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Abstract

Current road safety initiatives are approaching the limit of their effec-

tiveness in developed countries. A paradigm shift is needed to address

the preventable deaths of thousands on our roads. Previous systems

have focused on one or two aspects of driving: environmental sensing,

vehicle dynamics or driver monitoring. Our approach is to consider

the driver and the vehicle as part of a combined system, operating

within the road environment. A driver assistance system is imple-

mented that is not only responsive to the road environment and the

driver’s actions but also designed to correlate the driver’s eye gaze

with road events to determine the driver’s observations. Driver ob-

servation monitoring enables an immediate in-vehicle system able to

detect and act on driver inattentiveness, providing the precious sec-

onds for an inattentive human driver to react. We present a prototype

system capable of estimating the driver’s observations and detecting

driver inattentiveness. Due to the “look but not see” case it is not

possible to prove that a road event has been observed by the driver.

We show, however, that it is possible to detect missed road events and

warn the driver appropriately.

1. Introduction

The daily occurrence of traffic accidents has become a hor-

rific price of modern life. Complacency about the dangers of

driving contribute to the death of more than one million peo-

ple worldwide in traffic accidents each year (WHO 2001).

Fifty million more are seriously injured (WHO 2001). In The
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Organization for Economic Co-operation and Development

(OECD) member countries, road accidents are the primary

cause of death for males under the age of 25 (OECD 2006).

There is no doubt that driver error is at the heart of road

fatalities (Treat et al. 1979). In their landmark study Neale et

al. (2005) used 100 vehicles equipped with video and sensor

logging equipment to study how people drive and why they

crash. They found that 78% of accidents and 67% of near acci-

dents they witnessed involved momentary inattention (within

3 seconds) before the incident.

We propose to detect and act upon momentary driver inat-

tention. Cars offer unique challenges in human–machine inter-

action. Vehicles are becoming, in effect, robotic systems that

collaborate with the driver. To detect inattention we attempt to

estimate the driver’s observations in real-time within the ve-

hicle. Through the integration of driver eye-gaze tracking and

road scene event detection the driver behavior can be validated

against a model of expected behavior to determine cases of

momentary driver inattention.

Next, we conduct a brief analysis of the problem of death

and injury on the road. In Section 2 we review related work

and derive our approach to road safety. Section 3 details sys-

tem components developed to implement our research. Sec-

tion 4 describes several inattention detection systems used to

verify the efficacy of driver observation monitoring. The paper

concludes with a discussion of the next potential steps in road

safety in the light of these results.

1.1. Motivation

Law enforcement, improved vehicle and road design and pub-

lic awareness campaigns have had a marked effect on accident

rates since the 1970s (ATSB 2004� OECD 2006). Little, how-

ever, has been achieved on the hard cases of road safety, such

as fatigue, distraction and inattention (Treat et al. 1979� Stutts

et al. 2001� Neale et al. 2005).
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Fig. 1. Road fatalities from 1990 to 2004 per million vehicles across selected OECD countries. Data from OECD (2006).

Fig. 2. Fatigue correlated accidents and all fatal crashes. Data from ATSB (2006).

Figure 1 plots the number of road fatalities for several

OECD countries over the past 15 years. While many countries

such as France and Spain, which were starting from a high

base, have steady declines, countries with the lowest fatality

rates, such as Sweden and the UK, no longer have a constant

decline. Instead, the decrease in fatalities in these countries ap-

pears to be slowing (OECD/ECMT 2006). In fact, most OECD

countries are losing traction toward the OECD aim of a 50%

reduction in road fatalities from 2000 by 2012 (OECD/ECMT

2006).

One reason for this trend is that as road fatalities from

speeding and drink-driving fall, the difficult cases in road

safety, fatigue, distraction and inattention, are becoming more

prominent. To gauge this trend we extracted data likely to cor-

relate well with fatigue-induced accidents from the Australian

Road Crash Database (ATSB 2006)1. Figure 2 plots night-time

single vehicle crashes with the total number of fatal crashes.

The plot shows that there is no significant downward trend in

(likely) fatigue induced crashes despite a clear downward trend

in fatal crashes per se.

1. The data extracted was the number of fatal single vehicle crashes during the

night (22:00–7:00) compared with the total number of fatal crashes
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Fig. 3. Diminishing returns of vehicle autonomy. On high-

ways: University of Bundeswehr, Munich (UBM’s) “Va-

MORS” in 1987, Carnegie Mellon University (CMU’s)

“Navlab 5” in 1995.

It is natural to conclude that the key to eliminating road

fatalities is to usurp the failing component, the human driver.

There have been a number of impressive feats of autonomous

driving. A famous early system pioneered by Dickmanns and

Graefe (1988a,b) was able to steer a vehicle at well over 150

km/h on well formed roads. In the 1990s demonstrations of

subsequent work in the field were also impressive, e.g. the

Navlab “No Hands Across America” trial steered 98% of the

4500 km trip (Pomerleau and Jochem 1996). However, having

an automated system address the remaining 2% of road sce-

narios proved extremely difficult.

As illustrated in Figure 3 autonomous vehicle capabili-

ties have a diminishing return on effort as the capabilities

become more advanced. Urban scenes contain substantially

more complexity and variance than the highway cases mean-

ing that 100% autonomy in urban and highway scenarios is

much further away (Franke et al. 1998). In recent years the

United States Defense Advanced Research Projects Agency

(DARPA) Grand Challenge, in which road vehicles have been

automated to drive in on-road off-road competitions, has gen-

erated renewed interest in full vehicle automation (DARPA

2004, 2005). The events while modelled on the “real world”

are carefully constrained (DARPA 2007). While challenging

to robots the test courses would offer little difficulty to an ex-

perienced driver as, again, handling the difficult cases is still a

significant time away (Thrun et al. 2006).

Although autonomous technologies in vehicles work very

well in their element (over 98% of the time), these systems are

highly susceptible to being “tricked” by extreme or unlikely

circumstances due to the models they are built on. Humans on

the other hand are remarkably flexible. They are able to prob-

lem solve on the fly, even when prompted by the most improb-

able situations. Yet they are susceptible to fatigue, distraction

and inattention.

Maltz and Shinar (2004) showed that even an imperfect au-

tonomous technology for driver assistance could provide a sig-

nificant road safety benefit. So the research agenda shifted to

driver support. Here we can use autonomous capabilities to

support the driver.

