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Abstract. We introduce a new variant of the Goemans-Williamson (GW)
scheme for the Prize-Collecting Steiner Tree Problem (PCST). Motivated
by applications in signal processing, the focus of our contribution is to
construct a very fast algorithm for the PCST problem that still achieves
a provable approximation guarantee. Our overall algorithm runs in time
O(dm logn) on a graph with m edges, where all edge costs and node
prizes are specified with d bits of precision. Moreover, our algorithm
maintains the Lagrangian-preserving factor-2 approximation guarantee
of the GW scheme.
Similar to [Cole, Hariharan, Lewenstein, and Porat, SODA 2001], we use
dynamic edge splitting in order to efficiently process all cluster merge
and deactivation events in the moat-growing stage of the GW scheme.
Our edge splitting rules are more adaptive to the input, thereby reducing
the amount of time spent on processing intermediate edge events.
Numerical experiments based on the public DIMACS test instances show
that our edge splitting rules are very effective in practice. In most test
cases, the number of edge events processed per edge is less than 2 on
average. On a laptop computer from 2010, the longest running time of
our implementation on a DIMACS challenge instance is roughly 1.3 sec-
onds (the corresponding instance has about 340,000 edges). Since the
running time of our algorithm scales nearly linearly with the input size
and exhibits good constant factors, we believe that our algorithm could
potentially be useful in a variety of applied settings.
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1 Introduction

The prize-collecting Steiner tree problem (PCST) is a generalization of the clas-
sical Steiner tree problem. Given a weighted graph with designated terminal
nodes, the Steiner tree problem requires us to find a minimum-cost spanning
tree of the terminal nodes. The prize-collecting variant of the problem relaxes
the connectivity constraint by assigning a prize to each terminal node: instead
of connecting a terminal node to our spanning tree, we can instead choose to
forego the prize of the omitted terminal. The goal is to minimize the sum of
costs incurred by adding edges to and omitting terminals from our spanning
tree. This formulation naturally captures the trade-off between the costs of con-
necting a terminal and omitting it from the solution. The PCST problem has
found applications in communications network design [JMP00], computational
biology [IOSS02,DKR+08], and event detection in social networks [RAGT14].

Since it is a generalization of the Steiner tree problem, the PCST problem
is NP-hard [Kar72]. Therefore, research on algorithms with guaranteed poly-
nomial running time has focused on providing good approximation guarantees.
The first algorithm with a constant-factor guarantee appeared in [BGSLW93],
which also introduced the PCST problem. The algorithm gives a factor-3 guar-
antee and is based on solving a linear program. Building on [AKR91], the sem-
inal work of Goemans and Williamson [GW95] achieves a factor-2 guarantee
with a purely combinatorial primal-dual algorithm. Following this line of work,
the currently best known approximation ratio for the PCST problem is 1.9672
[ABHK11,HK13]. On the question of hardness of approximation, the authors of
[CC02] show that it is NP-hard to approximate the Steiner tree problem, and
hence also PCST, within a factor of 96/95.

The specific motivation for our contribution arises from applications in sig-
nal processing and sparse approximation. In this context, we are interested in
solving PCST instances on large graphs, e.g., a grid graph with n = 106 nodes
corresponding to a digital image with a resolution of 1 Megapixel. Since the
originally proposed GW scheme has a running time of O(n2 log n) (or strictly
speaking even O(n3 log n) for the unrooted PCST problem), a direct implemen-
tation of the GW algorithm quickly becomes impractical in such a regime of
parameters. Therefore, our focus is on algorithms with a very fast running time
that still offer a good approximation guarantee.

In this paper, we propose a fast, data-adaptive variant of the GW scheme
that has a running time of O(m log n) when the input is specified with con-
stant precision. In particular, our algorithm builds on [CHLP01], who give an
implementation of the GW scheme running in O(m log2 n) time where m is the
number of edges in the input graph. In comparison, our algorithm saves an extra
logarithmic factor in the running time, while still achieving the same factor-2
approximation guarantee as the GW scheme. Our experimental results show
that our algorithm is highly efficient; on the test cases of the DIMACS chal-
lenge, the longest running time for a single instance is roughly 1.3s on a laptop
computer from 2010. This instance has about 170,000 nodes and 340,000 edges
(PCSPG-hand/handbd07.stp). To the best of our knowledge, our algorithm is
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the first practical implementation of a fast GW scheme following an approach
similar to [CHLP01].

This paper is organized as follows. We introduce the necessary notation and
give a high-level description of the GW scheme in Section 2. We then present
our algorithm in Section 3 and analyze its performance in Section 4. Finally, we
show results of our computational experiments on the public test data provided
by DIMACS, as well as some of our own test cases, in Section 5.

2 Preliminaries

Unless noted otherwise, we assume the following notation in the rest of the paper.
G = (V,E) is a connected, undirected graph with edge weights c : E → R+

0 and
node prizes π : V → R+

0 . The number of nodes is n = |V | and the number of
edges is m = |E|. For a subset of nodes U ⊆ V , we write π(U) =

∑
u∈U π(u),

and adopt the same convention for a subset of E. We use U to denote the
complement with respect to V , i.e., U := V \ U . Finally, we sometimes use a
subgraph H = (VH , EH) in place of the corresponding node or edge sets if the
meaning is clear from context.

Definition 1 (Prize-collecting Steiner tree problem (PCST)). Find a
subtree T of G such that c(T ) + π(T ) is minimized.

This definition is for the unrooted variant of the PCST problem. The original
GW algorithm was for the rooted variant in which a designated root node is
required to be part of the solution T . While the unrooted variant can always be
reduced to the rooted variant by running the rooted algorithm with all n choices
of the root node, this incurs a factor-n penalty in the running time. Later works
address this issues and introduce algorithms that directly solve the unrooted
variant [JMP00,FFFdP10]. In the rest of the paper, we limit our attention to
the unrooted PCST problem defined above.

The GW algorithm satisfies the following approximation guarantee for the
PCST problem:

c(T ) + 2π(T ) ≤ 2c(TOPT ) + 2π(TOPT ) , (1)

where TOPT is a tree minimizing c(TOPT )+π(TOPT ). It is worth noting that this
guarantee is stronger than a standard factor-2 approximation guarantee because
of the 2π(T ) term on the left hand side (for a standard factor-2 guarantee, simply
π(T ) would suffice). This guarantee is sometimes called a Lagrangian-preserving
guarantee and was introduced for the GW algorithm in [CRW04]1. Our algorithm
will also satisfy this stronger type of guarantee.

1 In fact, the stronger Lagrangian-preserving guarantee was already implicitly pro-
vided by the approach in [GW95]; see [ABHK11] for a more detailed account of
these results.
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2.1 The Goemans-Williamson (GW) algorithm

We now give a high-level overview of the GW algorithm. For a more detailed
exposition, we refer the reader to [GW95,WS11,FFFdP10]. Before we begin with
our description, we introduce the definition of a laminar family. Intuitively, a
laminar family describes a recursive partitioning of the nodes into nested subsets.
From a bottom-up perspective, this corresponds to a clustering of the nodes in
which new clusters are formed by merging existing clusters. Here and in the rest
of the paper, we use the term “cluster” when we refer to elements in a laminar
family, defined as follows.

Definition 2 (Laminar family). A family L of non-empty subsets of V is a
laminar family if one of the following three cases holds for all L1, L2 ∈ L : either
L1 ∩ L2 = {}, or L1 ⊆ L2, or L2 ⊆ L1.

We say that a set L ∈ L is maximal if there is no L′ ∈ L with L ( L′.

The GW algorithm can be divided into two stages:

1. In the growth stage, the algorithm maintains a set of clusters (a laminar
family) and merges or deactivates clusters until only a single active cluster
remains. In parallel, the algorithm maintains a spanning tree for each cluster.

2. In the pruning stage, the algorithm removes unnecessary nodes from the
spanning tree of the last active cluster identified in the growth stage.

The original pruning strategy introduced in [GW95], which we call GW pruning,
depends on the laminar family found in the growth stage. The paper [JMP00]
introduces another pruning strategy, so-called strong pruning, which only de-
pends on the spanning tree identified at the end of the growth stage and also
achieves an approximation ratio at least as good as GW pruning. In essence,
strong pruning solves the PCST problem exactly on this spanning tree via a
dynamic program (DP) that exploits the tree structure. Since this DP can be
implemented relatively easily in linear time [JMP00], we focus on the GW growth
stage in the rest of this paper and refer the reader to [JMP00] for the pruning
stage.

We now describe the growth stage of the GW algorithm in more detail,
using the “moat-growing” interpretation introduced in [JP95]. The growth stage
clusters the nodes of G in a laminar family L such that every node of V is
always in a cluster, i.e., the maximal sets of L partition V . Every cluster in L
is either active or inactive and only maximal sets can be active. Initially, each
node forms its own active singleton cluster.

Furthermore, the algorithm maintains a moat yC ∈ R+
0 for each cluster C ∈

L . Initially, all moat values are 0. Only the moats of currently active clusters
grow, but inactive clusters keep their moats. In the primal-dual interpretation of
the GW algorithm, the moats can be viewed as the dual variables. In particular,
during the execution of the algorithm, the following two properties always hold:

– For every edge e = (u, v), the following holds: let C be the set of clusters C ∈
L such that either u ∈ C or v ∈ C, but not both. Then we have

∑
C∈C yC ≤
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c(e), i.e., the moats on an edge never “spill over”. If this inequality is tight,
we say that the edge constraint is tight.

