently. With a good partition, this breaks up the large joint computation in DPMM-
FullView into several smaller ones within each subset of P . Using the partition
described above for the concrete example in Fig. 1 gives us the sampling process
depicted in Fig. 1(e), where only the OMPO-violating measurement pair is con-
sidered jointly. This results in computing 5+ 5+ 22 = 32 values, which is slightly
greater than DPMM (20) but significantly less than DPMM-FullView (304).

One issues remains: Where does the partition come from? This is crucial for all
factored approximation: the aggressiveness of partitioning determines the trade-off
between approximation error and efficiency. On one extreme, the DPMM model is
similar to a fully-factored model (but does not take into account false negatives);
on the other extreme, DPMM-FullView is equivalent to a one-set partition. The
example in Fig. 1(c) once again provides an answer: ‘violating’ subsets can be found
by examining clusters in the DPMM samples. Specifically, if measurements tend to
be assigned to the same cluster across samples, then clearly they are strong violators
and should be considered jointly. We therefore group measurements together if the
proportion of samples in which they are assigned to the same cluster exceeds some
threshold value. This proportion allows one to select an appropriate trade-off level.

6 Application to Object Type-and-Pose Estimation

As mentioned in Sect. 2, the colored-lights domain is representative of the seman-
tic world-model estimation problem by considering lights as objects and locations
and colors as attributes. Extension to additional attributes and higher-dimensional
locations (3-D locations, 4-D or 6-D poses) is straightforward since the correspon-
dence priors described in Sects. 3–5 do not depend on the observations. If attributes
are independent, we simply take the product of their observation models when de-
termining their posterior or predictive distributions, e.g., in Gibbs sampling (Eq.
7). Dependent attributes will need to be jointly considered as a single unit. For ex-
ample, for pose estimates with non-diagonal error covariances, the normal-gamma
prior needs to be replaced with a normal-Wishart prior.

As a proof of concept, we apply the discussed approaches to object type-and-pose
estimation on tabletop scenes, illustrated in Fig. 2. This is similar to the colored-
lights domain, where ‘type’ is equivalent to ‘color’, and ‘pose’ is a 3-D version of
‘location’.3 3-D point cloud data was obtained from a Kinect sensor mounted on a
mobile robot. A ROS perception service attempts to detect instances of the known
shape models in a given point cloud. This is done by locating horizontal planes in
the point cloud, finding clusters of points resting on the surface, and then doing

3 For simplicity, we assume that the error covariance is axis-aligned and use an independent
normal-gamma prior for each dimension, but it is straightforward to extend to general covariances.
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(a) Single viewpoint (b) Aggregation of object detections from multiple viewpoints

Fig. 2: (a) Given a tabletop scene (top), we want to estimate the types and poses of objects in the
scene using a black-box object detector. From a single Kinect RGB-D image, however, objects may
be occluded or erroneously classified. In the rendered image (middle; detections superimposed in
red), three objects are missing due to occlusion, and the bottom two objects have been misidenti-
fied. The semantic attributes that result in our representation are very sparse (bottom; dot location
is measured 2-D pose, color represents type). (b) Aggregation of measurements from many differ-
ent viewpoints (top) is therefore needed to construct good estimates. However, this introduces data
association issues of the type addressed in this work, especially when multiple instances of the
same object type are present. From all the object detection data, as shown (bottom) by dots (each
dot is one detection), our goal is to estimate the object types and poses in the scene (shown as thick
circles centered around location estimate; color represents type, circle size reflects uncertainty).
The estimate above identifies all types correctly with minimal error in pose.

stochastic gradient descent over the space of poses of the models to find one that
best matches the cluster.4 Example matches for a scene are illustrated in Fig. 2(a).

As shown, multiple instances of the same object type are present (increasing as-
sociation difficulty), objects may be partially or fully occluded from a single view-
point (cyan patches are occluded regions), object types can be confused (the white
L-shaped block on the left), and pose estimates are noisy (the orange box in the cen-
ter). Aggregation of object detections across different viewpoints and solving the
subsequent data association issues, as depicted in Fig. 2(b), was therefore essential.