Table 1 summarizes the complementary competencies of

a human and an automated driver. Instead of the traditional

model of a driver applying the control signal to the vehicle

to move through the road environment, we can consider two

drivers: the human driver and the autonomous driver, collab-

orating to control the vehicle. The critical question then be-

comes how do we combine the behavior of the two controlling

agents?

2. Our Approach

Fortunately there is a ready analogy where two drivers are in

charge of the one vehicle. Almost every driver has experienced

a warning from a passenger, perhaps alerting him or her to

an obscured car while merging lanes, or a jaywalking pedes-

trian in a blind spot. These warnings of inattention save count-

less lives every day. In a recent keynote address (Regan 2005),

Road Safety Researcher Professor Michael Regan2 highlighted

the fact that, unlike other complex, potentially dangerous ve-

hicles such as planes and ships, road vehicles are operated by

a single person. That single person is prone to error and may

be, due to the day-to-day nature of driving, slow to recognize

potential hazards. Professor Regan speculated that the intro-

duction of co-drivers in road vehicles could be the key to a

substantial reduction in road accidents.

Our research investigates the implementation of an auto-

mated co-driver as a realization of a road vehicle equivalent to

aircraft pilot and co-pilot collaboration.

A human aircraft co-pilot provides relief to the pilot by

assuming control of the vehicle, but the co-pilot also double

checks life-critical actions and shares the burden of adminis-

tration. We envisage that an Automated Co-driver would pro-

vide a role in road vehicles which is an amalgam of a vigi-

lant passenger, driver aid and a safety system. An Automated

Co-driver could: double check life-critical actions� relieve the

driver of tedious activities� and, crucially, warn about missed

road events maximizing the reaction time available for the

driver.

2.1. Driver Inattention

Given the high proportion of road accidents that involve inat-

tention, it is our conjecture that the primary contributing fac-

tors to road fatalities, speed, drink-driving, fatigue and distrac-

2. Professor Michael Regan is a Research Director at INRETS (The French

National. Institute for Transport and Safety Research)
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Table 1. Competencies of human and automated drivers.

Human driver Automated driver

Competent to drive in 100% of road conditions Competent to drive in 98% of highway conditions

Distractible, inattentive Vigilant

Susceptible to fatigue Tireless

Subject to boredom, tedium Consistent, multitasking, servile

Highly adaptable Limited programmed behaviour change

High ambiguity and uncertainty tolerance Limited programmed uncertainty tolerance

Highly evolved yet fixed sensory perception system Limited yet extendable sensory system, not confined to range of

human senses (e.g. millimeter-wave radar)

Limited reaction time Near instantaneous reaction time

Fig. 4. Accident contributing factors that lead to inattention

which leads to road fatalities.

tions, are all actually causes of inattention. The contributing

factors all impair the driver’s ability to react in time to critical

road events. Figure 4 illustrates this point. The primary causes

of accidents induce driver inattention which can lead to road

fatalities.

By concentrating our efforts on driver inattention interven-

tions, we could break these event chains leading to a sub-

stantial reduction of road fatalities across many road scena-

rios.

2.2. Driver Observation Monitoring

Driver inattention is a highly transient state, and can be due to

an identifiable distraction or simply concentration on a com-

peting driving task. Monitoring the vehicle provides knowl-

edge of the vehicle state and the driver’s actions. Monitoring

the road scene enables us to identify road scene events. How-

ever, only driver inaction, not inattention, can be estimated us-

ing vehicle and road scene monitoring alone. Given a time win-

dow of a few seconds, driver inaction detection will occur too

late to intervene (Neale et al. 2005). To detect true driver inat-

tention, what the driver has or has not seen must be identified.

As illustrated in Figure 5, to detect driver inattention requires

accurate real-time driver eye-gaze monitoring combined with

vehicle and road scene state.

Our experiments will concentrate on combining driver

monitoring with road scene feature extraction to achieve driver

observation monitoring.

Direct driver monitoring has been the subject of clinical

trials for decades� however, monitoring for use in Advanced

Driver Assistance Systems is relatively new.

Head position and eye closure have been identified as

strong indicators of fatigue (Haworth et al. 1988). How-

ever, when augmented with information about the vehicle and

traffic, additional inferences can be made.

Gordon A. D. (1966) conducted an in-depth analysis of per-

ceptual cues used for driving. He described driving as a track-

ing problem. In on-road systems, Land and Lee (1994) investi-

gated the correlation between eye-gaze direction and road cur-

vature, finding that the driver tended to fixate on the tangent of

the road ahead. Apostoloff and Zelinsky (2004) used gaze and

lane tracking to verify this correlation on logged data, also ob-

serving that the driver frequently monitored oncoming traffic.

Ishikawa et al. (2004) explored back projecting the driver’s

gaze direction onto the scene, but scene features were not iden-

tified. Takemura et al. (2003) demonstrated a number of corre-

lations between head and gaze direction and driving tasks on

logged data.

Driver monitoring can also be used for validating road

scene activity. By monitoring where the driver is looking, us-

ability of the safety system can be improved by suppressing

many unnecessary warnings. As long as a road event, such

as an overtaking car or wandering pedestrian, is noted by the

driver no action needs to be taken.

The behavior of the driver several seconds before and after

an important detected road event is used to decide whether to

issue a warning. Driver monitoring is achieved via an eye-gaze

tracking system and vehicle instrumentation.
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Fig. 5. Driver observation monitoring: driver eye-gaze tracking and critical road scene feature detection are combined to deter-

mine what the driver is seeing (or not seeing).

2.3. Autonomous Functions For Driver Support

Many groups have tackled specific sensing and control prob-

lems for driver support. A quick survey of the Intelli-

gent Transport Systems (ITS) literature reveals much work

in lane tracking/keeping (Dickmanns and Graefe 1988b�

Pomerleau and Jochem 1996� Bertozzi et al. 2000), obsta-

cle/vehicle/pedestrian/sign detection (Hsu and Huang 2001�

Franke and Heinrich 2002� Labayrade et al. 2002� Grubb and

Zelinsky 2004), and driver monitoring (Takemura et al. 2003).

However, fewer groups have combined different classes of

components to form integrated support systems, with some re-

cent notable exceptions being Takemura et al. (2003), Trivedi

et al. (2005) and Holzmann et al. (2006). Interest in integration

is emerging with the goals of multidisciplinary networks such

as the EU Humanist and AIDE road safety projects (Amditis

et al. 2006).