– For every cluster C ∈ L , the following holds: let C be the set of clusters
C ′ ∈ L such that C ′ ⊆ C (so C contains all clusters that were merged into
C or one of its predecessors over the course of the algorithm). Then we have∑

C′∈C yC′ ≤
∑

v∈C π(v), i.e., the moats in a cluster C and its child-clusters
never exceed the “worth” of the cluster (the sum of prizes). If the ineqality
is tight, we say that the cluster constraint is tight.

Finally, the algorithm maintains a set of edges F such that F restricted to any
cluster C ∈ L forms a spanning tree of C.

We now state the GW algorithm in pseudo code (see Algorithm 2.1). The
algorithm can be viewed as a simulation of the moat-growing process described
above. Based on the current state of the “moat world”, the algorithm decides
when the next event will occur, moves the global time forward to this event, and
processes the event by merging or deactivating clusters accordingly.

Algorithm 1 The GW algorithm for the PCST problem. The growth stage
iteratively clusters the nodes of the graph and builds a corresponding spanning
forest. For details of the pruning stage, see [GW95] or [JMP00].
1: function GWAlgorithm(V,E, c, π)
2: Initialize singleton active clusters, moat values, and the spanning forest F .
3: while there is at least one active cluster do
4: Increase the moat values yC for active clusters C until either an edge

constraint becomes tight or a cluster constraint becomes tight.
5: if an edge constraint for e = (u, v) becomes tight then
6: Let Cu and Cv be the maximal clusters in L containing u and v,

respectively.
7: Deactivate Cu and Cv.
8: Let C′ = Cu ∪ Cv and add C′ as an active cluster to L .
9: Set yC′ = 0.
10: Remove all edges e′ with both endpoints contained in C′ from E.
11: Add e to F .
12: if a cluster constraint for C becomes tight then
13: Mark C as inactive.
14: Run a pruning scheme on F restricted to the active cluster.

We now discuss the running time of the GW algorithm. It is easy to see that
the while-loop in GWAlgorithm (lines 3 to 13) is executed at most 2n times:
every iteration either reduces the number of clusters by one or deactivates a
cluster while creating no new clusters. The main difficulty lies in quickly deter-
mining the next event in line 4. The cluster constraints are (relatively) easy to
handle, for example, using a priority queue. However, detecting when an edge
constraint will become tight requires more care. A straightforward implemen-
tation iterating over all edges would use at least Ω(mn) time. A more efficient
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approach is to maintain another priority queue containing edges sorted by their
remaining slack values. However, care has to be taken when clusters are merged
or deactivated. Note, for instance, that an edge e = (u, v) with previously de-
activated endpoints can become active again when a cluster containing u or v
is merged with an active cluster because the new cluster will grow a moat on
edge e. In [GW95], the authors observe that it is sufficient to keep only a subset
of the edges, i.e., for every pair of clusters, we only need to keep track of the
edge with the smallest remaining slack values. Therefore, every cluster has only
n incident edges at any time and we can update the priority queue for all O(n)
affected edges at merge or deactivation events in O(n log n) time. The primary
contribution of [CHLP01], as well as our work in this paper, is to implement this
moat-growing scheme in nearly-linear time.

2.2 Faster variants of the GW algorithm

The difficulties encountered when accelerating the GW scheme arise from the fact
that there are three different types of edges: “active” edges where both endpoints
are in active clusters, “semi-active” edges where only one endpoint is in an active
cluster, and “inactive” edges with both endpoints inactive. Inactive edges can
be ignored when looking for the next tight edge constraint. However, consider
the active and semi-active edges. The slack values on active edges shrink twice
as fast as the slack values on semi-active edges. Moreover, the type of an edge
can change repeatedly over the course of the GW algorithm as clusters become
inactive and then are activated again after merging with other active clusters.
As a result, the time at which an edge constraint becomes tight can vary for
many edges when the state of a single cluster changes.

There have been multiple approaches to reduce the running time of the GW
algorithm by keeping track of only a subset of the edges and / or processing
several edges in bulk. The work of [Kle94] assigns each edge to one of the end-
points so that the edges assigned to a changing cluster can be updated effi-
ciently. However, edges incident to a changing cluster that is not the cluster they
were assigned to have to be handled individually. The resulting running time is
O(n
√
m log n). The algorithm in [GGW98] maintains only a small set of “best”

(i.e., smallest amount of slack remaining) edges for each cluster. Their approach
requires this set of best edges to be updated after a certain number of merge or
deactivation events, which leads to a running time of O(n2 + n

√
m log log n ).

We build on the approach described in [CHLP01], which introduces dynamic
edge splitting. This approach converts active edges with two active endpoints
to semi-active edges by effectively inserting an inactive sentinel node at the
midpoint of the edge (the sentinels nodes do not need to be maintained explicitly
as part of the graph). This ensures that all edges have at most one active endpoint
and hence the remaining slack values of all edges with currently growing moats
decrease at the same rate. When the algorithm encounters a merge event with a
sentinel node, the sentinel node is removed and a new sentinel node is added at
the midpoint of the remaining part of the edge. Therefore, the distance remaining
on an edge e halves after every merge event involving a sentinel node on edge e.
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The authors show that splitting an edge O(k log n) time suffices to get an
approximation guarantee with an additional 2

nk term, i.e., the cost of the tree
returned by their algorithms is within a factor 2 + 2

nk of the optimal (k is a pa-
rameter that can be chosen). Combined with a careful choice of data structures,
the algorithm runs in O(km log2 n) time.

3 Algorithm

We now introduce our fast variant of the GW algorithm. To the best of our
knowledge, our algorithm is the first practical implementation of a GW-like
algorithm that runs in nearly linear time.

3.1 Overview

On a high level, our algorithm uses a more aggressive and adaptive dynamic
edge splitting scheme than [CHLP01]: our algorithm moves previously inserted
sentinel nodes in order to reach a tight edge constraint quicker than before. By
analyzing the precision needed to represent merge and deactivation events in the
GW algorithm, we prove that our algorithm runs in O(dm log n) time, where d
is the number of bits used to specify each value in the input. For constant
bit precision d (as is often the case in practical applications) our algorithm
hence has a running time of O(m log n). Furthermore, our algorithm achieves
the approximation guarantee (1) exactly without the additional 2

nk term. From
an empirical point of view, our more aggressive splitting scheme produces only
very few additional edge pieces; the number of edge events processed is very
close to 2m, the number of edge events initially created. We demonstrate this
empirical benefit in our experiments (see Section 5).

3.2 Detailed description

Similar to [CHLP01], our algorithm divides each edge e = (u, v) into two edge
parts eu and ev corresponding to the endpoints u and v. We say an edge part p is
active if its endpoint is in an active cluster, otherwise the edge part p is inactive.
The key advantage of this approach over considering entire edges is that all active
edge parts always grow at the same rate. For each edge part p, we also maintain
an event value µ(p). This event value is the total amount that the moats on edge
part p are allowed to grow until the next event for this edge occurs. In order to
ensure that the moats growing on the two corresponding edge parts eu and ev
never overlap, we always set the event values so that µ(eu) + µ(ev) = c(e). As
for edges, we define the remaining slack of edge part eu as µ(eu) −

∑
C∈C yC ,

where C is the set of clusters containing node u.
We say that an edge event occurs when an edge part has zero slack remaining.

However, this does not necessarily mean that the corresponding edge constraint
has become tight as the edge event might be “stale” since the other edge parts
has become inactive and stopped growing since the last time the edge event
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was updated. Nevertheless, we will be able to show that the total number of
edge events to be processed over the course of the algorithm is small. Note that
we can find the next edge event by looking at the edge events with smallest
remaining slack values in their clusters. This is an important property because
it allows us to organize the edge parts in an efficient manner. In particular, we
maintain a priority queue QC for each cluster C that contains the edge parts
with endpoint in C, sorted by the time at which the next event on each edge part
occurs. Furthermore, we arrange the cluster priority queues in an overall priority
queue resulting in a “heap of heaps” data structure. This data structure allows
us to quickly locate the next edge event and perform the necessary updates after
cluster deactivation or merge events.

Algorithm 2 Fast variant of the GW algorithm.
1: function PCSTFast(edges, costs, prizes)
2: InitPCST(edges, costs, prizes)
3: t← 0 . Current time
4: α← n . Number of active clusters
5: while α > 1 do
6: . Returns event time and corresponding edge part
7: (te, pu)← GetNextEdgeEvent()
8: . Returns event time and corresponding cluster
9: (tc, C)← GetNextClusterEvent()
10: if te < tc then
11: t← te
12: RemoveNextEdgeEvent()
13: pv ← GetOtherEdgePart(pu)
14: . GetSumOnEdgePart returns the current moat sum on the edge part
15: . pu and the maximal cluster containing u
16: (s, Cu)← GetSumOnEdgePart(pu)
17: (s′, Cv)← GetSumOnEdgePart(pv)
18: r ← GetEdgeCost(pu)− s− s′ . Remaining amount on the edge
19: if Cu = Cv then . The two endpoints are already in the same cluster
20: continue . Skip to beginning of while-loop
21: if r = 0 then
22: MergeClusters(Cu, Cv)
23: else
24: GenerateNewEdgeEvents(pu, pv)
25: else
26: t← tc
27: RemoveNextClusterEvent()
28: DeactivateCluster(C)
29: α← α− 1

30: StrongPruning()

In addition to the edge events, we also maintain a priority queue of clus-
ter events. This priority queue contains each active cluster with the time at
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which the corresponding cluster constraint becomes tight. Using these defini-
tions, we can now state the high-level structure of our algorithm in pseudo code
(see Algorithm 2) and then describe the two subroutines MergeClusters and
GenerateNewEdgeEvents in more detail.

