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ABSTRACT

Identifying “interesting” features, such as faults, unconformities,
and other events in subsurface images is a challenging task in
seismic data processing. Existing state-of-the-art methods usually
involve manual intervention in the form of a visual inspection by an
expert, but this is time-consuming, expensive, and error-prone. In
this paper, we propose an efficient, automatic approach for seismic
feature extraction. The core idea of our approach involves interpret-
ing a given 2D seismic image as a function defined over the vertices
of a specially chosen underlying graph. This enables us to formulate
the feature extraction task as an instance of the Prize-Collecting
Steiner Tree problem encountered in combinatorial optimization.
We develop an efficient algorithm to solve this problem, and demon-
strate the utility of our method on a number of synthetic and real
examples.

Index Terms— Seismic signal processing, Prize Collecting
Steiner Tree problem, combinatorial optimization.

1. INTRODUCTION

A key goal in seismic data processing is the detection of geolog-
ically interesting features in seismic images. Subsurface features,
such as faults, unconformities, and other events contain valuable
spatio-temporal information which can be of both scientific as well
as commercial importance. Therefore, there is a compelling need to
accurately and efficiently locate such features in images.

However, the prevailing method for feature extraction in seismic
images involves manual intervention in the form of visual interpreta-
tion and pixel labeling by an expert. This is time-consuming and ex-
pensive. On the other hand, automatic (algorithm-based) approaches
for seismic feature extraction suffer from several pitfalls themselves.
Subsurface features are of varied shapes and sizes, and parametric
modeling approaches often do not work well. Moreover, seismic
datasets are typically high-dimensional, and complicated algorith-
mic approaches are expensive from a computational standpoint. Fi-
nally, seismic images contain high amounts of noise, and this further
degrades the performance of parametric approaches.

In this paper, we propose a simple and efficient algorithm for
seismic image analysis and feature extraction. At a high level, the
key idea involves formulating the seismic feature extraction task as
a combinatorial optimization problem. We interpret a 2D seismic
image as a function defined over the vertices of an underlying graph
(the choice of this graph is flexible). Formally, an n × n image can
be viewed as a scalar-valued function f defined, for instance, over
a grid graph G = (V,E) containing n2 vertices and O(n2) edges.
We focus our attention on features that roughly correspond to nodes
v with large function values f(v). Moreover, we assume that the
significant coefficients of f form a small number of connected com-
ponents relative to the edge structure of G, since interesting features

such as unconformities correspond to pixels that are spatially con-
tiguous in the seismic image. Finally, we assume that there is only
a (relatively) small number of such strong, connected features. We
make no further assumptions on the shapes and / or sizes of the fea-
tures.

With these assumptions, we formally pose the feature extraction
task as the following combinatorial optimization problem: given a
function f : V → R+

0 , find a subset T ⊂ V such that |T | is small,
T constitutes the union of a small number of connected components
(features), and f(VT ) =

∑
v∈T f(v) is maximized. Observe that

if we ignore the connectedness property, this simply reduces to the
problem of sparse approximation and can be solved by identifying
the locations of the largest coefficients of f . The connectedness as-
sumption makes the problem challenging; in fact, the problem of de-
tecting even a single dominant component containing a given num-
ber of nodes in an arbitrary graph is known to be NP-hard [1].

Despite this hardness result, efficient algorithms with provable
approximation guarantees exist for variants of this problem. In par-
ticular, we focus on the Prize-Collecting Steiner Tree (PCST) prob-
lem [2], which is a generalization of the classical Steiner tree prob-
lem. At a high level, the goal in the PCST problem is to find a subtree
T that balances the cost of connecting some nodes and the penalty
paid for omitting the remaining nodes from the solution T . The
PCST problem has been well-studied in graph optimization and sev-
eral algorithms have been proposed, including the seminal primal-
dual scheme of Goemans and Williamson [3].

