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Abstract

As computer vision based systems like lane tracking,
face tracking and obstacle detection mature an en-
hanced range of driver assistance systems are becoming
feasible. This paper introduces a list of core competen-
cies required for a driver assistance system, the issue of
building in robustness is highlighted in contrast to leav-
ing such considerations to a later product development
phase. We then demonstrate how these issues may be
addressed in driver assistance systems based primar-
ily on computer vision. The underlying computer vi-
sion systems are discussed followed by an example of
a driver support application for lane keeping based on
force-feedback through the steering wheel.

1 Introduction

Almost every driver has experienced a warning from
a passenger about an obscured car while merging or a
jaywalking pedestrian in a blind spot. These forms of
assistance save countless lives every day.
Computer based assistive systems have already found
their way into vehicles in the form of anti skid brak-
ing (ABS) and cruise control systems, but after more
than a decade, autonomous systems such as those de-
veloped by [7] [15] [4] have not been realised commer-
cially. A key distinction between the commercial sys-
tems and the promising R&D systems is acceptance on
the part of the stake holders: vehicle manufacturers,
traffic authorities and the driver. A paradigm shift to
autonomous vehicles is unlikely so autonomous tech-
nologies must make in roads elsewhere. An alternative
is driver support sub-systems. These small sub-systems
can be tailored to solve well defined tasks that attempt
to support, not replace the driver. These sub-systems
are the focus of research at the ANU’s road vehicle
project.

Examples of such sub-systems could be:

• driver fatigue or inattention detection

• pedestrian spotting and blind spot checking

• driver feedback for lane keeping

• merging assistance
(i.e. is there sufficient clearance between cars?)

• road context monitoring
(i.e. speed zone, traffic signal tracking)

Systems which perform these types of supporting tasks
can generally be called Driver Assistance Systems
(DAS). The possible benefit of these systems can be
illustrated by looking at the driver fatigue case. It is
estimated that around 30 percent of all accidents in-
volve driver fatigue [10], imagine the difference a vigi-
lant assistant could make.

Robustness is of paramount importance when creating
systems to be used in cars that are driving on public
roads. The sensing and detection problems must be
solved reliably. Fortunately, roads are designed to be:
high contrast, predictable in layout and governed by
simple rules. This makes the sensing problem some-
what easier, although by no means trivial. Comple-
mentary sensors and algorithms can be used to reduce
the likelihood of a catastrophic failure but robust sys-
tems require performance metrics and graceful failure
modes built-in from the start.

Systems also need to be operable in all driving envi-
ronments. This means urban roads as well as highways
need to be serviced. Cluttered urban roads have proved
difficult in the past due to an explosion in road scene
complexity [5]. Human drivers cope by relying much
more extensively on predicting the behaviour of other
road users and pedestrians in these situations than on
highways. These powers of higher reasoning, which can
often involve making eye contact with other road users,
are not easily modelled and will not come easily to ar-
tificially intelligent systems.



We consider two key approaches:

1. A robust multi-hypothesis, multi-visual cue algo-
rithm to adapt to changing conditions.

2. Driver monitoring not only for fatigue detection
but for road scene validation as well.

Next we will identify the core competencies required
by a driver assistance system. A description of the re-
search vehicle and underlying vision systems will follow.
Then an example driver assistance sub-system namely
lane keeping using force feedback will be given.

2 Driver Assistance Systems

By conducting a brief analysis of the different assis-
tance scenarios listed in the introduction some obvious
knowledge bases and actions can be identified. Be it hu-
man co-pilot or automatic system the driver assistant
requires knowledge of: speed, acceleration, direction,
position on road, lie of road ahead, location of vehicles
& potential obstacles, an a priori model of the dynam-
ics of the vehicle and lastly the driver’s own behaviour.
The assistant also needs to be able to deliberate on the
before mentioned knowledge and the consequences over
time and act through communication with the driver
or secondary control of the vehicle.

The above analysis can be categorised as follows:

• Traffic situation monitoring
• Driver’s state monitoring
• Vehicle state monitoring
• Communication with the driver
• Vehicle control
• Reasoning system

Diverging from the human co-pilot analogy a automatic
driver assistance system must be also be intuitive, un-
obtrusive and overridable. Intuitive in that the be-
haviour of the system makes immediate sense in the
context of the standard driving task. On the whole
unobtrusive as driver assistance should aid the driver
not distract or disrupt unless deemed necessary. Over-
ridable in that ultimate control rests with the driver.
The driver should be able to refuse assistance.