MergeClusters(Cu, Cv) : As a first step, we mark Cu and Cv as inactive
and remove them from the priority queue keeping track of cluster deactivation
events. Furthermore, we remove the priority queues QCu

and QCv
from the heap

of heaps for edge events. Before we merge the heaps of Cu and Cv, we have to
ensure that both heaps contain edge events on the “global” time frame. If Cu

(or Cv) is inactive since time t′ when the merge occurs, the edge event times in
QCu will have become “stale” because the moat on edge parts incident to Cu did
not grow since t′. In order to correct for this offset and bring the keys in QCu

back to the global time frame, we first increase all keys in QCu
by t− t′. Then,

we merge QCu
and QCv

, which results in the heap for the new merged cluster.
Finally, we insert the new heap into the heap of heaps and add a new entry to
the cluster deactivation heap.

GenerateNewEdgeEvents(pu, pv) : This function is invoked when an edge
event occurs, but the corresponding edge constraint is not yet tight. Since the
edge part pu has no slack left, this means that there is slack remaining on pv.
Let Cu and Cv be the set of clusters containing u and v, respectively. Then
r = c(e)−

∑
C∈Cu∪Cv

yC is the length of the part of edge e not covered by moats
yet. We distinguish two cases:

1. The cluster containing the endpoint v is active.
Since both endpoints are active, we expect both edge parts to grow at the
same rate until they meet and the edge constraint becomes tight. Therefore,
we set the new event values to µ(pu) =

∑
C∈Cu

+ r
2 and µ(pv) =

∑
C∈Cv

+ r
2 .

Note that this maintains the invariant µ(pu) + µ(pv) = c(e). Using the new
event values for pu and pv, we update the priority queues QCu and QCv

accordingly and then also update the heap of heaps.
2. The cluster containing the endpoint v is inactive.

In this case, we assume that v stays inactive until the moat growing on edge
part pu makes the edge constraint for e tight. Hence, we set the new event
values to µ(pu) =

∑
C∈Cu

+r and µ(pv) =
∑

C∈Cv
. As in the previous case,

this maintains the invariant µ(pu)+µ(pv) = c(e) and we update the relevant
heaps accordingly. It is worth noting our setting of µ(pv) reduces the slack
for pv to zero. This ensures that as soon as the cluster Cv becomes active
again, the edge event for pv will be processed next.

Crucially, in GenerateNewEdgeEvents, we set the new event values for
pu and pv so that the next edge event on e would merge the clusters Cu and Cv,
assuming both clusters maintain their current activity status. If one of the two
clusters changes its activity status, this will not hold:

1. If both clusters were active and cluster Cu has become inactive since then,
the next event on edge e will be part pv reaching the common midpoint.
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However, due to the deactivation of Cu, the edge part pu will not have
reached the common midpoint yet.

2. If Cv was inactive and becomes active before the edge event for pu occurs,
the edge event for pv will also immediately occur after the activation for Cv.
At this time, the moat on pu has not reached the new, size-0 moat of Cv,
and thus the edge constraint is not tight.

However, in the next section we show that if all input values are specified with
d bits of precision then at most O(d) edge events can occur per edge. Moreover,
even in the general case our experiments in Section 5 show that the pathological
cases described above occur very rarely in practice. In most instances, only two
edge events are processed per edge on average.

4 Analysis

We now study the theoretical properties of our algorithm PCSTFast. Note
that by construction, the result of our algorithm exactly matches the output
of GWAlgorithm and hence also satisfies guarantee (1). Therefore, we refer
the reader to [FFFdP10,JMP00] for an analysis of the GW scheme with strong
pruning and focus on the running time bounds here.

First, we establish the following structural result for the growth stage of the
GW algorithm (the “exact” algorithm GWAlgorithm, not yet PCSTFast).
Informally, we show that a single additional bit of precision suffices to exactly
represent all important events in the moat growth process.

Theorem 1. Let all node prizes π(v) and edge costs c(e) be even integers. Then
all cluster merge and deactivation events occur at integer times.

Proof. We prove the theorem by induction over the cluster merge and deacti-
vation events occuring in the GW algorithm, sorted by the time at which the
events happen. We will show that the updates caused by every event maintain
the following invariant:

Induction hypothesis Based on the current state of the algorithm, let te be the
time at which the edge constraint for edge e becomes tight and tC be the time
at which the cluster constraint for cluster C becomes tight. Then te and tC are
integers. Moreover, if the merge event at te is a merge event between an active
cluster and an inactive cluster C, then te − tinactive(C) is even, where tinactive(C)

is the time at which cluster C became inactive.
Clearly, the induction hypothesis holds at the beginning of the algorithm: all

edge costs are even, so te =
c(e)
2 is an integer. Since the node prizes are integers,

so are the tC . The assumption on merge events with inactive clusters trivially
holds because there are no inactive clusters at the beginning of the algorithm.
Next, we perform the induction step by a case analysis over the possible events:

– Active-active: a merge event between two active clusters. Since this event
modifies no edge events, we only have to consider the new deactivation event
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for the new cluster C. By the induction hypothesis, all events so far have
occured at integer times, so all moats have integer size. Since the sum of
prizes in C is also an integer, the new cluster constraint becomes tight at an
integer time.

– Active-inactive: a merge event between an active cluster and an inactive
cluster. Let e be the current edge, te be the current time, and C be the
inactive cluster. The deactivation time for the new cluster is the same as
that of the current active cluster, so it is also integer. Since every edge e′
incident to C now has a new growing moat, we have to consider the change
in the event time for e′. We denote the previous event time of e′ with t′e′ .
We distinguish two cases:
• If the other endpoint of e′ is in an active cluster, the part of e′ remaining

has size t′e′ − te and e′ becomes tight at time te +
t′
e′−te
2 because e′ has

two growing moats. We have

t′e′ − te = (t′e′ − tinactive(C))− (te − tinactive(C)) .

Note that both terms on the right hand side are even by the induction
hypothesis, and therefore their difference is also even. Hence the new
event time for edge e′ is an integer.

• If the other endpoint of e′ is an inactive cluster, say C ′, we have to show
that te′ − tinactive(C′) is even, where te′ is the new edge event time for e′.
We consider whether C or C ′ became inactive last:
∗ C became inactive last: from the time at which C became inactive

we know that t′e′ − tinactive(C′) is even. Moreover, we have that te′ =
t′e′ + (te − tinactive(C)). Since te − tinactive(C) is even by the induction
hypothesis, so is te′ − tinactive(C′).
∗ C ′ became inactive last: from the time at which C ′ became inactive

we know that t′e′−tinactive(C) is even. The time of the new edge event
can be written as te′ = te+ t

′
e′− tinactive(C′) (an integer by the induc-

tion hypothesis), which is equivalent to te′−t′e′ = te−tinactive(C′). We
now use this equality in the second line of the following derivation:

te′ − tinactive(C′) = te′ − t′e′ + t′e′ − te + te − tinactive(C′)

= 2(te′ − t′e′) + t′e′ − te
= 2(te′ − t′e′) + (t′e′ − tinactive(C))− (te − tinactive(C)) .

Since te − tinactive(C) is even by the induction hypothesis, all three
terms on the right hand side are even.

– Cluster deactivation: Clearly, a deactivation of cluster C leads to no
changes in other cluster deactivation times. Moreover, edges incident to C
and another inactive cluster will never become tight based on the current
state of the algorithm. The only quantities remaining are the edge event
times for edges e with another cluster endpoint that is active. Note that
up to time tC , the edge e had two growing moats and te was an integer.
Therefore, the part of e remaining has length 2(te − tC), which is an even
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integer. The new value of te is tC +2(te− tC), and since tinactive(C) = tC the
induction hypothesis is restored.

Since the induction hypothesis is maintained throughout the algorithm and im-
plies the statement of the theorem, the proof is complete.

We now use this result to show that the number of edge part events occuring
in PCSTFast is small.

Corollary 1. Let all node prizes π(v) and edge costs c(e) be specified with d bits
of precision. Then the number of edge part events processed in PCSTFast is
bounded by O(dm).

Proof. We look at each edge e individually. For every edge part event A on e that
does not merge two clusters, the following holds: either A reduces the remaining
slack of e by at least a factor of two or the event directly preceeding A reduced
the remaining slack on e by at least a factor of two. In the second case, we charge
A to the predecessor event of A.

So after O(d) edge parts events on e, the remaining slack on e is at most
c(e)
2d

. Theorem 1 implies that the minimum time between two cluster merge or
deactivation events is c(e)

2d+1 . So after a constant number of additional edge part
events on e, the edge constraint of e must be the next constraint to become
tight, which is the last edge part event on e to be processed. Therefore, the total
number of edge part events on e is O(d).