2.4. Vehicle–Driver Interaction

Holzmann et al. (2006) recently outlined an architecture for

predictive path planning using a “virtual driver” model, where

the driver’s actions in addition to other inputs are fed into

the driver assistance system. The system, based on its own

confidence and the estimated fitness of the driver, generates a

safe vehicle control action. No direct driver monitoring seemed

to be used. This architecture would be a great complementary

component to our system. Gerdes and Rossetter (2001) used

force feedback through the steering wheel as a natural human

machine interface for lane-keeping. The driver feels a gen-

tle force through the steering wheel encouraging the driver

to maintain a central position in the lane. The perception to

the driver is that the car is being guided down the lane as if

it is on rails, or driving along a trough. The applied force is

weak enough, however, that the driver can override the force

to overtake or depart. Similarly, Similarly, Carsten and Tate

(2001) used feedback through the accelerator for speed con-

trol. The accelerator pedal becomes increasingly difficult to

depress as the speed limit is exceeded. These interfaces are

perfect examples of how a system can give feedback to the

driver in a natural unobtrusive way. To permit us to drive on

public roads we could not use actuated systems in our experi-

ments. However, these feedback interfaces are how we envis-

age a final system to operate.

A particularly strong group due to the inclusion of hu-

man factors and intelligent vehicle researchers, used a sensor-

rich vehicle for driver behavior modeling. Moving from driver

behavior analysis to assistance systems the group has re-

cently been correlating driver head pose with road scene per-

ception (Trivedi et al. 2005). They show an improved clas-

sification of the driver intent to change lane when head pose

data is included in the modeling.

Matsumoto et al. (1999) demonstrated head pose and eye-

gaze tracking as a potential human–machine interface. The re-

search has been developed by Seeing Machines (2001) into

an in-vehicle system. The system can accurately track head

pose and eye-gaze direction down to �1�. We will use this

system to determine eye gaze to correlate with road scene

events.
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Fig. 6. (a) The cameras on-board the vehicle. The CeDAR active vision platform containing the stereo road scene cameras and

faceLABTM passive stereo cameras observing the driver. (b) CeDAR: Cable Drive Active vision Robot in vehicle. Four cameras

are arranged in two stereo pairs. Cameras are fitted with polarizing filters and far-field cameras use glare hoods.

Using this system, Victor (2005) developed the Percentage

Road Centre (PRC) metric which integrates driver eye gaze

over time into a histogram to detect driver alertness. The group

used a trail of colored lights to lead the driver’s attention back

to the road when the PRC metric indicated a visual or cognitive

distraction preoccupying the driver. Since we are monitoring

the instantaneous gaze direction of the driver we prefer not to

cause rival visual stimuli to the driving task so we will use

auditory messages.

2.5. Judging Driver Behavior

The task of driving is often described as a tracking task (Gor-

don A. D. 1966� Land and Lee 1994). The driver interprets the

road scene primarily by vision and then applies the required

control signal to the vehicle to maintain the correct relative

position.

Gordon A. D. (1966) reported on a mathematical analy-

sis of the motion of the road scene to the driver. He con-

cluded that, while driving, the road appears in steady state to

the driver. Driving then becomes a lateral tracking (lane keep-

ing) problem. Road boundaries, not focus of expansion (as of-

ten thought), is the dominant cue for aligning the vehicle in

the lanes. If the vehicle is misaligned laterally the whole view

field moves as a result. Summala and Nicminen (1996) demon-

strated that peripheral vision was sufficient for short-term lane

keeping. When the driver is lane keeping the peripheral vision

is capable of verifying that small motions in the road scene

indicate that the vehicle is on track. When the vehicle starts

to diverge from the lane direction, the induced whole view

field motion alerts the driver to take direct notice. Correlat-

ing the driver eye gaze with the road scene this means that for

lane keeping the driver does not always need to fixate on the

road for safe driving. However, when the vehicle is misaligned

with the road ahead, such as during lane departures, the driver

would receive a strong visual cue to monitor the road position.

If the driver is not observing the road at this time, then this is

a significant indicator of inattention.

This leads to the question of where the driver would look

in the road scene for attentive lane tracking. In a clinical

trial Land and Lee (1994) investigated the correlation between

eye-gaze direction and road curvature. The group found that

the driver tended to fixate on the tangent of the road ahead.

Road scene features such as signs, pedestrians and obsta-

cles require foveated vision. Maltz and Shinar (2004) proved

that peripheral vision is insufficient for road hazard detection.

For our system, this means that to have seen a critical road ob-

ject the driver must have, at some stage, directed their eye gaze

directly at the object.

3. Developed Capabilities

The vehicle has been fitted with sensors to gather odometric

information as well as sensors for monitoring the driver’s ac-

tions such as strain gauges on the steering shaft, turning in-

dicator and brake sensors. The principle sensors used on the

vehicle are video cameras. Figure 6 shows the vision systems

configuration. Computing is done on-board the vehicle using

several standard desktop computers.

3.1. Gaze Monitoring in Vehicles

The vehicle is fitted with a faceLABTM eye-gaze tracking sys-

tem. faceLABTM is a driver monitoring system developed by

SeeingMachines (Seeing Machines 2001) in conjunction with
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Fig. 7. The Distillation algorithm is composed of a Cue processor and a Particle filter running concurrently.

the Australian National University (ANU) and Volvo Tech-

nological Development. It uses a passive stereo pair of cam-

eras mounted on the dashboard to capture video images of the

driver’s head. These images are processed in real-time to de-

termine the 3D pose of the driver’s head (to �1 mm, �1�) as

well as the eye-gaze direction (to �1�). Blink rates and eye

closure can also be measured.

3.1.1. Lane Tracking

A common problem in lane tracking is road appearance

changes due to shadows, glare and road works (Pomerleau

and Jochem 1996� Bertozzi et al. 2000). With the exception

of the physical limits of the sensor, in order to achieve robust

lane tracking multiple methods of image processing need to be

undertaken and integrated based on the prevailing road con-

ditions. The generic Distillation algorithm was developed for

this purpose. The Distillation algorithm is a visual cue process-

ing framework (see Figure 7). The framework consists of two

cycles. The first cycle, the cue fusion cycle, performs a cost–

benefit analysis of the various visual cues to distill the com-

bination of cues which provide the best tracking discrimina-

tion. The second cycle is a particle filter (condensation algo-

rithm (Isard and Blake 1996)) to estimate the state distribution.