Several groups have been looking at driver assistance
style systems. Adaptive cruise control (ACC) such as
the DISTRONIC system offered by Daimler Chrysler
is a good example of autonomous technologies inte-
grated into driver assistance subsystem, though ACC
systems using vision alone are not as mature. Adaption

to varying visual conditions is a theme identified and
addressed by several groups. Carnegie Mellon Univer-
sity’s lane tracking systems in particular, the enhanced
ALVINN and RALPH lane tracking systems explic-
itly dealt with changed road conditions [15]. Though
Kalman filtering has proved a corner stone of vision
based autonomous technologies we are unaware of any
previous use of particle filtering (aka condensation) ap-
plied to the road scene vision problem. Stereo dispar-
ity and optical flow have both been applied to the road
obstacle detection problem [4][19]. Franke et. al. [9]
have shown a DAS style system that combines stereo
disparity and optical flow for near field obstacle de-
tection. While Labayrade et. al. have demonstrated
a simple yet effective mechanism for recovering higher
level information from stereo disparity maps based on
an accumulator array [12].

Figure 1: The vision platforms in the vehicle. The
CeDAR active vision head and FaceLAB pas-
sive stereo cameras are labelled.

3 TREV: the Transport Research
Experimental Vehicle

The transport research experimental vehicle (TREV)
used in this project is a Toyota Land Cruiser with a
variety of sensors and actuators installed to support a
variety of ITS related research. Vision is the primary
sense used on board the vehicle, which has two major
systems installed (see Fig. 1). A CeDAR stereo active
camera platform [20] is mounted in place of the rear
view mirror and is used for monitoring the road scene
in front of the vehicle. This system carries 4 cameras
- one pair used for stereo vision in the near-field, and
one pair for mid-field stereo experiments. For driver
monitoring a FaceLAB head & eye tracking system has
been mounted on the dashboard, this system is dis-
cussed further in the next section.
The experiments in this paper also use a Hall effect
speed sensor, steering shaft encoder and a steering an-
gle potentiometer. A steering actuator based on a



geared down DC motor is capable of controlling the
power steering assisted vehicle, in this case it is used
to apply a feedback to the driver, not steer the vehi-
cle. Strain gauges are also fitted to the steering shaft
to measure torque applied by the driver.
Various other sensors and actuated systems have been
fitted to the vehicle more detailed description of the
experimental vehicle is given in [8].

The processing is done on a standard PC architecture.
There is a primary PC that controls the actuators and
reads all non-vision sensors, a second PC supports the
FaceLAB system and a third PC that processes the
road scene images. As the vehicle is to be used for a
variety of driver assistance systems a great deal of flex-
ibility is desired in terms of which devices are to be
used and how. To support this flexibility and to try
and make the complexity of the system tractable we
have opted for a common object request broker archi-
tecture (CORBA) based interprocess communication
(IPC) system [14]. This gives an implicit client server
style modularity across the system. For example the
steering actuator can be controlled by the vision PC
by accessing a remote ’steering’ object provided by the
primary PC. The fact that the ’steering’ object is re-
ally implemented as a process on a remote host does
not affect the application. CORBA has the benefit
over traditional IPC techniques of being inherently ob-
ject oriented, platform independent and implementa-
tion independent hence several operating systems and
programming languages can be used together in con-
cert.

4 Vision In and Out of Vehicles

4.1 Vision Inside Vehicles: FaceLAB
FaceLAB is a driver monitoring system developed by
Seeingmachines [17] in conjunction with ANU and
Volvo Technological Development. It uses a passive
stereo pair of cameras mounted on the dashboard to
capture video images of the driver’s head. These im-
ages are processed in real-time to determine the 3D
pose of the persons face (±1mm, ±1 deg) as well as the
eye gaze direction (±3 deg), blink rates and eye closure.
Clinical trials show that head position and eye closure
are key indicators for the detection of fatigue in drivers
[10]. When augmented with information about the ve-
hicle and traffic situation additional inferences can be
made. Apostoloff et. al. [3] was able to show a clear
correlation between the eye gaze direction and the cur-
vature of the road, particularly an apparent monitoring
of the oncoming traffic.

In addition to the direct observation of the driver for
fatigue and inattention detection, driver monitoring is
used to validate the road scene monitoring applications.
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Figure 2: Distillation: a visual cue processing framework

By monitoring where the driver is looking, many false
alarms can be avoided. If the driver is looking at a
potential problem/uncertain area in the road scene, a
warning is irrelevant. This is based on the higher goal
of driver assistive systems to assist the driver by in-
forming them of occurrences they may not be aware
of, not second-guessing the driver’s choices when they
are paying attention. So in a complex traffic scene as
long as an identified hazard, such as an overtaking car,
or an unpredictable hazard, such as wandering pedes-
trian, are noted by the driver no action needs to be
taken.