The PCST problem only asks to find a single tree T , and not a set
of disjoint connected components (features). Therefore, we consider
an augmented graph that lets us incorporate the number of features
into the problem formulation. We achieve this by connecting all
nodes in the image graph to a new root node and assigning a special
edge weight to the newly created edges. The augmented graph has
two nonnegative parameters that control the trade-off between the
three competing objectives: (i) the signal energy captured by the
features, (ii) the number of discovered features, and (iii) the area
covered by the features. By tuning these two parameters, we can
arrive at a suitable solution. See Fig. 1 for a representative example.

We conduct experiments to demonstrate that our algorithm can
recover several types of interesting features in seismic images. In
particular, we are able to identify complicated structures (such as un-
conformities), which was not possible using previous methods such
as [4]. Moreover, our proposed method is computationally efficient.
Finally, the method is fairly modular and can be used in conjunction
with other pre- and post-processing techniques.

The rest of this paper is organized as follows. Section 2 presents
a brief overview of existing methods, including a description of the
Prize-Collecting Steiner Tree (PCST) problem and associated algo-
rithms. Section 3 provides details about our proposed approach. Fi-
nally, Section 4 describes the results of numerical experiments on
synthetic and real test cases, and Section 5 concludes the paper.
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Fig. 1. Unconformity detection on a section of a real seismic im-
age corresponding to a section of the southeastern Malay basin [5].
(a) The original image contains a single angular unconformity. (b)
Conventional sparse approximation identifies the pixels correspond-
ing to the location of the unconformity, but also introduces outliers
(false positives). (c) The approach of [4] identifies the unconformity
but “short-circuits” different sloping layers. (d) Our proposed Prize-
Collecting Steiner Tree (PCST)-based approach provides a more
faithful feature identification.

2. BACKGROUND

2.1. Seismic image analysis

Feature identification in unmigrated trace data, as well as stacked
images, is an important task in the seismic data processing pipeline.
Typical features of interest include faults (shear-like discontinuities
caused by the approximately vertical relative movement of rock lay-
ers) and unconformities (erosional surfaces separating strata of dif-
ferent geological ages, representing discontinous sediment deposi-
tion). Both kinds of features contain valuable spatio-temporal infor-
mation and accurate localization of such features is of considerable
interest.

A host of automatic approaches for extraction of both types of
features have been proposed in the literature, and we highlight a
few representative works (for a more complete list of references,
see the recent papers [6, 7]). In the context of fault extraction,
these include texture classification approaches [8], coherence-based
methods [9], and evolutionary computation-based search heuris-
tics [10]. In the context of unconformity extraction, these include
edge-detection based methods [11] and structure-tensor fields [7].
Most of these methods seem to suffer from a low tolerance to noise,
high computational complexity, or both.

2.2. Fault Localization using the Earth Mover’s Distance

In previous work [4], we proposed an alternate algorithm for au-
tomatic fault localization, borrowing ideas from recent advances in
signal processing. This algorithm is based on two key assumptions:
(i) the seismic image contains s features in each column, i.e., only
a fraction of the pixels in each column correspond to dominant re-
flectors; and (ii) the locations of the features in the columns vary
smoothly in terms of the Earth Mover’s Distance (EMD), except
at the location of the faults. Under these assumptions, the method
poses the feature extraction task as a combinatorial approximation
problem that can be solved using a minimum-cost flow routine over
a specially defined graph. Experiments on both (noisy) synthetic im-

ages as well as real 2D and 3D images confirmed the robustness of
the method.

However, this method suffers from drawbacks. The algorithm
assumes a constant number of features per column across the entire
image. Consequently, it is unable to capture more complicated pat-
terns, such as unconformities, where the number of features per col-
umn varies across different regions. In Section 3 below, we propose
a new method for seismic feature extraction that is also graph-based
in nature, but that improves over our previous method. Our new
method is flexible enough to handle images with a spatially varying
number of features per column, and we successfully use this property
to demonstrate recovery of unconformities in noisy seismic images.