We now show that all subroutines in PCSTFast can be implemented in
O(log n) amortized time, which leads to our final bound on the running time.

Theorem 2. Let all node prizes π(v) and edge costs c(e) be specified with d bits
of precision. Then PCSTFast runs in O(dm log n) time.

Proof. The requirements for the priority queue maintaining edge parts events
are the standard operations of a mergeable heap data structure, combined with
an operation that adds a constant offset to all elements in a heap in O(log n)
amortized time. We can build such a data structure by augmenting a pairing
heap [FSST86] with an offset value at each node.2 Due to space constraints, we
omit the details of this construction here. For the outer heap in the heap of
heaps and the priority queue containing cluster deactivation events, a standard
binomial heap suffices.

We represent the laminar family of clusters in a tree structure: each cluster
C is a node, the child nodes are the two clusters that were merged to form C,
and the parent is the cluster C was merged into. The initial clusters, i.e., the
individual nodes, form the leaves of the tree. By also storing the moat values
at each node, the GetSumOnEdgePart operation for edge part pu can be
implemented by traversing the tree from leaf u to the root of its subtree. However,
the depth of this tree can be up to Ω(n). In order to speed up the data structure,
2 We also choose a pairing heap due to its good performance in practice [SV87,MS91].
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we use path compression in essentially the same way as standard union-find data
structures. The resulting amortized running time for GetSumOnEdgePart
and merging clusters then becomes O(log n). See [MS08, p. 225] for an anlysis
of union-find data structures with path compression only.

This shows that all subroutines in PCSTFast (Algorithm 2) can be imple-
mented to run in O(log n) amortized time. Since there are at most O(dm) events
to be processed in total, the overall running time bound of O(dm log n) follows.

5 Experiments

We now present the results of our computational experiments. As mentioned in
the introduction, we are primarily interested in the running time of our algorithm
on large data sets (while maintaing the approximation guarantee of the GW-
algorithm). First, we test the performance of our algorithm on the public test
of the DIMACS challenge and report the running times and solution values
achieved. In order to investigate the effectiveness of our edge splitting heuristics,
we then look at the number of edge events processed by our algorithm. Finally, we
demonstrate that our algorithm can also solve larger instances fast by reporting
its running time on test cases derived from our signal processing applications.

All experiments were conducted on a laptop computer from 2010 (Intel Core
i7 with 2.66 GHz, 4 MB of cache, and 8 GB of RAM). We used the Debian
GNU/Linux distribution and g++ 4.8 as compiler with the -O3 flag. All reported
running times are averaged over 11 trials after removing the slowest run. The
time spent on reading the input is excluded from the running times stated here,
but all time used for setting up data structures in the algorithm is included.

5.1 Public DIMACS challenge instances

Figure 5.1 shows the running time of our algorithm on the public DIMACS
instances for the unrooted prize-collecting Steiner tree problem (PCSPG). For
a single instance, the maximum running time of our algorithm is roughly 1.3
seconds and most instances are solved significantly faster. The scatter plot also
demonstrates the nearly-linear scaling of our running time with respect to the
input size.

Due to space constraints, we only show detailed results for the ACTMODPC
instances here and refer the reader to Appendix B for the other test case groups.
The Appendix also contains results for the RPCST (rooted PCST) and MWCS
(maximum weight connected subgraph) instances provided by DIMACS. The
“GW LB” column in the results table is a simple lower bound derived from
Equation 1. For some of the test case groups, significantly stronger bounds are
avaible. We refer refer the reader to [CRR01] for tables containing the JMP and
CRR lower bounds. As Table 1 shows, the GW scheme achieves a very good
approximation ratio on these instances, which were derived from problems in
biological network analysis.
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Table 1: Results for the PCSPG-ACTMODPC test instances.

Instance n m Time (ms) Cost GW LB Gap
HCMV 3863 29293 43.130 7375.706 7366.34212 0.13 %
drosophila001 5226 93394 122.449 8286.432 8286.432 0.00 %
drosophila005 5226 93394 160.624 8208.637 7787.0005 5.41 %
drosophila0075 5226 93394 174.134 8136.466 7622.126 6.75 %
lymphoma 2034 7756 5.309 3382.776 3277.43175 3.21 %
metabol_expr_mice_1 3523 4345 6.985 11405.49 10817.35 5.44 %
metabol_expr_mice_2 3514 4332 6.775 16261.0 16021.0 1.50 %
metabol_expr_mice_3 2853 3335 5.505 17052.0 16392.0 4.03 %

5.2 Effectiveness of our edge splitting heuristic

As pointed out in our running time analysis in Section 4, the number of edge
part events determines the overall running time of our algorithm. For input
values specified with d bits of precision, our analysis shows that the algorithm
encounters at most O(d) events per edge. In order to get a better understanding
of our empirical performance, we now look at the number of edge part events
encountered by our algorithm (see Figure 5.2).

The scatter plots show that for all instances, the average number of events
per edge is less than 3. These results demonstrate the effectiveness of our more
adaptive edge splitting heuristics. Moreover, the number of edge events encoun-
tered explains the small running times on the large i640 instances in Figure
5.1.

5.3 The HAND instances

We have produced the HAND instances from our application of the PCST prob-
lem in signal processing. In this application, we are interested in finding a sparse
representation of an input image. Therefore, our graph is a grid graph with one
node for each pixel of the input image. The node prizes correspond to pixel
intensities and we choose the edge costs so that the resulting solution contains
roughly the desired number of pixels (all edges have the same cost).

We have divided our instances into four sets: two of them are smaller im-
ages (around 40,000 pixels) and the other two larger images (around 160,000
pixels). Within each size category, one image is derived from the handwritten
text “DIMACS” and the other from the handwritten text “ICERM”. Figure 3 in
Appendix A contains two example images. The results in Figures 5.1 and 5.2
show that the HAND instances are among the most challenging instances for our
algorithm, both due to their size and due to their large number of edge events.
Moreover, the performance of our algorithm varies widely even for the same
image size. Most likely, this is due to the different noise levels in the images.
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corresponds to one test case group.
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Fig. 2. Average number of edge events processed per edge for the PCSPG instances of
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Table 2: Results for the PCSPG-H test instances.

Instance n m Time (ms) Cost GW LB Gap
hc10p 1024 5120 6.589 73875 56356 31.09 %
hc10u 1024 5120 2.853 747 709 5.36 %
hc11p 2048 11264 17.170 147004 111661 31.65 %
hc11u 2048 11264 6.328 1524 1387 9.88 %
hc12p 4096 24576 54.965 293413 222606 31.81 %
hc12u 4096 24576 19.794 3027 2720 11.29 %
hc6p 64 192 0.637 4483 3723 20.41 %
hc6u 64 192 0.343 44 43 2.33 %
hc7p 128 448 0.545 9108 7696 18.35 %
hc7u 128 448 0.724 90 89 1.12 %
hc8p 256 1024 1.540 18452 17393 6.09 %
hc8u 256 1024 0.848 187 170 10.00 %
hc9p 512 2304 3.061 35759 26587 34.50 %
hc9u 512 2304 1.424 390 387 0.78 %

Table 3: Results for the PCSPG-H2 test instances.

Instance n m Time (ms) Cost GW LB Gap
hc10p2 1024 5120 6.596 74648 50588 47.56 %
hc10u2 1024 5120 2.215 505 468 7.91 %
hc11p2 2048 11264 16.983 149814 99983 49.84 %
hc11u2 2048 11264 4.718 1011 974 3.80 %
hc12p2 4096 24576 55.889 298874 205477 45.45 %
hc12u2 4096 24576 15.435 2040 1973 3.40 %
hc6p2 64 192 0.720 4468 3911 14.24 %
hc6u2 64 192 0.114 24 23 4.35 %
hc7p2 128 448 1.219 9163 6738 35.99 %
hc7u2 128 448 0.578 59 58 1.72 %
hc8p2 256 1024 1.273 18915 13719 37.87 %
hc8u2 256 1024 0.495 121 119 1.68 %
hc9p2 512 2304 3.034 37379 25529 46.42 %
hc9u2 512 2304 1.144 245 243 0.82 %

Table 4: Results for the PCSPG-HAND test instances.