A detailed discussion of the algorithm is given in Apostoloff

and Zelinsky (2004). Figure 7 shows a typical lane estimate,

where the initial system has been extended to use a clothoidal

road curvature model and a covariance metric is used to in-

crementally vary the look ahead distance. The lane tracker has

been tested on data from a 1800 km round trip tracking the

road along a variety of road types without adjustment.

3.2. Obstacle Detection

The Distillation algorithm has also been applied in the ob-

stacle detection system. The obstacle detection system uses a

set of visual cues to segment and track obstacles. The detec-

tion phase of the system segments potential obstacles from the

stereo depth map, edge and motion images. These potential

obstacles are very rough guesses with many false positives.

These candidates are injected into the Distillation algorithm

mentioned above. True obstacles form clusters within the par-

ticle space, whereas false detects dissipate. Obstacle samples

are defined with respect to the lateral and longitudinal lane

positions, size and velocity. While the state space is in world

coordinates the sample evaluation is done by projecting back

into the sensor image space.

The following equation is used to evaluate each sample:

P�e
� j�
t �s

i
t � �

1

� � N

�

� �

N�

p

I
� j�
t �s
�i�
p �

�

� (1)

where s�i�p is the pth pixel from the set of pixels S generated by

particle i , I
� j�
t �s� is the value of pixel s from the observation

image I used for the j th cue, N is the number of pixels in the

region in image space, and � (set to 0�001) is used to support

the possibility that the sensor is in error. Figure 9 shows the

leading vehicle tracked by the algorithm.

3.3. Sign Recognition

Symbolic signs are detected by locating sign-like shapes in the

image stream. The system uses the fast radial symmetry oper-

ator (originally developed for eye detection (Loy and Zelinsky

2003)) with online image enhancement. The system was used

to effectively detect speed signs as they are the most frequent

signs encountered, but a similar method could be used to detect

symbolic road signs (Fletcher et al. 2005b). Figure 10 shows

the algorithm applied to circular signs in poor road condi-

tions.
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Fig. 8. Lane tracking look ahead distance varies with certainty measured by the sample spread of the dominant mode.

3.4. Pedestrian Detection

A pedestrian detection system was developed by Grubb and

Zelinsky (2004) (see Figure 11). The system used stereo cam-

eras, V-disparity and support vector machines to achieve a

high false-negative rate. This system and the work of Viola

et al. (2005) has sponsored the development of a second sys-

tem by our project collaborators, the National ICT Australia

group (Rasolzadeh et al. 2006). Viola et al. (2005) imple-

mented a method of detecting pedestrians using Haar features

and Ada-boost3. The module is used to detect and track pedes-

trians for our assistance system.

3.5. Visual Monotony Estimation

A great irony of transport systems research is that advances

in road and vehicle safety can end up causing new threats to

road users. Thiffault and Bergeron (2003) found that the vi-

sual monotony is a key input to driver fatigue. Car manufactur-

ers and infrastructure authorities have collaborated to attenuate

3. Ada-boost is a method of taking a collection of weak classifiers and “boost-

ing” them so that together a combination of classifiers is derived that can

strongly classify the data set

stimulation from the off-driving tasks and ease the on-driving

task. An unfortunate consequence is that sections of road that

were once prone, for example, to head on collisions are be-

coming (after road upgrades) fatigue accident zones.

To automatically measure the visual monotony in a road se-

quence requires a metric of the variance (or information con-

tent) of the video sequence over time. Moving Picture Experts

Group (MPEG) encoding fills this requirement. MPEG ex-

ploits the property that in moving pictures only small regions

of the image actually change substantially between frames. En-

coding a set of frames over a sliding time window has shown

a strong correlation to a human judged monotony scale. One

failing of the MPEG compression as a monotony detector is

in situations of poor visibility such as fog. The task was not

monotonous yet the video will compress well. We use the lane

tracking look ahead distance to detect these types of cases.

We conducted day, dusk and night road trials. To investi-

gate how best to use MPEG encoding to represent monotony

we encoded a set of movies with varying sampling rates, ratios

and sequence lengths. Figure 12 shows a result of one trial.

Trends of smaller compression ratio (or increased monotony)

appear as the vehicle leaves the city for the highway and along

the country road in day and night trials. The lane tracking look

ahead distance is effective at identifying sections of road with

a lower monotony than expected by the MPEG compression
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Fig. 9. Distillation algorithm tracking the leading vehicle. Left: Dominant mode projected onto the image. Right: Visualization

of the dominant mode in the particle space.

Fig. 10. Sign detection using Fast Radial Symmetry Transform (FRST). The bottom left corner shows the FRST image, where

the red crosses highlight detected signs.

alone (Fletcher et al. 2005a). The initial trials were later vali-

dated by a 1800 km round trip along a variety of roads and for

different traffic types. The metric was highly correlated with

the human-perceived monotony.
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Fig. 11. Online pedestrian detection. The basis for the system used in the Automated Co-driver.

Fig. 12. MPEG compression and lane tracking look ahead during an afternoon trial on city and arterial roads. Sample images

from the camera are shown at the corresponding numbered points with the lane tracking look ahead distance. The different traces

in the graph represent various frame rate (0.5–4 Hz) and sliding time window (2.5–10 minute) combinations. Higher frame rates

capture periodic yet potentially monotonous scenes. Longer time windows smooth transient periods of little motion but add

latency to the monotony detection.

4. Driver Inattention Experiments

To investigate driver inattention detection we developed a

number of prototype systems:

� Road center inattention detection – A simple application

using the driver observation monitoring and the vehi-

cle speed alone. This system implements instantaneous

driver inattention detection using an assumed road cen-

ter.

� Road event inattention detection – This system inte-

grates a single road event source, namely speed signs,

with gaze monitoring to demonstrate the basic cases of

driver observation monitoring according to the matrix in

Table 2.
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Table 2. Driver behavior matrix used by the system to

determine the appropriate state. OK: no action required.

INFO: provide on-screen reminder to operator. WARN:

provide auditory reminder to driver.

Driver “Seen” Missed Acknowledge

Driver Behavior OK OK INFO OK

Driver Behavior Not OK INFO WARN INFO

Fig. 13. The scene camera and gaze direction is analogous to a

two-camera system.