2.3. The Prize-Collecting Steiner Tree problem

Our method leverages efficient algorithms for the Prize Collecting
Steiner Tree (PCST) problem. We briefly review the problem and
associated algorithms here for completeness and refer to the text-
book [12] for a detailed description.

First, we introduce necessary notation. Let G = (V,E) be a
given undirected graph. For any function f : V → R and node
subset U ⊆ V , we define f(U) :=

∑
v∈U f(v). Moreover, we

define the complement of U with respect to V as V := V \ U . We
use the same conventions for functions defined on the edge setE and
for subsets of E.

The goal of the PCST problem is to find a “good” subgraph
T = (VT , ET ) in G, where the objective function is defined as fol-
lows. Let π : V → R+

0 be a nonnegative function representing the
prize associated with each vertex v ∈ V . The prize of a vertex π(v)
denotes the cost of excluding v in the solution subgraph T . Further-
more, let c : E → R+

0 be a nonnegative function representing the
cost associated with each edge. The cost of an edge e denotes the
cost of adding e to the solution T . Using these definitions, the goal
of the PCST problem is to find a connected subgraph T of G that
minimizes the prizes of nodes not in T and the costs of edges in T .
This formulation naturally captures the trade-off between connecting
a node to the solution T (and hence paying the cost of the respective
edge) and omitting a node from T (and hence paying its prize).

Trivially, one can observe that any optimal solution subgraph
TOPT is a tree; if it were not, then one could simply choose the
minimum spanning tree of TOPT as a candidate solution with fewer
edges. Therefore, our goal is to find the optimal subtree:

TOPT = argmin
T is a tree

c(T ) + π(T ) ,

where we use T to refer to either the node set VT or the edge set
ET , depending on context. Since this problem is a generalization of
the classical Steiner tree problem, it is also NP-hard [13]. Neverthe-
less, there exist several efficient approximation algorithms. Many of
these algorithms are variants of the seminal work of Goemans and
Williamson [3], who developed a primal-dual algorithm that returns
a subtree T with the following approximation guarantee:

c(T ) + 2π(T ) ≤ 2c(TOPT ) + 2π(TOPT ) .

For a graph with n vertices, the algorithm by Goemans and Williamson
has a time complexity of O(n2 logn) for a special (rooted) vari-
ant of the PCST problem, and subsequent improvements [14, 15]
achieve this running time for the case of general undirected graphs.



3. PROPOSED ALGORITHM

We now describe our feature extraction algorithm in detail. At a high
level, our approach involves converting the feature extraction task to
a specific instance of the PCST problem.

First, we formalize the feature extraction task. Suppose we are
given an image I ∈ Rn×m and an underlying graph structure G =
(V,E) on the set of pixel indices, i.e., V = [n] × [m]. In this pa-
per, we consider G to be a grid graph, although the algorithm below
works for arbitrary graphs. The objective is to find a set of features
F = {F1, . . . , Fc} where each feature is a connected subset of the
image, i.e., Fi ⊆ [n] × [m] and the pixel indices in Fi form a con-
nected component in G. Our goals are as follows:
• The image coefficients corresponding to features should cap-

ture a significant amount of energy in the signal, i.e., we want∑k
i=1‖IFi‖

2
2 to be large. This corresponds to the assump-

tion that the “interesting” features in the image (e.g., faults or
unconformities) correspond to pixels with high intensities.

• The total number of features, |F|, should be small. This cor-
responds to the assumption that there is only a relatively small
number of strong features in the image of interest.

• The features should only cover a limited part of the image,
i.e.,

∑k
i=1|Fi| should be small. This corresponds to the as-

sumption that the total area covered by the most important
features is typically only a small fraction of the image.