Instance n m Time (ms) Cost GW LB Gap
handbd01 169800 338551 1072.303 729.3192 727.011784 0.32 %

Continued on next page
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Table 4: Results for the PCSPG-HAND test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
handbd02 169800 338551 321.710 297.6341 152.068219 95.72 %
handbd03 169800 338551 1220.579 135.0745 135.03483 0.03 %
handbd04 169800 338551 595.249 1831.154 1295.9257 41.30 %
handbd05 169800 338551 1253.030 105.4757 105.4440025 0.03 %
handbd06 169800 338551 604.882 1541.342 1043.70125 47.68 %
handbd07 169800 338551 1311.182 77.86358 77.816032 0.06 %
handbd08 169800 338551 551.395 1378.553 908.45005 51.75 %
handbd09 169800 338551 1115.563 62.71914 62.683946 0.06 %
handbd10 169800 338551 524.504 1144.122 714.69975 60.08 %
handbd11 169800 338551 1265.249 46.77253 46.766642 0.01 %
handbd12 169800 338551 598.329 321.4391 192.87845 66.65 %
handbd13 169800 338551 1200.258 13.21217 13.1728175 0.30 %
handbd14 169800 338551 185.648 4379.104 4339.046755 0.92 %
handbi01 158400 315808 1019.333 1358.901 1356.314865 0.19 %
handbi02 158400 315808 282.622 533.3406 271.81917 96.21 %
handbi03 158400 315808 1199.880 243.1487 242.95564 0.08 %
handbi04 158400 315808 574.111 3240.382 2277.508 42.28 %
handbi05 158400 315808 1130.282 184.4673 184.4246975 0.02 %
handbi06 158400 315808 488.761 2951.265 2001.166 47.48 %
handbi07 158400 315808 1117.507 150.981 150.901424 0.05 %
handbi08 158400 315808 426.857 2284.602 1476.759 54.70 %
handbi09 158400 315808 1159.863 107.77 107.74168 0.03 %
handbi10 158400 315808 375.769 1881.135 1135.782 65.62 %
handbi11 158400 315808 1263.395 68.94471 68.931683 0.02 %
handbi12 158400 315808 246.903 138.3032 78.84144 75.42 %
handbi13 158400 315808 1090.012 4.343122 4.190887 3.63 %
handbi14 158400 315808 173.984 7881.839 3960.48994 99.01 %
handsd01 42500 84475 149.608 171.6532 171.2056625 0.26 %
handsd02 42500 84475 69.167 160.8896 84.348027 90.74 %
handsd03 42500 84475 195.518 31.30726 31.279994 0.09 %
handsd04 42500 84475 89.993 496.8705 324.9625 52.90 %
handsd05 42500 84475 196.203 21.93869 21.92235 0.07 %
handsd06 42500 84475 86.736 281.1465 172.54092 62.94 %
handsd07 42500 84475 198.438 11.80412 11.7978105 0.05 %
handsd08 42500 84475 51.532 143.3416 81.84537 75.14 %
handsd09 42500 84475 197.207 3.818683 3.817631 0.03 %
handsd10 42500 84475 39.534 1034.767 1025.31081 0.92 %
handsi01 39600 78704 143.628 295.5152 294.97325 0.18 %
handsi02 39600 78704 50.362 125.5538 64.263529 95.37 %
handsi03 39600 78704 210.602 56.15379 55.959944 0.35 %
handsi04 39600 78704 67.883 729.2789 468.91005 55.53 %
handsi05 39600 78704 194.393 35.04351 35.037619 0.02 %

Continued on next page
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Table 4: Results for the PCSPG-HAND test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
handsi06 39600 78704 71.774 454.6696 277.26887 63.98 %
handsi07 39600 78704 166.329 18.41013 18.40239 0.04 %
handsi08 39600 78704 46.225 229.7032 129.04949 78.00 %
handsi09 39600 78704 162.554 5.962253 5.948498 0.23 %
handsi10 39600 78704 35.391 1805.427 966.4394 86.81 %

Table 5: Results for the PCSPG-CRR test instances.

Instance n m Time (ms) Cost GW LB Gap
C01-A 500 625 0.705 18 18 0.00 %
C01-B 500 625 0.969 88 44 100.00 %
C02-A 500 625 0.813 50 50 0.00 %
C02-B 500 625 1.116 141 84 67.86 %
C03-A 500 625 0.976 414 407 1.72 %
C03-B 500 625 1.418 763 395 93.16 %
C04-A 500 625 1.464 626 596 5.03 %
C04-B 500 625 1.173 1096 550 99.27 %
C05-A 500 625 1.472 1088 837 29.99 %
C05-B 500 625 1.614 1550 806 92.31 %
C06-A 500 1000 0.305 18 18 0.00 %
C06-B 500 1000 0.597 60 30 100.00 %
C07-A 500 1000 1.022 50 50 0.00 %
C07-B 500 1000 1.161 114 57 100.00 %
C08-A 500 1000 1.416 370 286 29.37 %
C08-B 500 1000 1.457 524 273 91.94 %
C09-A 500 1000 1.104 544 403 34.99 %
C09-B 500 1000 1.404 714 371 92.45 %
C10-A 500 1000 1.455 874 627 39.39 %
C10-B 500 1000 2.018 1091 559 95.17 %
C11-A 500 2500 0.430 18 18 0.00 %
C11-B 500 2500 0.672 37 19 94.74 %
C12-A 500 2500 0.637 39 34 14.71 %
C12-B 500 2500 0.635 48 24 100.00 %
C13-A 500 2500 1.338 250 151 65.56 %
C13-B 500 2500 1.235 278 139 100.00 %
C14-A 500 2500 1.320 309 171 80.70 %
C14-B 500 2500 1.160 333 176 89.20 %
C15-A 500 2500 1.817 517 304 70.07 %
C15-B 500 2500 1.800 569 288 97.57 %
C16-A 500 12500 1.378 12 6 100.00 %

Continued on next page
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Table 5: Results for the PCSPG-CRR test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
C16-B 500 12500 2.043 12 6 100.00 %
C17-A 500 12500 1.515 19 10 90.00 %
C17-B 500 12500 1.535 19 10 90.00 %
C18-A 500 12500 1.516 124 68 82.35 %
C18-B 500 12500 2.103 128 64 100.00 %
C19-A 500 12500 1.593 157 85 84.71 %
C19-B 500 12500 1.636 159 80 98.75 %
C20-A 500 12500 2.107 267 145 84.14 %
C20-B 500 12500 2.019 268 135 98.52 %
D01-A 1000 1250 0.482 18 18 0.00 %
D01-B 1000 1250 1.380 107 54 98.15 %
D02-A 1000 1250 0.520 50 50 0.00 %
D02-B 1000 1250 1.124 237 132 79.55 %
D03-A 1000 1250 1.336 809 723 11.89 %
D03-B 1000 1250 2.193 1580 831 90.13 %
D04-A 1000 1250 1.586 1210 1081 11.93 %
D04-B 1000 1250 2.203 1941 1043 86.10 %
D05-A 1000 1250 2.101 2171 1767 22.86 %
D05-B 1000 1250 2.433 3196 1638 95.12 %
D06-A 1000 2000 1.100 18 18 0.00 %
D06-B 1000 2000 0.975 73 37 97.30 %
D07-A 1000 2000 1.000 50 50 0.00 %
D07-B 1000 2000 1.289 116 58 100.00 %
D08-A 1000 2000 2.129 776 642 20.87 %
D08-B 1000 2000 2.265 1100 566 94.35 %
D09-A 1000 2000 2.397 1118 867 28.95 %
D09-B 1000 2000 2.857 1516 769 97.14 %
D10-A 1000 2000 2.866 1707 1171 45.77 %
D10-B 1000 2000 2.933 2130 1091 95.23 %
D11-A 1000 5000 0.951 18 18 0.00 %
D11-B 1000 5000 1.023 31 16 93.75 %
D12-A 1000 5000 1.070 42 27 55.56 %
D12-B 1000 5000 1.046 44 22 100.00 %
D13-A 1000 5000 2.457 475 293 62.12 %
D13-B 1000 5000 2.522 518 265 95.47 %
D14-A 1000 5000 2.938 632 369 71.27 %
D14-B 1000 5000 3.991 702 359 95.54 %
D15-A 1000 5000 3.906 1081 630 71.59 %
D15-B 1000 5000 3.981 1146 579 97.93 %
D16-A 1000 25000 3.355 13 10 30.00 %
D16-B 1000 25000 3.532 15 8 87.50 %
D17-A 1000 25000 3.059 25 16 56.25 %

Continued on next page
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Table 5: Results for the PCSPG-CRR test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
D17-B 1000 25000 3.162 25 13 92.31 %
D18-A 1000 25000 5.034 248 139 78.42 %
D18-B 1000 25000 5.481 255 130 96.15 %
D19-A 1000 25000 6.057 339 182 86.26 %
D19-B 1000 25000 6.221 347 174 99.43 %
D20-A 1000 25000 5.720 540 287 88.15 %
D20-B 1000 25000 5.438 541 271 99.63 %

Table 6: Results for the PCSPG-i640 test instances.