� Multiple road event inattention detection – The final

system integrates all available subsystems to demon-

strate our best approximation of a fully functional driver

inattention detection system.

Our approach is to consider the driving task as a closed loop

system involving the vehicle, driver and the road environment.

The system selected interventions according to the behavior

matrix in Table 2.

4.1. Correlating Eye Gaze with the Road Scene

Scene camera and eye configuration is analogous to a two-

camera system (see Figure 13). Gaze directions trace out

epipolar lines in the scene camera. If we had a depth esti-

mate of the driver’s gaze, we could project to a point in the

scene camera. Similarly, if we had the object depth we could

re-project on to the eye and estimate the required gaze. A depth

estimate of the gaze is hard to obtain. A common assumption

is that the gaze angle and angle in the scene camera are the

same. In practice this assumption amounts to supposing that

either the scene camera is sufficiently close to the driver’s head

(equivalent to a trivial baseline) or that the objects of interest

are near infinity (Land and Lee 1994� Takemura et al. 2003�

Ishikawa et al. 2004). In these cases error bounds on the gaze

direction (not fixation duration) are infrequently used and even

less frequently justified.

The object depth could be estimated using a second scene

camera running the same detection software or assumptions

on object size and/or road layout. However, it is desirable to

maintain flexibility of the implemented object detection sys-

tems which could use a single camera and have no strong as-

sumptions on the object scale. If we assume that the depth of

the object is unknown, we can instead model the effect of the

disparity error in our confidence estimate.

The effect of an unknown stereo disparity will be a dis-

placement along the epipolar line defined by the gaze direc-

tion on to the scene camera. The disparity, as with any stereo

configuration, will be most apparent for close objects and re-

duce by a 1�x relationship with distance from the baseline. The

angular deviation reduces as the angle becomes more obtuse.

To get an upper bound of the likely disparity deviation we can

compute the worst-case disparity for our camera configuration.

With reference to Figure 13, and using the scene camera center

as a world reference frame, the scene camera and gaze angles

for a sign at �Xsign� Ysign� Zsign� can easily be derived:

�� � �� cam � � gaze�

� arctan
Xsign

Zsign

� arctan
Xsign � Xgaze

Zsign � Zgaze

� (2)

�	 � �	cam � 	gaze�

� arctan
Ysign

Zsign

� arctan
Ysign � Ygaze

Zsign � Zgaze

� (3)

The worst-case disparity then translates to when the object is

closest to the vehicle on the driver’s side of the road, equiv-

alent to an object on the right shoulder of a single-lane road

(note that our system is in a right-hand drive vehicle). The

field of view of the scene camera limits the closest point at

which the object is visible. The closest visible object is at

��3�0��1�6� 8�0� for the 50� field of view of the camera. The

worst-case height of the object relative to the scene camera,

�1�6, would be when it is on the ground (this is worse than

any actual case as the object would not be visible due to the

bonnet). With pessimistic estimates of the driver (far) eye po-

sition relative to the scene camera manually measured to be

�Xgaze � 0�22� Ygaze � 0�1� Zgaze � 0�2�, the final errors be-

come

�� � �� cam � � gaze� � �20�6� � 18�7�� � 1�9�� (4)

�	 � �	cam � 	gaze� � �11�3� � 10�4�� � 0�9�� (5)
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Therefore, the worst expected deviation due to stereo disparity

is �1�9� horizontally and �0�9� vertically, which is on a par

with other error sources in the system. The expected deviation

for the majority of cases where the sign is further away is sig-

nificantly less. The deviation is twice as large in the horizontal

direction, implying that a suitable approximation of the toler-

ance region will be an ellipse with a horizontal major axis.

To determine the overall tolerance of the system, two fur-

ther factors need to be accommodated. The gaze tracking sys-

tem has an accuracy of �3� and the field of view of the

foveated region of the eye is estimated to be around �2�6�

(Wandell 1995). The accumulated tolerance is the sum of these

sources which for our experimental setup comes to�7�5� hor-

izontally and �6�6� vertically. This allows us to claim that the

driver was very unlikely to have seen the object if the object

and gaze directions deviate by more than this tolerance.

Verifying the Foveated Field of View

To get a sense of the field of object discrimination ability of the

driver, a simple trial was constructed using a desktop PC. Wan-

dell (1995) states the foveated region of the eye to be around

�2�6�, although a substantial cone density exists up to around

20�. A simple program was made to present speed signs featur-

ing varying speeds to the subject at different positions on the

screen. Highway road footage was shown in the background

to add a small amount of realism to the scene. The test sub-

ject was asked to fix their gaze on a stationary cross on the

screen and to press the corresponding number on the keypad

to match the presented sign. If the subject broke their gaze or

otherwise invalidated the trial, they pressed no key or “0” and

the result was discarded. Figure 14 presents a typical screen-

shot from the test program. A set of five subjects with normal

(or corrected) eye sight were each presented with 200 signs

(100 fixating to the left, 100 fixating toward the right). The re-

sults (see Figure 15) show that reliable discrimination ability

drops off at over 4� from the fixation point. The use of the trial

was to provide a rule of thumb for the discrimination ability

of the driver in the context of the road objects. The estimated

field of discrimination will be used to judge whether the driver

would be able to see a particular road object.

In-vehicle Verification

We conducted a verification experiment to test that the system

was indeed going to be able to detect whether the driver missed

an object. The driver was asked to fix their gaze on an object in

the scene. A sign was then placed at a certain distance from the

fixation point. The driver was then asked to identify the object.

The object was one of eight possibilities. The proportion of

correct classifications was logged along with the driver-gaze

angle and apparent sign position in the scene camera. 30 m,

Fig. 14. Screen-shot of PC test application to gather data on

gaze object recognition field of view. A test subject is re-

quested to fix their gaze on the cross. The Speed sign peri-

odically varies in position and speed (10,20,30,...,90). A road

video sequence was played in the background to add context

for the trials. The subject entered the “guessed” sign via a nu-

meric keypad (“1”–“9”).

20 m and 10 m depths were tested against four different dis-

placements between the object and fixation point. The object

size was 0�45 m in diameter. For each combination of depth

and displacement, ten trials were done.