For our scenarios, objects of 4 distinct types were placed on a table. A robot
moved around the table in a circular fashion, obtaining 20-30 views in the process.
We constructed 12 scenes of varying object and occlusion density to test our ap-
proaches; results for 4 representative scenarios are described in the next section.

7 Results

Qualitative results for 4 representative scenarios are shown in Fig. 3. Images from
above are for comparison convenience only; the camera’s viewing height is much

4 We thank Jared Glover and Sanja Popovic for the perception system implementation and support.
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3

4

(a) Scene from above (b) MHTF (c) DPMM (d) DPMM-Factored

Fig. 3: Qualitative results for three world-model estimation approaches in four scenarios. The
bird’s-eye view of the scenes is for comparison convenience only; the actual viewing height is much
closer to the table. The most likely hypothesis is shown for MHTF, and the maximum a posteriori
sample is shown for the clustering-based approaches. Each small colored dot is a semantic (object
type-and-pose) detection. Each target / cluster is depicted by an ellipse, centered at the posterior
mean location. Ellipse axis lengths are proportional to the standard deviation in their respective
dimensions. Ellipses are color-coded by the most likely posterior object type: red = red soup can,
black = orange baking soda box, green = white L-shaped block, blue = blue rectangular cup. Line
thickness is proportional to cluster size. See text in Sect. 7 for qualitative comparisons.

closer to the table height, as shown in Fig. 2(a), so in each view only a subset of
objects is observable. We compare three approaches: multiple hypothesis tracking
(MHTF from Sect. 3), generic DPMM clustering (DPMM from Sect. 4), and the
factored approximation to DPMM-FullView (DPMM-Factored from Sect. 5.2). In
Fig. 3, the most likely hypothesis is shown for MHTF, and the maximum a posteriori
(MAP) sample (out of 100) is shown for the clustering-based approaches.

All approaches work well for scenario 1, where objects are spaced far apart. As
objects of similar type are placed near each other, DPMM tends to combine clusters
since it ignores the OMPO assumption. This is most apparent in scenario 3, where
two soup cans (red) and three soda boxes (black) are combined into large clusters.
By reconsidering the OMPO assumption, DPMM-Factored performs significantly
better and is on par qualitatively with the MHTF, except for an extra cluster (bottom
left, green) in scenario 2. In this case, the measurements corresponding to the white
L-shaped object are dispersed, causing the shown extra-cluster error to be likely.
Examining more samples reveals that a significant proportion (31%) do not have the
extra cluster; they just happen not to be MAP samples. This means that the estimator
has signficant uncertainty as to whether or not the extra object exists. Although in
this case the DPMM-Factored MAP sample is wrong, it highlights a feature of
our approach. Consider a task, e.g., grasping, that requires an accurate estimate of
this object’s neighborhood. Given the high uncertainty in the samples, the robot
should decide to gather more observations of the region instead of operating based



Data Assocation for Semantic World Modeling from Partial Views 13

Table 1: Average accuracy metrics and computation wall times for the four Fig. 3 scenarios.
“DPMM-Factored” is denoted “Factored” below in the final row due to space constraints. Wall
times are computed on a single core of an 2.66 GHz Intel Core i7 processor, using implementations
in Python. Times are not provided for Raw since no processing on the measurements is required.

Metric Error (cm) in % most likely Num. missed Num. spurious Computation
→ location estimate type is correct objects (FNs) clusters (FPs) wall time (s)

Scenario 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Raw 2.5 2.7 1.9 2.1 98 93 67 56 2.0 3.7 5.4 2.0 0.8 1.3 0.3 0.7 N/A
MHTF 2.1 2.8 1.5 2.6 100 100 97 100 0.0 0.0 0.9 0.6 0.6 0.7 0.1 0.6 492 263 833 3.0
DPMM 1.8 2.7 3.2 2.6 95 95 91 92 2.8 4.9 4.1 0.7 1.3 2.1 0.5 0.1 89 23 4 2.6
Factored 2.0 2.6 1.5 2.0 95 95 94 94 0.5 0.4 1.8 0.2 0.2 1.6 0.3 0.1 146 83 13 4.3

on the incorrect MAP sample. In contrast, the MHTF is over 90% certain of its
estimate because most other possibilities have been pruned. Although MHTF would
have been less certain as well if all hypotheses were retained during filtering, the
necessary aggressive pruning tends to make MHTF overconfident in its estimates.