Instance n m Time (ms) Cost GW LB Gap
i640-001 640 960 0.537 3414 2417 41.25 %
i640-002 640 960 0.697 2801 2301 21.73 %
i640-003 640 960 0.502 2740 2740 0.00 %
i640-004 640 960 0.704 3925 2437 61.06 %
i640-005 640 960 0.706 3288 3288 0.00 %
i640-011 640 4135 0.745 2598 1675 55.10 %
i640-012 640 4135 0.774 2457 1385 77.40 %
i640-013 640 4135 0.975 2569 1383 85.76 %
i640-014 640 4135 1.102 2667 1334 99.93 %
i640-015 640 4135 0.885 2954 1477 100.00 %
i640-021 640 204480 22.889 2067 1182 74.87 %
i640-022 640 204480 29.455 2201 1173 87.64 %
i640-023 640 204480 22.389 2072 1188 74.41 %
i640-024 640 204480 28.852 1959 1082 81.05 %
i640-025 640 204480 25.747 2055 1028 99.90 %
i640-031 640 1280 0.679 2632 2632 0.00 %
i640-032 640 1280 0.480 2107 1506 39.91 %
i640-033 640 1280 0.609 2900 2900 0.00 %
i640-034 640 1280 0.827 3188 1946 63.82 %
i640-035 640 1280 0.875 2870 2019 42.15 %
i640-041 640 40896 5.612 1994 1073 85.83 %
i640-042 640 40896 6.457 2285 1221 87.14 %
i640-043 640 40896 6.285 1750 957 82.86 %
i640-044 640 40896 6.628 2130 1155 84.42 %
i640-045 640 40896 6.466 1932 1122 72.19 %
i640-101 640 960 0.744 9278 5141 80.47 %
i640-102 640 960 1.056 8575 6080 41.04 %
i640-103 640 960 1.131 8609 4935 74.45 %
i640-104 640 960 0.704 8068 4804 67.94 %

Continued on next page
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Table 6: Results for the PCSPG-i640 test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
i640-105 640 960 0.831 10060 6636 51.60 %
i640-111 640 4135 0.978 6849 3999 71.27 %
i640-112 640 4135 1.182 8218 4439 85.13 %
i640-113 640 4135 1.045 7610 4307 76.69 %
i640-114 640 4135 1.000 7271 4362 66.69 %
i640-115 640 4135 0.992 7512 4402 70.65 %
i640-121 640 204480 35.409 6002 3239 85.30 %
i640-122 640 204480 36.399 6498 3439 88.95 %
i640-123 640 204480 36.208 6184 3286 88.19 %
i640-124 640 204480 35.688 6317 3559 77.49 %
i640-125 640 204480 36.076 6328 3416 85.25 %
i640-131 640 1280 0.823 7874 4521 74.17 %
i640-132 640 1280 1.143 8758 4813 81.97 %
i640-133 640 1280 1.011 8253 4859 69.85 %
i640-134 640 1280 1.359 7440 4322 72.14 %
i640-135 640 1280 1.172 7730 4627 67.06 %
i640-141 640 40896 7.253 7052 3654 92.99 %
i640-142 640 40896 7.195 6239 3442 81.26 %
i640-143 640 40896 7.029 5747 3074 86.96 %
i640-144 640 40896 7.476 6198 3455 79.39 %
i640-145 640 40896 7.155 6512 3408 91.08 %
i640-201 640 960 1.186 15953 9601 66.16 %
i640-202 640 960 1.102 17715 9940 78.22 %
i640-203 640 960 0.954 16230 9849 64.79 %
i640-204 640 960 0.905 14577 7955 83.24 %
i640-205 640 960 1.378 18241 10131 80.05 %
i640-211 640 4135 1.285 15124 8592 76.02 %
i640-212 640 4135 1.186 14377 8011 79.47 %
i640-213 640 4135 1.236 14522 7551 92.32 %
i640-214 640 4135 1.295 14571 7894 84.58 %
i640-215 640 4135 1.187 13509 7363 83.47 %
i640-221 640 204480 44.659 11630 6277 85.28 %
i640-222 640 204480 46.770 12692 6772 87.42 %
i640-223 640 204480 47.821 13065 7001 86.62 %
i640-224 640 204480 45.171 12492 6560 90.43 %
i640-225 640 204480 45.244 11845 6649 78.15 %
i640-231 640 1280 1.234 17317 9693 78.65 %
i640-232 640 1280 0.878 15708 9006 74.42 %
i640-233 640 1280 1.139 15172 8322 82.31 %
i640-234 640 1280 1.138 16859 9386 79.62 %
i640-235 640 1280 1.185 15660 8912 75.72 %
i640-241 640 40896 8.648 13460 7326 83.73 %
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Table 6: Results for the PCSPG-i640 test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
i640-242 640 40896 8.628 12789 6631 92.87 %
i640-243 640 40896 8.594 12843 6834 87.93 %
i640-244 640 40896 8.434 12343 6482 90.42 %
i640-245 640 40896 8.658 13221 6773 95.20 %
i640-301 640 960 1.646 49691 26620 86.67 %
i640-302 640 960 1.890 48225 27375 76.16 %
i640-303 640 960 1.605 49353 26045 89.49 %
i640-304 640 960 1.360 48917 27629 77.05 %
i640-305 640 960 1.297 49390 26417 86.96 %
i640-311 640 4135 1.907 43840 23732 84.73 %
i640-312 640 4135 1.905 43316 22876 89.35 %
i640-313 640 4135 1.892 42943 22944 87.16 %
i640-314 640 4135 1.686 43106 23129 86.37 %
i640-315 640 4135 2.246 43114 22521 91.44 %
i640-321 640 204480 99.990 41318 21811 89.44 %
i640-322 640 204480 101.721 40719 21770 87.04 %
i640-323 640 204480 99.632 40598 21511 88.73 %
i640-324 640 204480 103.789 41315 22084 87.08 %
i640-325 640 204480 95.049 40249 22023 82.76 %
i640-331 640 1280 1.724 47675 26028 83.17 %
i640-332 640 1280 1.491 48761 25955 87.87 %
i640-333 640 1280 1.708 48135 26606 80.92 %
i640-334 640 1280 1.808 49680 27376 81.47 %
i640-335 640 1280 1.831 47730 26625 79.27 %
i640-341 640 40896 14.047 41940 22498 86.42 %
i640-342 640 40896 14.301 41940 22208 88.85 %
i640-343 640 40896 13.074 42351 22920 84.78 %
i640-344 640 40896 14.382 42186 22769 85.28 %
i640-345 640 40896 14.075 42369 22757 86.18 %

Table 7: Results for the PCSPG-JMP test instances.

Instance n m Time (ms) Cost GW LB Gap
K100 100 351 0.369 135511 135511 0.00 %
K100.1 100 348 0.237 124108 124108 0.00 %
K100.10 100 319 0.610 133567 133567 0.00 %
K100.2 100 339 0.780 200262 135880 47.38 %
K100.3 100 407 0.682 115953 115953 0.00 %
K100.4 100 364 0.193 87498 78460 11.52 %
K100.5 100 358 0.667 119078 117395 1.43 %
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Table 7: Results for the PCSPG-JMP test instances (continued).

Instance n m Time (ms) Cost GW LB Gap
K100.6 100 307 0.442 132886 127635 4.11 %
K100.7 100 315 0.865 172457 166381 3.65 %
K100.8 100 343 0.650 215616 201641 6.93 %
K100.9 100 333 0.612 122917 122917 0.00 %
K200 200 691 1.652 329211 307882 6.93 %
K400 400 1515 1.851 350093 333889 4.85 %
K400.1 400 1470 2.196 490771 456292 7.56 %
K400.10 400 1507 1.549 406658 314225 29.42 %
K400.2 400 1527 2.116 478238 430403 11.11 %
K400.3 400 1492 1.597 415328 405978 2.30 %
K400.4 400 1426 1.865 394046 347070 13.54 %
K400.5 400 1456 1.694 529581 503887 5.10 %
K400.6 400 1576 1.742 376830 358253 5.19 %
K400.7 400 1442 1.706 476299 352046 35.29 %
K400.8 400 1516 1.941 418614 411478 1.73 %
K400.9 400 1500 1.852 385622 342515 12.59 %
P100 100 317 0.752 823026 456106 80.45 %
P100.1 100 284 0.660 966020 556078 73.72 %
P100.2 100 297 0.274 429687 255201 68.37 %
P100.3 100 316 0.517 676158 393104 72.00 %
P100.4 100 284 0.673 841872 578481 45.53 %
P200 200 587 0.866 1325376 859880 54.13 %
P400 400 1200 1.487 2543645 1605683 58.42 %
P400.1 400 1212 0.967 2877459 1723565 66.95 %
P400.2 400 1196 1.772 2590034 1573583 64.59 %
P400.3 400 1175 1.146 3010150 1939555 55.20 %
P400.4 400 1144 1.104 2942801 1748831 68.27 %

Table 8: Results for the PCSPG-PUCNU test instances.

Instance n m Time (ms) Cost GW LB Gap
bip42nu 1200 3982 2.207 280 229 22.27 %
bip52nu 2200 7997 3.804 282 250 12.80 %
bip62nu 1200 10002 3.933 254 192 32.29 %
bipa2nu 3300 18073 8.524 399 315 26.67 %
bipe2nu 550 5013 1.711 57 42 35.71 %
cc10-2nu 1024 5120 1.485 188 147 27.89 %
cc11-2nu 2048 11263 3.072 352 311 13.18 %
cc12-2nu 4096 24574 7.881 651 517 25.92 %
cc3-10nu 1000 13500 2.891 65 64 1.56 %
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Table 8: Results for the PCSPG-PUCNU test instances (contin-
ued).

Instance n m Time (ms) Cost GW LB Gap
cc3-11nu 1331 19965 4.610 91 87 4.60 %
cc3-12nu 1728 28512 6.416 111 109 1.83 %
cc3-4nu 64 288 0.348 11 11 0.00 %
cc3-5nu 125 750 0.667 19 18 5.56 %
cc5-3nu 243 1215 0.629 38 38 0.00 %
cc6-2nu 64 192 0.294 15 15 0.00 %
cc6-3nu 729 4368 1.598 104 82 26.83 %
cc7-3nu 2187 15308 3.336 322 264 21.97 %
cc9-2nu 512 2304 1.245 90 89 1.12 %

Table 9: Results for the PCSPG-RANDOM test instances.