We now formulate the feature extraction task as an instance of
the PCST problem. First, we observe that the PCST problem directly
allows us to address the first and third objectives: feature energy
and feature size. By assigning the corresponding (squared) coeffi-
cient intensity value to each node in the graph, the PCST objective
function ensures that the solution T contains many of the significant
coefficients; otherwise, the solution would incur a large cost in the
node-prize term π(T ). Moreover, assigning a nonzero cost λ to ev-
ery edge favors sets of features that cover a small total area since
adding a new pixel to the solution incurs cost λ.

Next, we incorporate the second objective (total number of fea-
tures) in the PCST instance. Unfortunately, this objective is not di-
rectly captured by the conventional PCST formulation, which only
seeks a single subtree T (and not a union of trees). However, we can
add the constraint by augmenting the image graph G with a special
root node which is connected to all other nodes in the image. We
assign a special edge cost γ to these edges, which can be different
from λ, the cost of “normal” graph edges. See Fig. 2 for an illus-
tration of this construction. We observe that a PCST solution in this
augmented graph can give rise to several features which are discon-
nected in the original graph G (see Fig. 3). By adjusting the weight
γ of the edges incident to the root node, we can control the cost of
creating a new feature in the PCST solution. Formally, we obtain:

Definition 1 (Feature-detection PCST instance). Let I ∈ Rn×m

be an n × m image and let G = (V,E) be the pixel connectivity
structure for the image, i.e., V = [n]×[m]. Then a feature-detection
PCST instance is constructed as follows: Let G′ := (V ′, E′) be a
graph with V ′ := V ∪ {r}, where r is the root node. Set E′ :=
E ∪ {(r, v) | v ∈ V }. For any v ∈ V ′ corresponding to an image
pixel, set π((i, j)) := I2i,j . For the root node, set π(r) := +∞. For
all original image edges e ∈ E, set the edge cost c(e) := λ. For all
edges incident to the root node, set the edge cost c((r, v)) := γ for
all v ∈ V .

Solving the PCST problem on a feature detection instance as
defined above gives us a tree T in the graphG′. We can now convert
T to a set of features by simply removing the root node r, which

I21,1 I21,2 I21,2

I22,1 I22,2 I22,3

I23,1 I23,2 I23,3

image nodes

∞
root node

λ

γ

Fig. 2. The PCST instance for a 3 × 3-pixel image with intensities
Ii,j and a simple grid graph as connectivity structure G. The prize
of each node is the corresponding intensity squared, i.e., I2i,j . The
costs of all grid edges (blue) are λ and the costs of all root edges
(red) are γ. Most of the edge labels are omitted for clarity. The
root effectively has cost +∞ and hence is always included in the
solution.

root node

γ γ γ

image nodes

Fig. 3. A PCST solution in a 5× 5-pixel image on a grid graph. The
solution decomposes into three features: the red, green, and blue
components. Every feature has a single edge to the root node and
hence contributes γ to the overall solution cost. The other root edges
and most node / edge labels are omitted for clarity.

partitions the tree T into connected components. We then return
each connected component as a “feature” in the image.

Finally, it remains to relate the PCST objective function to the
goals in the feature extraction task. If we set γ′ := λ + γ in the
PCST instance, then we can derive the following equalities:

c(T ) = λ
∑
F∈F

|F | + γ′|F|

π(T ) = ‖I‖22 −
∑
F∈F

‖IF ‖22 .

Therefore, minimizing the PCST objective function c(T ) + π(T )
captures all three goals outlined above: the energy of the image co-
efficients in the features, the total area covered by the features, and
the number of features identified.

To summarize, our algorithm for extracting “interesting” fea-
tures proceeds as follows: (i) For a given input image I and edge
weights λ and γ, construct a feature-detection PCST instance (Def-
inition 1). (ii) Solve the instance using an efficient PCST algorithm.
(iii) Repeat steps (i) and (ii) after appropriately tuning λ and γ until
a suitable set of image indices is identified as the set of features.
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Fig. 4. Feature extraction on a synthetic image. (a) Original image. (b) The image is contaminated with a heavy amount of noise (SNR =
-5dB). (c) Feature extraction via sparse approximation introduces several isolated false positives. (d) Feature extraction via the EMD-based
approach [4] introduces spurious linear features. (e) Feature extraction via our proposed method robustly recovers the correct features.