Figure 16 shows the driver’s object classification error rate

versus the angle between gaze and object position. Expected

recognition rates fall as the object becomes more peripheral

in the driver’s field of view. The results of this trial verify our

expectation that, while it is hard to prove the driver saw an

object, it is possible to estimate, with reasonable confidence,

when the driver was unlikely to have seen the object. A curious

effect was noticed (represented by a cross in the middle of the

graph) when the driver was very close to the object. The large

apparent size of the object in the driver’s field of view seemed

to aid the recognition rate. However, this only occurred when

objects were close to the vehicle, which is not when drivers

typically see road objects. The driver reported not consciously

being able to see the object in this case.

This verification demonstrates the expected strength of the

system: the ability to detect when the driver has missed an ob-

ject. It is impossible to determine whether the driver saw the

object, as, even with perfect measurement of a perfect gaze di-

rection match, the driver’s attention and depth of focus cannot

be determined. If the driver is looking in the direction of the

object, it is an ambiguous case whether the driver noticed the

object, thus no warning is issued.
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Fig. 15. Gaze PC test error rate. Above a 4�5� angle from the fixation point the test subjects were recognizing one in two signs

correctly.

Fig. 16. Driver recognition rate of objects in peripheral vision

for various depths. The dotted horizontal line shows expected

value due to chance. The vertical dashed line represents�7�5�

derived tolerance. Squares, 30 m points� circles, 20 m points�

crosses, 10 m points.

4.2. Assistance System Design

The Automated Co-drivers can be thought of (and are imple-

mented) as instances of the Advanced Driver Assistance Sys-

tems (ADAS) logic engine shown in Figure 17.

4.3. Road Centre Inattention Detection

The first system was developed to demonstrate the benefits of

the immediacy of direct driver gaze monitoring. Previous sys-

tems used in simulation or road trials have used metrics such as

the variance in steering wheel movements to gauge the fatigue

level of the driver. Because these systems compute statistics

over time, there is a significant lag between driver inattention

and action by the system. Online real-time driver gaze moni-

toring can easily be used to detect short periods of driver dis-

traction.

Similar to the percentage road center metric (Victor 2005),

driver gaze can be analyzed to detect even shorter periods of

driver distraction. The faceLABTM system readily allows the

implementation of an online distraction detector. The gaze di-

rection is used to reset a counter. When the driver looks for-

ward at the road scene, the counter is reset. As the driver’s gaze

diverges, the counter begins. When the gaze has been diverted

for more than a specific time period, a warning is given. The

time period of permitted distraction is a function of the speed

of the vehicle. As the speed increases, the permitted time pe-

riod could drop off either as the inverse (reflecting time to im-

pact) or the inverse squared (reflecting the stopping distance).

We use the inverse square. Once the driver is observed to have

had a stable gaze at the road ahead, the counter and the warn-

ing is reset until the next diversion. As the vehicle speed is

considered, normal driving does not raise the alarm since dra-

matic movements such as over the shoulder head checks occur

at slow speeds, and the overted gaze tolerance is longer. Situa-

tions when the vehicle is not moving, such as waiting to merge,

permit the driver to look away from the road ahead indefinitely

without raising the alarm.

Using the faceLABTM system, we monitor driver head pose

and eye-gaze direction via the driver state engine. The watch-

dog timer inside the driver state engine will be used to verify

whether the driver has not looked at the road for a significant

period of time. An auditory warning is given if the driver is

seen to be inattentive.
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Fig. 17. Implemented ADAS software component architecture.

Fig. 18. Road scene inattention detection Automated Co-driver screen-shot.

On-road Trials

Figure 19 is a sequence of screen-shots showing the typical

response with a distracted driver. Once the distraction thresh-

old is crossed for the given speed, audio warnings increase

until the driver looks forward again. Then the warnings are re-

set until next time. One conclusion from the trials was that a

road position estimate would help the system. In some cases,

when the road had significant curvature, the system was trig-

gered because the gaze direction was substantially away from

the straight ahead position.
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Fig. 19. Road scene inattention detection sequence. Circles represent driver gaze. (a) Driver looking forward. (b) Driver looking

at right mirror, alarm sounding. (c) Driver still distracted, alarm louder. (d) Driver gaze has returned to the road ahead, alarm

silenced.

4.4. Road Event Inattention Detection

In this system an autonomous detection system recognizes a

road event, in this case a speed sign. At the same time, a driver

monitoring system verifies whether the driver has looked in

the direction of the road sign. If it appears that the driver is

aware of the road sign, the information can be made available

passively to the driver. If it appears that the driver is unaware

of the information, an auditory warning is generated.

For this case, if the driver appears to have seen a speed

sign, the current speed limit can be simply recorded on the

dashboard adjacent to the speedometer. However, if it appears

that the driver has not looked at the road sign and, over time,

a speed adjustment is expected and has not occurred, a more

prominent warning would be given. This still leaves the driver

in control of the critical decision, but supports them in a way

that aims not to be overly intrusive. Warnings are only given

when the driver is not aware of the change of conditions.

Finally, the warning can also be cancelled by observing the

driver: a glance at the speedometer confirms that the driver is

aware of their speed and the new detected limit.

Using the reasoning in Section 4.1, the worst expected de-

viation due to stereo disparity is�1�9� horizontally and�0�9�

vertically which is on a par with other error sources in the sys-

tem. The expected deviation for the majority of cases where

the sign is further away is significantly less. The deviation is

twice as large in the horizontal direction, implying that a suit-

able approximation of the tolerance region will be an ellipse

with a horizontal major axis.

To determine the overall tolerance of the system, two

further factors need to be accommodated. The gaze track-

ing system has an accuracy of �3� and the field of view

of the foveated region of the eye is estimated to be around

�2�6� (Wandell 1995). The accumulated tolerance is the sum

of these sources, which for our experimental setup comes to

�7�5� horizontally and �6�6� vertically. This allows us to

claim that the driver was very unlikely to have seen the sign

if the sign and gaze directions deviate by more than this toler-

ance.

To correlate the eye gaze with the sign position, the his-

tories of the two information sources are examined. The sign

detection sub-system provides a history of the sign location
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Fig. 20. Screen-shot showing “60” sign detected and seen by driver. Top left: Live video showing eye gaze (large circles) and

status (overlaid text). Bottom left: Last detected sign (small circles) and eye gaze (large circles). Top right: 3D model of cur-

rent vehicle position, eye gaze (oversize head) and sign location. Bottom right: Current detected speed limit, vehicle speed,

acceleration and count down for speeding grace period in frames.

since detected. This includes all frames from when the sign

was first detected before the sign was able to be verified or

classified. Similarly, the faceLABTM data provides the histor-

ical head pose and gaze direction. When a sign has been clas-

sified, the sign angles and gaze directions are checked back

in time to when the sign was first detected. If the angles from

any previous frame fall within the tolerance, the sign is re-

ported as being seen by the driver. If the angles never coin-

cide, the sign is reported as missed. The system provides a

4 second tolerance for the driver to achieve the speed limit.