Instance n m Time (ms) Cost GW LB Gap
a0200RandGraph.1.2 200 1636 0.655 124.2196 121.2196 2.47 %
a0200RandGraph.1.5 200 1575 0.702 149.0266 103.02664 44.65 %
a0200RandGraph.2 200 1605 0.613 161.0155 95.01547 69.46 %
a0200RandGraph.3 200 1616 0.770 174.2793 95.2793 82.91 %
a0400RandGraph.1.2 400 3194 1.427 237.323 235.323 0.85 %
a0400RandGraph.1.5 400 3231 1.410 283.864 201.864 40.62 %
a0400RandGraph.2 400 3292 1.536 315.9484 193.44839 63.32 %
a0400RandGraph.3 400 3222 1.508 345.6945 195.69447 76.65 %
a0600RandGraph.1.2 600 4821 2.723 364.1584 361.6584 0.69 %
a0600RandGraph.1.5 600 4845 2.293 427.6309 297.6309 43.68 %
a0600RandGraph.2 600 4831 2.364 475.6437 291.6437 63.09 %
a0600RandGraph.3 600 4808 2.510 518.8675 298.36748 73.90 %
a0800RandGraph.1.2 800 6453 3.282 469.2574 468.2574 0.21 %
a0800RandGraph.1.5 800 6301 3.390 553.5262 392.0262 41.20 %
a0800RandGraph.2 800 6465 3.322 625.9556 385.4556 62.39 %
a0800RandGraph.3 800 6385 3.235 674.171 377.67099 78.51 %
a10000RandGraph.1.2 10000 80298 103.964 6019.544 5998.544 0.35 %
a10000RandGraph.1.5 10000 80288 103.732 7049.384 4993.884 41.16 %
a10000RandGraph.2 10000 79908 100.763 7869.94 4797.44 64.04 %
a10000RandGraph.3 10000 79778 141.979 8617.496 4860.996 77.28 %
a1000RandGraph.1.2 1000 8067 4.059 588.5942 580.5942 1.38 %
a1000RandGraph.1.5 1000 7868 4.294 700.5084 498.0084 40.66 %
a1000RandGraph.2 1000 8201 4.294 775.3939 482.8939 60.57 %
a1000RandGraph.3 1000 8107 4.271 850.9121 484.9121 75.48 %
a12000RandGraph.1.2 12000 96093 127.532 7187.638 7173.638 0.20 %
a12000RandGraph.1.5 12000 96391 129.887 8418.893 5960.393 41.25 %
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Table 9: Results for the PCSPG-RANDOM test instances (contin-
ued).

Instance n m Time (ms) Cost GW LB Gap
a12000RandGraph.2 12000 95987 127.042 9367.894 5790.394 61.78 %
a12000RandGraph.3 12000 96449 182.075 10290.55 5819.551 76.83 %
a1200RandGraph.1.2 1200 9448 5.219 713.4155 711.4155 0.28 %
a1200RandGraph.1.5 1200 9625 5.257 846.3853 588.8853 43.73 %
a1200RandGraph.2 1200 9546 5.082 937.3539 584.3539 60.41 %
a1200RandGraph.3 1200 9451 4.967 1032.965 576.9649 79.03 %
a14000RandGraph.1.2 14000 112016 209.721 8401.319 8389.819 0.14 %
a14000RandGraph.1.5 14000 112228 223.811 9873.704 7003.704 40.98 %
a14000RandGraph.2 14000 112369 157.520 10999.81 6775.31 62.35 %
a14000RandGraph.3 14000 111869 153.388 12042.13 6813.632 76.74 %
a1400RandGraph.1.2 1400 11192 6.342 822.5676 812.0676 1.29 %
a1400RandGraph.1.5 1400 11226 6.350 974.4749 710.4749 37.16 %
a1400RandGraph.2 1400 11100 6.263 1091.35 667.3501 63.53 %
a1400RandGraph.3 1400 11263 6.141 1187.916 671.4155 76.93 %
a1600RandGraph.1.2 1600 12869 7.634 955.021 948.021 0.74 %
a1600RandGraph.1.5 1600 12739 7.617 1122.855 800.8553 40.21 %
a1600RandGraph.2 1600 12779 7.513 1259.276 784.2757 60.57 %
a1600RandGraph.3 1600 12963 7.185 1380.418 781.4181 76.66 %
a1800RandGraph.1.2 1800 14473 9.186 1077.301 1072.801 0.42 %
a1800RandGraph.1.5 1800 14222 8.568 1269.019 900.5192 40.92 %
a1800RandGraph.2 1800 14329 8.459 1415.957 872.9571 62.20 %
a1800RandGraph.3 1800 14531 8.611 1544.665 864.6654 78.64 %
a2000RandGraph.1.2 2000 16008 10.124 1165.768 1156.768 0.78 %
a2000RandGraph.1.5 2000 15835 9.955 1380.068 988.568 39.60 %
a2000RandGraph.2 2000 16062 9.897 1535.515 948.0154 61.97 %
a2000RandGraph.3 2000 15751 9.807 1709.208 971.7075 75.90 %
a3000RandGraph.1.2 3000 24045 19.692 1808.237 1794.737 0.75 %
a3000RandGraph.1.5 3000 23852 19.384 2115.289 1495.7889 41.42 %
a3000RandGraph.2 3000 24065 19.552 2359.534 1463.0341 61.28 %
a3000RandGraph.3 3000 24026 19.188 2602.898 1468.8977 77.20 %
a4000RandGraph.1.2 4000 32087 39.162 2434.258 2391.258 1.80 %
a4000RandGraph.1.5 4000 32119 30.076 2846.546 2007.046 41.83 %
a4000RandGraph.2 4000 31880 29.290 3184.475 1960.9746 62.39 %
a4000RandGraph.3 4000 32025 28.486 3485.598 1963.5977 77.51 %
a6000RandGraph.1.2 6000 47899 54.025 3594.402 3575.902 0.52 %
a6000RandGraph.1.5 6000 48077 53.019 4230.89 3021.39 40.03 %
a6000RandGraph.2 6000 48069 76.029 4701.917 2898.917 62.20 %
a6000RandGraph.3 6000 47915 73.581 5164.99 2912.49 77.34 %
a8000RandGraph.1.2 8000 64373 75.579 4789.461 4773.961 0.32 %
a8000RandGraph.1.5 8000 63812 105.115 5624.727 4012.727 40.17 %
a8000RandGraph.2 8000 63874 76.361 6267.877 3839.377 63.25 %
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Table 9: Results for the PCSPG-RANDOM test instances (contin-
ued).

Instance n m Time (ms) Cost GW LB Gap
a8000RandGraph.3 8000 64177 110.962 6858.248 3869.7478 77.23 %

B.2 DIMACS test cases: RPCST

Table 10: Results for the RPCST-cologne test instances.

Instance n m Time (ms) Cost GW LB Gap
i101M1 748 6332 0.715 109271.5 109271.5 0.00 %
i101M2 748 6332 2.974 341795.5 230391.4 48.35 %
i101M3 748 6332 3.680 385703.6 192851.8 100.00 %
i102M1 749 6343 0.933 104065.8 104065.8 0.00 %
i102M2 749 6343 3.122 363303.1 293952.3 23.59 %
i102M3 749 6343 3.860 506798.4 319020.7 58.86 %
i103M1 751 6343 0.769 139749.4 139749.4 0.00 %
i103M2 751 6343 2.557 414413.9 300151.25 38.07 %
i103M3 751 6343 3.427 510785.8 255392.9 100.00 %
i104M2 741 6293 1.381 89920.84 78322.505 14.81 %
i104M3 741 6293 1.653 97148.79 48574.395 100.00 %
i105M1 741 6296 0.714 26717.2 26717.2 0.00 %
i105M2 741 6296 2.841 100269.6 83528.895 20.04 %
i105M3 741 6296 3.139 114983.2 57491.6 100.00 %
i201M2 1803 16743 11.066 355467.7 313219.67 13.49 %
i201M3 1803 16743 14.460 634950.9 490290.85 29.50 %
i201M4 1803 16743 14.282 819724.7 473862.95 72.99 %
i202M2 1804 16740 11.257 288946.8 227816.9 26.83 %
i202M3 1804 16740 12.507 430188.0 307986.75 39.68 %
i202M4 1804 16740 12.440 489456.1 244728.05 100.00 %
i203M2 1809 16762 12.272 459894.8 358362.05 28.33 %
i203M3 1809 16762 13.164 666414.9 395692.2 68.42 %
i203M4 1809 16762 12.847 707384.7 353692.35 100.00 %
i204M2 1801 16719 10.070 161700.5 161700.5 0.00 %
i204M3 1801 16719 13.795 344623.3 172311.65 100.00 %
i204M4 1801 16719 13.117 344623.3 172311.65 100.00 %
i205M2 1810 16794 13.817 571459.1 480621.3 18.90 %
i205M3 1810 16794 13.956 777936.3 417880.68 86.16 %
i205M4 1810 16794 14.023 844022.1 483966.55 74.40 %
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B.3 DIMACS test cases: MWCS

Table 11: Results for the MWCS-ACTMOD test instances.