4.2 Vision Outside Vehicles
Despite many impressive results in the past, it is clear
that no single visual processing method can perform
reliably in all traffic situations. Many groups have re-
ported issues regarding road appearance changes due
to shadows, solar glare and road works [6][15]. With
the exception of where the physical limits of the sensor
plays a role, in order to achieve robust lane tracking
and obstacle detection multiple methods of image pro-
cessing need to be undertaken and selected based on
the prevailing conditions faced by the system. We have
developed a visual cue processing framework, “Distilla-
tion”, to accommodate these kinds of robustness issues.
The framework is based on a visual cue scheduling and
integration system in conjunction with a particle filter
(or condensation algorithm) (see Fig 2). The frame-
work is able to distill the contributions of various visual
cues and test hypotheses into an overall best estimate
of the state space distribution.

The Distillation framework provides:

• the fusion of visual cues using Bayesian theory

• the dynamic allocation of resources over a suite
of cues based on merit

• a top-down hypothesis testing approach

• performance metrics

• the ability to combine cues at different rates

• the ability to exploit the reuse of image process-
ing steps common between cues.



A more detailed discussion of the algorithm is in [2].
The Distillation vision framework has also been demon-
strated in people tracking [13].

4.3 Lane Tracking
In the lane tracking application visual cues such as
edges for finding lane marks and road colour consis-
tency are combined with cues based on physical world
constraints such as vanishing points and plausible road
shapes to distill a winning hypothesis of the vehicle’s
position with respect to the road and the geometry of
the road ahead. Currently the application estimates
for the the road width, the lateral offset of the vehi-
cle from the centerline of the road and the yaw of the
vehicle with respect to the centerline of the road. Fu-
ture enhancement will see estimates the horizontal and
vertical road curvature in the mid to far-field ranges.
More details about the lane tracking system specifically
is available in the companion paper [1].

4.4 Obstacle Detection and Tracking
As mentioned in Frank et. al. [9] the range of optical
flow values and disparities encountered in the road
scene is large. Disparities and image motion in a single
instance can easily range from 0 at the horizon to
over 64 pixels in the near field. Frank et. al. limited
the vehicle speed in their experiments so that the
gradient based optical flow estimation constraint of
image motion of less than 2 pixels per frame was hon-
oured. They mention that future work could include
a solution using gaussian image pyramids to enhance
the dynamic range possible in the flow estimation. We
have adopted a image pyramid technique both in the
optical flow and disparity map estimation. For the
case of optical flow we implement a method similar to
Simocelli [18]. The optical flow is computed for the
most coarse images then the result used to warp the
next higher image resolution to maintain an acceptably
small image motion at each level. The penalty for
using a coarse to fine approach is that any errors
occurring at any image resolution are propagated and
amplified into the finer images.
Using image pyramids for disparity map estimation
give a couple of added benefits in addition to increasing
the range of disparities estimated, in the case of the
disparity map estimation no image warping between
resolutions is performed. Correlation techniques are
plagued with the issue of using the correct correlation
window size. A large window allows a more reliable
match but causes overly smooth disparity maps. A
small window size allows for finer features to be repre-
sented but introduces noise due to erroneous matches.
Fortunately obstacle detection in road scenes usually
support the rule of thumb that close objects are large
and distant objects, such as vehicles down the road,
are small. Using an image pyramid and calculating the
disparity for each image resolution with the same size