The timer is instigated when the measured speed exceeds the

limit and the measured acceleration is not significantly decrea-

sing.

On-road Trials

The system was able to detect speed signs around the Uni-

versity and evaluate the implications for the driver. Figure 20

shows a screen-shot of the system demonstrating a typical

case. Figures 21 and 22 illustrate the primary scenarios en-

countered. In Figure 21(a) the driver was watching a pedes-

trian and failed to notice a “40” sign. The Automated Co-driver

has detected that the driver did not see the sign and has issued

a red sign: missed! warning. Figure 21(b) shows an instance

where an “80” sign was detected� the driver saw the sign and

the vehicle was not speeding so no red warning was issued.

Similarly, in Figure 22(a) a “40” sign was detected. The driver

saw the sign, the system assumed the driver was intentionally

speeding so a warning was displayed but no sound alert gener-

ated. In Figure 22(b) the driver has missed the last sign and is

speeding for more than a predefined grace period without de-

celerating. The SLOW DOWN! warning is shown and an alert

sound issued.

Figure 23 shows the sign and the gaze direction separa-

tion angle for typical signs classified as “seen” by the system.

Note the troughs in the separation angle graphs reflecting times

when the driver looked toward the sign.

At one location in the test area there was a speed sign just

past an entry road to the University. Due to the intersection

geometry and a bend shortly along the entry road the road sign,

while in plain view on the road shoulder, was not prominent.

After passing the sign the drivers were asked whether they saw

the sign, and none of them did. Figure 24 shows the sign and

the gaze direction separation angle for three test drivers. The

system classifies these signs as missed. Notice the lack of di-
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Fig. 21. The two columns are typical cases for the speed sign inattention system when the vehicle was not speeding. (a) The

system detected that the driver most likely missed the road sign. (b) The driver most likely observed the sign. Top row: Live

video feeds showing current view, eye gaze (dots/large circles) and current status (overlaid text) during screen-shot. Bottom row:

Last detected signs (small circles) and eye gaze during detection (dots/large circles). The small circles on the hood and in the sky

in the bottom row are due to a rendering bug at the time of test. They coincide with stale returns that had a strong momentary

circular return but failed classification.

rected gaze toward the sign, instead gaze is steady on the road

and merging traffic to the right.

In Figure 25 some border line sign gaze angle separation

cases are shown. There appears to be some directed eye move-

ment but the angle is greater than the angle error tolerance.

Watching the gaze and sign detection it becomes obvious that

the sign may be read well before the sign is detectable in the

image. The driver eye with much better acuity than the video

camera can recognize the sign further away.

To address this case we projected the sign position back

according to the recent vehicle egomotion. The sign–gaze sep-

aration angle was then taken as the minimum distance to this

path. Figure 26 shows the projected paths and the revised sign–

gaze angle separation. Now we see that Figures 26(a) and (b)

are classified as seen and (c) remains classified as missed. Sim-

ilar to Figure 24, in Figure 26(c) the sign is on a bend in the

road so the sign location remains on the left of the camera im-

age.

For completeness we include Figures 27 and 28 showing

the impact of the back projection of the “seen” and “missed”

signs. The classifications remain unchanged.

4.5. Multiple Road Event Inattention Detection

The final experiment is an integration of the subsystems out-

lined above. That is, visual monotony estimation, sign reading,

lane tracking, vehicle detection and pedestrian detection com-

bined with driver gaze monitoring.

Road Departure Calculation

To determine whether the vehicle will depart the lane we use

the intersection of the estimated lane geometry with the Ack-
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Fig. 22. Typical cases for speed the sign inattention system when the vehicle was speeding. Left: Live video feed showing current

view, eye gaze ( dots/large circles) and current status (overlaid text) during screen-shot. Right: Last detected sign (small circles)

and eye gaze (dots/large circles).

erman motion model of the vehicle (see Figure 29). The inter-

section point provides a time until departure estimate assuming

that the driver maintains the current steering angle. To find this

point we solve the lane model and Ackerman equations nu-

merically to find the arc length to departure and, for a known

speed, the time until departure.

To determine whether a lane departure is intentional we

use the departure point, the turning indicators and the driver

eye gaze. If the turning indicators are operating and the lane

departure point is in the same direction the warning is sup-

pressed. The warning is also suppressed if the driver gaze has

been sufficiently close to the departure point. If neither of these

criteria are met an auditory warning is given.

On-line Road Trials

Now follows some illustrative cases of the combined sys-

tem. Like all of our systems the interface is for the experi-

menter not the driver, as audio warnings and gaze cancella-

tion provide the interface to the driver. The application cycles

through a decision tree to determine possible alerts. First po-

tential pedestrian collisions, then obstacles then lane depar-

tures are verified. Then sign events, inattention, vehicle sta-

tus and finally monotony events are checked. Alerts are given

with unique sounds. Approaching obstacles and pedestrians

observed by the driver are not warned, nor are lane departures

provided the driver is indicating or has gazed in the departure

direction.

Figure 30 shows the Automated Co-driver detecting a speed

sign. The vehicle was not speeding so no warning was given.

The system detects an acknowledgement when the driver looks

at the speedometer anyway.

Figure 31 shows inattention detected by gaze monitoring.

A glance back at the road resets the inattention alarm.

In Figure 32 the inattention alarm has been reset although

now the driver is speeding. Direct driver observation enabled

the system to verify that the speed sign had been observed so

a visual warning is given, the auditory alarm is suppressed.
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Fig. 23. “Seen” sign, eye-gaze direction separation angle. The origin on the time axis represents the final detection of the sign.

Top: (“o”), eye gaze� (“+”), sign position. Bottom: Sign–gaze separation angle. Dashed lines: 1	 2	 3	 7�5o error tolerance.