Instance n m Time (ms) Cost GW LB Gap
HCMV 3863 29293 43.111 3.384924 12.74904 73.45 %
drosophila001 5226 93394 113.456 11.93586 11.93586 0.00 %
drosophila005 5226 93394 164.101 89.45855 508.9217 82.42 %
drosophila0075 5226 93394 172.707 161.9906 694.0665 76.66 %
lymphoma 2034 7756 5.340 29.2803 134.6251 78.25 %
metabol_expr_mice_1 3523 4345 6.798 486.3809 1074.521 54.74 %
metabol_expr_mice_2 3514 4332 6.458 230.3167 470.3167 51.03 %
metabol_expr_mice_3 2853 3335 5.374 375.8796 1035.88 63.71 %

Table 12: Results for the MWCS-JMPALMK test instances.

Instance n m Time (ms) Cost GW LB Gap
n-1000-a-0.6-d-0.25-e-0.25 1000 4936 3.956 734.6279 2436.104 69.84 %
n-1000-a-0.6-d-0.25-e-0.5 1000 4936 1.785 1748.617 4338.253 59.69 %
n-1000-a-0.6-d-0.25-e-0.75 1000 4936 1.836 2736.778 6038.393 54.68 %
n-1000-a-0.6-d-0.5-e-0.25 1000 4936 4.459 400.2112 2056.78 80.54 %
n-1000-a-0.6-d-0.5-e-0.5 1000 4936 4.463 1111.557 3316.989 66.49 %
n-1000-a-0.6-d-0.5-e-0.75 1000 4936 4.387 1725.57 4445.405 61.18 %
n-1000-a-0.6-d-0.75-e-0.25 1000 4936 4.120 290.8025 1457.18 80.04 %
n-1000-a-0.6-d-0.75-e-0.5 1000 4936 4.224 712.9581 2420.693 70.55 %
n-1000-a-0.6-d-0.75-e-0.75 1000 4936 4.120 975.4331 2921.894 66.62 %
n-1000-a-1-d-0.25-e-0.25 1000 13279 2.155 823.6556 2240.721 63.24 %
n-1000-a-1-d-0.25-e-0.5 1000 13279 2.231 1809.199 4114.425 56.03 %
n-1000-a-1-d-0.25-e-0.75 1000 13279 2.140 2761.493 5809.901 52.47 %
n-1000-a-1-d-0.5-e-0.25 1000 13279 2.245 470.849 1548.617 69.60 %
n-1000-a-1-d-0.5-e-0.5 1000 13279 2.149 1160.829 2897.232 59.93 %
n-1000-a-1-d-0.5-e-0.75 1000 13279 2.183 1745.709 4045.207 56.85 %
n-1000-a-1-d-0.75-e-0.25 1000 13279 2.259 320.082 1151.803 72.21 %
n-1000-a-1-d-0.75-e-0.5 1000 13279 2.224 740.4528 1906.83 61.17 %
n-1000-a-1-d-0.75-e-0.75 1000 13279 2.184 997.1745 2343.634 57.45 %
n-1500-a-0.6-d-0.25-e-0.25 1500 7662 7.953 1007.326 3725.782 72.96 %
n-1500-a-0.6-d-0.25-e-0.5 1500 7662 7.727 2589.487 6562.229 60.54 %
n-1500-a-0.6-d-0.25-e-0.75 1500 7662 2.726 4133.526 9197.658 55.06 %
n-1500-a-0.6-d-0.5-e-0.25 1500 7662 7.983 657.121 2977.315 77.93 %
n-1500-a-0.6-d-0.5-e-0.5 1500 7662 7.415 1724.295 4957.598 65.22 %
n-1500-a-0.6-d-0.5-e-0.75 1500 7662 6.991 2633.488 6759.007 61.04 %
n-1500-a-0.6-d-0.75-e-0.25 1500 7662 7.051 434.9262 2341.859 81.43 %
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Table 12: Results for the MWCS-JMPALMK test instances (con-
tinued).

Instance n m Time (ms) Cost GW LB Gap
n-1500-a-0.6-d-0.75-e-0.5 1500 7662 2.699 1045.44 3747.08 72.10 %
n-1500-a-0.6-d-0.75-e-0.75 1500 7662 2.898 1407.977 4341.327 67.57 %
n-1500-a-1-d-0.25-e-0.25 1500 20527 3.524 1205.373 3264.203 63.07 %
n-1500-a-1-d-0.25-e-0.5 1500 20527 3.669 2707.081 6080.164 55.48 %
n-1500-a-1-d-0.25-e-0.75 1500 20527 4.060 4175.813 8783.18 52.46 %
n-1500-a-1-d-0.5-e-0.25 1500 20527 3.649 740.277 2461.711 69.93 %
n-1500-a-1-d-0.5-e-0.5 1500 20527 3.973 1782.566 4422.099 59.69 %
n-1500-a-1-d-0.5-e-0.75 1500 20527 3.923 2674.675 6091.821 56.09 %
n-1500-a-1-d-0.75-e-0.25 1500 20527 3.863 477.7948 1648.632 71.02 %
n-1500-a-1-d-0.75-e-0.5 1500 20527 3.924 1071.441 2861.031 62.55 %
n-1500-a-1-d-0.75-e-0.75 1500 20527 3.872 1410.238 3559.718 60.38 %
n-500-a-0.62-d-0.25-e-0.25 500 2597 1.930 356.401 1199.654 70.29 %
n-500-a-0.62-d-0.25-e-0.5 500 2597 0.802 898.4498 2205.742 59.27 %
n-500-a-0.62-d-0.25-e-0.75 500 2597 0.767 1402.885 3024.709 53.62 %
n-500-a-0.62-d-0.5-e-0.25 500 2597 2.375 226.201 987.4253 77.09 %
n-500-a-0.62-d-0.5-e-0.5 500 2597 2.315 624.9131 1623.962 61.52 %
n-500-a-0.62-d-0.5-e-0.75 500 2597 0.836 947.6905 2162.381 56.17 %
n-500-a-0.62-d-0.75-e-0.25 500 2597 0.939 134.4324 828.3533 83.77 %
n-500-a-0.62-d-0.75-e-0.5 500 2597 0.803 345.6002 1216.692 71.60 %
n-500-a-0.62-d-0.75-e-0.75 500 2597 0.914 482.1382 1445.92 66.66 %
n-500-a-1-d-0.25-e-0.25 500 6519 0.997 409.6342 1063.28 61.47 %
n-500-a-1-d-0.25-e-0.5 500 6519 1.054 949.8127 2122.384 55.25 %
n-500-a-1-d-0.25-e-0.75 500 6519 0.993 1427.803 2929.67 51.26 %
n-500-a-1-d-0.5-e-0.25 500 6519 1.171 270.9102 819.5848 66.95 %
n-500-a-1-d-0.5-e-0.5 500 6519 0.976 653.8947 1441.323 54.63 %
n-500-a-1-d-0.5-e-0.75 500 6519 1.105 958.3406 2004.07 52.18 %
n-500-a-1-d-0.75-e-0.25 500 6519 0.998 150.0016 528.9513 71.64 %
n-500-a-1-d-0.75-e-0.5 500 6519 0.978 349.0255 924.8322 62.26 %
n-500-a-1-d-0.75-e-0.75 500 6519 0.989 482.0102 1167.051 58.70 %
n-750-a-0.647-d-0.25-e-0.25 750 4219 3.546 586.4515 1798.94 67.40 %
n-750-a-0.647-d-0.25-e-0.5 750 4219 3.455 1324.763 3280.711 59.62 %
n-750-a-0.647-d-0.25-e-0.75 750 4219 1.331 2059.922 4567.116 54.90 %
n-750-a-0.647-d-0.5-e-0.25 750 4219 1.382 301.4397 1324.321 77.24 %
n-750-a-0.647-d-0.5-e-0.5 750 4219 1.255 888.0125 2404.871 63.07 %
n-750-a-0.647-d-0.5-e-0.75 750 4219 1.275 1357.369 3276.089 58.57 %
n-750-a-0.647-d-0.75-e-0.25 750 4219 3.624 228.8896 1070.453 78.62 %
n-750-a-0.647-d-0.75-e-0.5 750 4219 3.471 554.0301 1784.386 68.95 %
n-750-a-0.647-d-0.75-e-0.75 750 4219 3.541 751.8793 2088.89 64.01 %
n-750-a-1-d-0.25-e-0.25 750 9822 1.581 631.9982 1699.787 62.82 %
n-750-a-1-d-0.25-e-0.5 750 9822 1.542 1380.98 3077.466 55.13 %
n-750-a-1-d-0.25-e-0.75 750 9822 1.557 2092.577 4416.8 52.62 %

Continued on next page
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Table 12: Results for the MWCS-JMPALMK test instances (con-
tinued).

Instance n m Time (ms) Cost GW LB Gap
n-750-a-1-d-0.5-e-0.25 750 9822 1.517 351.1403 1144.497 69.32 %
n-750-a-1-d-0.5-e-0.5 750 9822 1.588 918.4944 2205.828 58.36 %
n-750-a-1-d-0.5-e-0.75 750 9822 1.632 1370.38 3076.459 55.46 %
n-750-a-1-d-0.75-e-0.25 750 9822 1.593 252.662 843.233 70.04 %
n-750-a-1-d-0.75-e-0.5 750 9822 1.573 564.8708 1455.649 61.19 %
n-750-a-1-d-0.75-e-0.75 750 9822 1.652 754.9382 1775.413 57.48 %
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