Scenario 4 highlights another related difference between the tracking filter and
batch approaches. Here two closely-arranged orange boxes are placed near a shelf,
such that from most views at most one of the two boxes can be seen. Only in the final
views of the sequence can both be seen (imagine a perspective from the bottom-left
corner of the image). Due to the proximity of the boxes, and the fact that at most
one was visible in the early views, MHTF eventually pruned all the then-unlikely
hypotheses positing that measurements came from two objects. When finally both
are seen together, although a hypothesis with two orange boxes resurfaces, it is too
late: the remaining association hypotheses already associate all previous measure-
ments of the boxes to the same target, in turn giving an inaccurate location estimate.
In contrast, DPMM-Factored re-examines previous associations (in the next sam-
pling iteration) after the two boxes are seen together, and can correct such errors.
One way to consider this difference is that DPMM-Factored is a batch algorithm,
whereas MHTF is simply a forward filter and does not have this capability.

Quantitative metrics are given in Table 1, averaged over the association hypothe-
ses for MHTF and over 100 samples (after discarding burn-in) for DPMM and
DPMM-Factored. To evaluate predicted targets and clusters against our manually-
collected ground truth, for each ground truth object, the closest cluster within a 5 cm
radius is considered to be the estimate of the object. If no such cluster exists, then
the object is considered missed; all predicted clusters not assigned to objects at the
end of the process are considered spurious. We also compare against a baseline ap-
proach, Raw, that does not perform any data association. It uses the object types and
poses perceived in each view directly as a separate prediction of the objects present
within the visible field of view. The metrics in the table are evaluated for each view’s
prediction, and the Raw table rows show the average value over all views. The lo-
cation and type metrics are only computed for clusters assigned to detected objects,
i.e., the clusters whose number is being averaged in the third metric.

The need for aggregating measurements across views is exemplified by Raw’s
tendency to miss objects or confuse their types within single views. DPMM over-
comes the latter issue by clustering across views, but still misses many objects be-
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cause it ignores the OMPO assumption and agglomerates nearby similar objects.
DPMM-Factored approximately respects this constraint and performs significantly
better, missing few objects while maintaining accuracy in the posterior type-and-
pose estimates. Although quantitatively it is slightly behind MHTF, this extra im-
provement comes at a several-factor computational expense, and potentially intro-
duces filtering-related overconfidence issues mentioned earlier.

8 Related Work

Cox and Leonard [7] first considered data association for world modeling, using an
MHT approach as well, but for low-level sonar features. The motion correspondence
problem, which is similar to ours, has likewise been studied by many (e.g., [8, 9]),
but typically again using low-level geometric and visual features only. Perhaps most
similar to our problem is the recent work of Elfring et al. [11], which considers
attribute-based anchoring and semantic world modeling with an MHT approach.

To our knowledge, our application of clustering to semantic world modeling is
novel. More generally, sampling-based approaches have been applied to data associ-
ation ([9, 15]), and may be applicable to approximate our DPMM-FullView model.

The important role of objects in spatial representations and semantic mapping
was explored by Ranganathan and Dellaert [16], although their focus was on place
modeling and recognition. Anati et al. [1] have also used the notion of objects for
robot localization, but did not explicitly estimate their poses.

Object recognition and pose estimation has received widespread attention from
the computer vision and robotics communities. Hager and Wegbreit [12] provide
a good review as well as a unique approach. For pose estimation from multiple
viewpoints, active perception has also been popular recently (e.g., [10, 3]). Our work
differs in that we place no assumptions on the choice of camera poses, and we
focus on data association issues. Moreover, we emphasize that object type-and-pose
estimation was only chosen as a concrete and familiar proof of concept application,
and our framework is applicable to many other semantic attributes and tasks.