correlation window means that the correlation window
is effectively halving for each image resolution going
from course to fine. This property is exactly what we
would prefer to match large objects at large disparities
and smaller objects at small disparities (like near the
horizon). Also, by not warping the image between
resolutions we can avoid the propagation of errors
between image resolutions. At higher resolutions we
are interested in finding distant objects with small
disparities, where as larger objects such as a close
vehicles are recovered at a coarse image resolution.
There will be a issue that coarse resolution images
can only resolve disparities to half the accuracy of
the next higher resolution images but as this works
in opposition to the property of disparity estimates
deteriorating as distances increase the effect on the
resultant disparity map is acceptable.
The obstacle detection and tracking system is com-
posed of 3 main levels. The most primitive level uses a
set of “bottom up” whole image techniques to search
the image space for likely obstacle candidates. Stereo
disparity and optical flow are principally used at this
level. While very noisy the disparity and flow informa-
tion can be combined to form a 3D depth flow field [11]
(see Fig 3). The first iteration of our technique used
template matching to find the disparities and optical
flows. This is the method used in Fig 3, the second
iteration of our technique uses image pyramids as
discussed above. Possible obstacle candidates can also
be derived using colour consistency. Sets of particles
representing each obstacle candidate are injected into
the particle filter state-space inside the Distillation
framework in a gaussian distribution around the
estimated location. The obstacles are tracked in a
state-space consisting of a bearing from the center
of mass of the research vehicle and one dimension
representing the estimated obstacle size. Particles
representing unsubstantiated obstacle candidates are
eventually resampled to other obstacle candidates.
The remaining potential obstacles are tracked within
Distillation framework between frames. Each cluster of
particles that survive a minimum number of iterations
is then checked to against a uni-modal gaussian dis-
tribution at it’s centroid. If the gaussian distribution
adequately describes the cluster a uniqueness operator
is applied to the region of the obstacle in each if the
stereo images and a set of correlation templates are
taken at the most unique points of the obstacle. If
the correlation templates are tracking reliably and the
distribution is still sufficiently gaussian a Kalman filter
is spawned solely to track this obstacle. The obstacles
are then tracked using correlation templates alone.
If the Kalman filter starts to diverge the location is
treated as a obstacle candidate again and particles are
injected back into the particle filter and the Kalman
filter is discarded.



Figure 3: A.(top): left image from stereo pair, B.(middle):
3D surface from stereo disparity (rectangle in-
dicates region of 3D depth flow), C.(bottom):
3D depth flow.

5 Lane Keeping using Force-Feedback

As mentioned earlier Driver Assistance Systems should
be intuitive and unobtrusive to the driver. The princi-
ple aim of this driver assistance sub-system is to pre-
vent unintentional lane departures not seize control of
the vehicle. By applying force-feedback to the steering
wheel we are leaving the underlying familiar mechanism
of steering intact and instead are merely suggesting a
bias in favor of the lane direction.

In this case we must use: Traffic situation state moni-
toring to estimate where the vehicle is in the lane using
lane tracking, Vehicle state monitoring to determine
the current steering angle using a potentiometer and
Driver state monitoring to estimate the intention of
the driver, strain gauges on the steering shaft allow us
to register torque applied by the driver. The DAS can
then adjust the actuator response to match the com-
pliance appropriate for the lane offset.

Though not yet considered the FaceLAB system can
also help identify the driver’s intention. Veering due
to fatigue versus planned overtaking or stopping could
be detected by observing where the driver is actually

Figure 4: The potential field as the car drives on a curved
section of road with two lanes.

Figure 5: A potential field, V , for a two lane road. The
centers of each lane are at the two local minima.

looking. During occasions of lane tracking loss if the
driver is attentive no action will be taken, otherwise a
warning would be issued.

The force-feedback is implemented along the lines of
[16], where a virtual force framework for lateral vehi-
cle control is developed which allows superposition of
virtual forces to be applied to the car that can repre-
sent control inputs from a range of different kinds of
DASs. An appropriate control force, F , is calculated
using a potential field approach that is then used to
derive the actual control command. Suppose we would
like our car to drive in a virtual valley as is shown in
Figure 4. The virtual force will become a function of
the lateral offset estimated by the lane tracker. In this
case virtual valley will have a sinusoidal cross section,
in practice we use potential field which is more intuitive
to the driver. Figure 5 shows the potential field cross
section used, it has flat sections to allow the driver free
movement and a smaller potential between lanes than
at the road boundary to permit lane changes.

It can be shown that the required corrective virtual
force is proportional to the derivative of the potential
field cross section with respect to the lateral offset. The
control law is also augmented with a damping term to
prevent oscillations between the valley boundaries. It
is worth noting that the approach allows extensions
in the form of other complementary DAS such as e.g.
stability control. Care must, however, be taken so that
the sum of superimposed potential fields does not have
local minima at the wrong places.

Some experiments have been conducted but rework to
the steering actuator has prevented meaningful exper-



imental data to date from being collected. The rework
which has just been finished included adding an en-
coder to the steering motor and has enabled a much
better response.

6 Conclusions & Future Work

In this paper, driver assistance systems were discussed.
A number of necessary core competencies were identi-
fied by a comparison with a human co-pilot. The issue
of robustness has been highlighted and our solution
strategies of a adaptive vision framework and driver
monitoring have been outlined. Three vision systems
which make up the primary senses for driver assistance
systems have been described. And a lane keeping sys-
tem using force feedback was presented as an example
of a driver assistance task oriented sub-system.
Future work includes integrating FaceLAB into the lane
keeping assistant allowing the driver to depart the lane
without restriction when looking in an appropriate di-
rection, development of other vision based driver assis-
tance sub-systems.
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