Fig. 24. “Missed” sign, eye-gaze direction separation angle. Top: (“o”), eye gaze� (“+”), sign position. Bottom: Sign–gaze sepa-

ration angle. Dashed lines: 1	 2	 3	 7�5o error tolerance.
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Fig. 25. “Borderline” sign, eye-gaze direction separation angle. Top: (“o”), eye gaze� (“+”), sign position. Bottom: Sign–gaze

separation angle. Dashed lines: 1	 2	 3	 7�5o error tolerance.

Fig. 26. Sign position projected back in time to estimate sign–gaze direction separation angle before the sign was large enough

to track. Top: (“o”), eye gaze� (“+”), sign position� (“*”), projected gaze point on sign path. Bottom: Sign–gaze separation angle.

Dark plot: original separation� light plot, back projected separation� dashed lines: 1	 2	 3	 7�5o error tolerance.
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Fig. 27. “Seen” sign, eye-gaze direction separation angle. The origin on the time axis represents the final detection of the sign.

Top: (“o”), eye gaze� (“+”), sign position. Bottom: Sign–gaze separation angle. Dark plot: original separation� light plot, back

projected separation� dashed lines: 1	 2	 3	 7�5o error tolerance.

Fig. 28. “Missed” sign, eye-gaze direction separation angle. Top: (“o”), eye gaze� (Red “+”), sign position. Bottom: Sign–gaze

separation angle. Dark plot: original separation� light plot, back projected separation� dashed lines: 1	2	3	7�5o error tolerance.



Fletcher and Zelinsky / Driver Inattention Detection based on Eye Gaze–Road Event Correlation 795

Fig. 29. The current lane departure point is found at the intersection of the estimated lane geometry and the vehicle motion model.

Fig. 30. Co-driver DAS screen-shot. Circles represent driver gaze. (a) Sign detected. (b) Driver glanced at speedometer.
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Fig. 31. Screen-shots of the Automated Co-driver. Prolonged

inattention detected. Large circles: no circles are shown in

this case as the driver’s gaze is outside the field of view of

the camera (consistent with the driver inattention detected).

Fig. 32. Screen-shots of the Automated Co-driver. Vehi-

cle speeding, although last speed sign was observed by the

driver. Large circles: driver gaze.

Fig. 33. A sequence of screen-shots of the Automated Co-driver. A lane departure that was seen by the driver is shown. Large

circles: driver gaze.

Figures 33 and 34 demonstrate cases of detected lane de-

partures. Direct driver observation enables the Automated Co-

driver to permit the driver to depart the lane in the sequence in

Figures 33.
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Fig. 34. Screen-shots of the Automated Co-driver. Lane departure warnings. The final case shows when the driver was turning a

corner without indicating or looking in the departure direction. Large circles: driver gaze.

Fig. 35. Automated Co-driver screen-shot sequence. Circles represent driver gaze. (a) Approaching pedestrian detected. (b)

Pedestrian determined to be no threat. Arrow added manually afterwards.

Figure 34 shows several cases of intentional lane depar-

ture. The final case shows a lane departure without eye-gaze

verification. The driver is turning left but has not indicated or

looked in that direction. Direct driver observation enables us to

detect this final case without having to warn the driver during

the first three intentional cases.
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Fig. 36. (a) Approaching pedestrian detected. (b) Pedestrian seen by driver. Arrow added manually afterward.

Fig. 37. Sequence of screen-shots of the Automated Co-driver showing a monotony warning occurring. Large circles: driver gaze.
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Fig. 38. (a) Gaze change at 19.3 seconds then intended lane

change at 19.9 seconds. (b) Gaze change at 44.9 seconds then

intended lane change at 45.3 seconds. (Green “o” and lines),

sampled gaze error extents projected onto ground plane� (Red

“x” and lines), sampled lane position and width.

Figures 35 and 36 show cases where direct driver observa-

tion enabled the system to verify that the pedestrian threat had

been observed, so an alert could be suppressed.

Finally, Figure 37 demonstrates a case of a visually

monotonous stretch of highway. Visual monotony is detected

after several minutes of monotonous road conditions. A vi-

sual alert is given indicating the heightened fatigue risk in this

scenario. The monotony is broken as the driver approaches a

slower vehicle.

Figure 38 shows the lane estimate with gaze direction pro-

jected onto the ground plane. In these cases the driver eye

Fig. 39. Unintended lane change. No discernable gaze change

to correlate with lane change at 20.6 seconds. Driver reverts to

the original lane at 21.4 seconds. (Green “o” and lines), sam-

pled gaze error extents projected onto ground plane, (Red “x”

and lines), sampled lane position and width.

gaze shifts focus to the destination lane before the lane change.

These cases are detected as intended lane changes.

In contrast Figure 39 shows an unintended lane change. The

vehicle moves into the adjacent lane without an eye-gaze tran-

sition. The system reports this case as an unintended lane de-

parture. The driver then corrects lane position bringing the ve-

hicle back into the original lane.

Strong direct sunlight caused some uncertainty in the lane

tracking and, at times, even disrupted the gaze tracking. When

gaze tracking was strong and the driver was attentive at the lane

center, uncertainty in the road scene vision did not warrant a

warning.

Due to the safety requirements of the vehicle the trial

drivers were staff and students of the group but not specifically

of this research. The constraint made it hard to detect genuine

inattentive behaviour. Nonetheless, the system performed as

intended during the trials and did produce occasional warnings

during other times which were likely to be genuine warnings

of inattentiveness.

5. Conclusion

Observing the complementary strengths and weaknesses of hu-

mans and autonomous systems, it is reasonable that an integra-

tion of the two provides the best hope to improve road safety,

thus combining the flexibility and frailty of human drivers with

the tirelessness and inflexibility of automated systems. Our

conjecture was that a system capable of estimating what the



800 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / June 2009

driver has seen (the driver’s observations) is key to addressing

driver inattention – a common underlying factor in many road

fatalities.

The use of driver eye gaze combined with road events to

estimate the to driver’s observations was developed and the

feasibility of the approach was verified. Due to the “looking

but not seeing” case, it is not possible to determine that road

events are seen for certain by the driver. However, it was shown

that road events almost certainly missed by the driver could be

identified.

The systems correlate the driver eye gaze with road scene

events to estimate the driver’s observations. The benefit of

driver observation monitoring was also demonstrated to sup-

press redundant warnings and cancel warning “with a glance”.

These systems have the potential to provide the detection or

earlier warning of missed road events. The timely knowledge

of these missed events would hopefully provide the precious

extra seconds for human reaction time.
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