4. NUMERICAL EXPERIMENTS

We now present the results of several experiments on synthetic and
real test images to demonstrate the benefits of our proposed PCST-
based algorithm. In our experiments, we performed parameter tun-
ing to achieve the best visually acceptable performance for our pro-
posed method, sparse approximation, and the method of [4]. First,
we study the performance of our algorithm in the context of feature
extraction from synthetic images. Figure 4 displays the results of
a numerical experiment detailing the performance of different algo-
rithms on a randomly generated test image of size 100× 100. (Fig.
4(a)). The image is contaminated with a large amount of i.i.d. Gaus-
sian noise (equivalent to -5dB), resulting in Fig. 4(b). We use this
as the input to three different algorithms – sparse approximation; the
Earth Movers Distance (EMD)-based approach of [4]; and our pro-
posed PCST-based algorithm (with parameters λ = 0.75, γ = 4).
We depict the locations of the detected feature pixels by each algo-
rithm in Figs. 4(c,d,e).

While both the sparse approximation (Fig. 4(c)) and the EMD-
based approach (Fig. 4(d)) perform reasonably well in identifiying
the features, both lead to spurious outliers. The sparse approxima-
tion method ignores the connectivity constraint and therefore pro-
duces several isolated false positives. On the other hand, the EMD
based method of [4] assumes a constant number of features per col-
umn and therefore hallucinates two spurious layer features. In con-
trast, our proposed method leads to stable recovery of the original
features in (a) with very few false positives or negatives.

Next, we study the performance of our method on a real seismic
image. Figure 1(a) displays the test image (of resolution 150× 300)
corresponding to a section of the Southeastern Malay Basin [5]. It
is visually evident that the image contains a single dominant uncon-
formity feature, and is corrupted by a considerable amount of noise.
In order to mitigate the noise, we first pre-process the input image
via a median filter with window size 5 × 5. Then, we use this de-
noised image and apply both sparse approximation (with 10% spar-
sity) as well as our proposed PCST-based method (with parameters
λ = 1.5, γ = 22). Again, our proposed method is able to success-
fully recover the unconformity without outliers.

Finally, we study the performance of our algorithm on a second
real seismic image containing a variety of faults, unconformities, and
other events. The test image is of resolution 200×200 and displayed
as Fig. 5(a). Again, we first use a median denoising pre-processing
step and then run various feature identification methods. Our method
(with parameters λ = 0.25, γ = 1.7) recovers several features in the
image and is able to ignore the noise (present in the bottom right part
of the image). In contrast, both conventional sparse approximation

(a) Original image (b) Sparse approximation

(c) EMD [4] (d) Proposed method

Fig. 5. Feature extraction on (a) section of a real seismic image. (b)
The sparse approximation approach produces several spurious out-
liers around small clusters of high-intensity pixels that do not always
represent important features in the image. (c) The EMD-based ap-
proach [4] fails to identify several significant layers and incorrectly
connects some of the layers. (d) In contrast, our proposed method
correctly identifies most of the important features.

and the EMD-based method of [4] pick up several spurious outliers.

5. CONCLUSIONS

In this paper, we have proposed a new algorithm for extraction of
“interesting” features in seismic images. Our approach involves
formulating the feature extraction task as an instance of the Prize-
Collecting Steiner Tree (PCST) problem, which we can solve using
efficient existing methods. We have demonstrated its applicability
to a number of synthetic and real test seismic images. We mention
in passing that while we focus exclusively on 2D seismic images in
this paper, our techniques are potentially applicable for other signal
and image processing domains.
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