9 Discussion

We have presented several clustering-based data association approaches for esti-
mating semantic world models. We use Dirichlet process mixture models (DPMM)
as our underlying framework. However, DPMMs perform poorly in their generic
form because they ignore a crucial view-level constraint. Two improvements were
therefore developed by incorporating the constraint exactly and approximately re-
spectively. In preliminary experiments based on tabletop object type-and-pose esti-
mation, the latter approach (DPMM-Factored) achieved performance comparable
to an existing tracking-based approach using a fraction of the computation time.
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As discussed in the introduction, semantic world models are useful in many
object-centric tasks, involving a diverse set of attributes. We are currently explor-
ing applications involving attributes beyond object type and pose. To be truly ap-
plicable, world models must also cope with objects moving over extended periods
of time. Extending our framework to handle temporal dynamics while maintaining
tractability over long horizons is the subject of future work.

Appendix: Posterior and predictive distributions for a single light

In this appendix, we verify the claim from Sect. 2 that finding the posterior and pre-
dictive distributions on color and location for a single light is straightforward, given
that we know which observations were generated by that light. Let {(o,x)} denote
the set of light color-location detections that correspond to a light with unknown
parameters (c, l). Color and location measurements are assumed to be independent
given (c, l) and will be considered separately. We assume a known discrete prior dis-
tribution π ∈ ∆ (T−1) on colors, reflecting their relative prevalence. Using the color
noise model (Eq. 1), the posterior and predictive distributions on c are:

P(c |{o}) ∝

[
∏

o
φ

c
o

]
×πc ; P

(
o′
∣∣{o})= T

∑
c=1

P
(
o′
∣∣c) P(c|{o}) = T

∑
c=1

φ
c
o′ P(c |{o}) . (14)

We can use this to find the light’s probability of detection:

pD , 1−P
(
o′ = 0

∣∣{o})= 1−
T

∑
c=1

φ
c
0 P(c |{o}) . (15)

Unlike the constant false positive rate pFP, the detection (and false negative) rate is
dependent on the light’s color posterior.

For location measurements, we emphasize that both the mean µ and precision
τ = 1

σ2 of the Gaussian noise model is unknown. Modeling the variance as un-
known allows us to attain a better representation of the location estimate’s empirical
uncertainty, and not naı̈vely assume that repeated measurements give a known fixed
reduction in uncertainty each time. We use a standard conjugate prior, the distribu-
tion NormalGamma(µ,τ;λ ,ν ,α,β ). The typical interpretation of normal-gamma
hyperparameters is that the mean is estimated from λ observations with mean ν ,
and the precision from 2α observations with mean ν and variance β

α
. It is well

known (e.g., [5]) that after observing n observations with sample mean µ̂ and sam-
ple variance ŝ2, the posterior is a normal-gamma distribution with parameters:

λ
′ = λ +n ; ν

′ =
λ

λ +n
ν +

n
λ +n

µ̂ ; α
′ = α +

n
2

; β
′ = β +

1
2

(
nŝ2 +

λn
λ +n

(µ̂−ν)2
)

.

(16)

Often we are only interested in the mean; the marginal distribution on µ is a t-
distribution with mean ν , precision αλ

β (λ+1) , and 2α degrees of freedom.
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The upshot of using a conjugate prior for location measurements is that the
marginal likelihood of location observations has a closed-form expression. The pos-
terior predictive distribution for the next location observation x′ is obtained by inte-
grating out the latent parameters µ,τ , and has the following expression:

P
(
x′
∣∣{x} ; λ ,ν ,α,β

)
=
∫
(µ,τ)

P(x |µ,τ)P(µ,τ |{x} ; ν ,λ ,α,β ) =
1√
2π

β ′α
′

β+α+

√
λ ′√
λ+

Γ (α+)

Γ (α ′)
,

(17)

where the hyperparameters with ‘′’ superscripts are updated according to Eq. 16
using the empirical statistics of {x} only (excluding x′), and the ones with ‘+’ su-
perscripts are likewise updated but including x′. The ratio in Eq. 17 assesses the fit
of x′ with the existing observations {x} associated with the light.
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