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INTRODUCTION

Midway through the 2007 DARPA Urban Challenge, MIT’s robot “Talos” and Team Cor-
nell’s robot “Skynet” collided in a low-speed accident. This accident was one of the first
collisions between full-sized autonomous road vehicles. Fortunately, both vehicles went
on to finish the race and the collision was thoroughly documented in the vehicle logs.
This collaborative study between MIT and Cornell traces the confluence of events that
preceded the collision and examines its root causes. A summary of robot-robot interac-
tions during the race is presented. The logs from both vehicles are used to show the gulf
between robot and human-driver behavior at close vehicle proximities. Contributing fac-
tors are shown to be (1) difficulties in sensor data association leading to an inability to de-
tect slow-moving vehicles and phantom obstacles, (2) failure to anticipate vehicle intent,
and (3) an overemphasis on lane constraints versus vehicle proximity in motion planning.
Finally, we discuss approaches that could address these issues in future systems, such
as intervehicle communication, vehicle detection, and prioritized motion planning. © 2008
Wiley Periodicals, Inc.

On November 3, 2007, the Defense Advanced Re-
search Projects Agency (DARPA) Urban Challenge
Event (UCE) was held in Victorville, California. For
the first time, 11 full-size autonomous vehicles in-
teracted with each other and human-driven vehicles
on a closed course. The aim of the contest was to

test the vehicles’ ability to drive between checkpoints
while obeying the California traffic code. This re-
quired exhibiting behaviors including lane keeping,
intersection precedence, queuing, parking, merging,
and passing.

On the whole, the robots drove predictably and
safely through the urban road network. None of
the robots stressed the (understandably) conservative
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Figure 1.
paper explores the factors that led to the collision. Despite
the mishap, both vehicles went on to complete the race.

The collision. Left: Skynet. Right: Talos. This

safety measures taken by DARPA. There were, how-
ever, a number of low-speed incidents during the
challenge. This paper reviews those incidents and
takes an in-depth look at one of them, the collision
between Team Cornell’s vehicle “Skynet” and MIT’s
“Talos” (Figure 1). This paper scrutinizes why the col-
lision occurred and attempts to draw some lessons
applicable to the future development of autonomous
vehicles.
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The UCE was held on a closed course within the
decommissioned George Air Force Base. The course
was predominantly the street network of the residen-
tial zone of the former base. Several graded dirt roads
were added for the competition. The contest was cast
as a race against time to complete three missions. The
missions were different for each team but were de-
signed to require each team to drive 60 miles to finish
the race. Penalties for erroneous or dangerous behav-
ior were converted into time penalties. DARPA pro-
vided all teams with a single route network definition
file (RNDF) 24 h before the race. The RNDF is very
similar to a digital street map used by an in-car global
positioning system (GPS) navigation system. The file
defined the road positions, number of lanes, intersec-
tions, and even parking space locations in GPS coor-
dinates. A plot of the route network for the race is
shown in Figure 2. On the day of the race, each team
was provided with a second unique file called a mis-
sion definition file (MDEF). This file consisted solely of
a list of checkpoints within the RNDF that the vehicle
was required to cross.

To mark progress through each mission, DARPA
arranged the checkpoints in the mission files to re-
quire the autonomous vehicle to return to complete a
lap of the oval “Main Circuit” (visible in bottom left
corner of Figure 2) at the end of each “submission.”
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Figure 2. The UCE road network. Waypoints are designated as blue dots. Traversable lanes and zone boundaries are
represented as blue lines. Stop lines are designated as red circles. The Skynet-Talos collision happened upon entering the

Main Circuit on the bottom left.
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Each mission was subdivided into six or seven sub-
missions. The vehicles returned to the finishing area
at the end of each mission so that the team could re-
cover and reposition the vehicle for the next mission.
Most roads were paved with a single lane in each di-
rection, similar to an urban road. Several roads had
two lanes of traffic in each direction, like an arterial
road or highway. One road, in the southeastern cor-
ner of the network, was a raised dirt road constructed
especially for the event.

All 11 qualifying robots were allowed to interact
in the UCE course simultaneously. Additional traf-
fic was supplied by human-driven Ford Tauruses. To
prevent serious crashes during the competition, all
autonomous vehicles were followed by an assigned
DARPA chase vehicle. The chase-vehicle driver su-
pervised the robot and could “pause” or, in extreme
cases, “disable” the robot via radio link. “Paused”
robots could then be “un-paused” to continue a mis-
sion when safe. “Disabling” a vehicle would kill the
engine, requiring the vehicle’s team to recover it.

The qualifiers and the race provided ample op-
portunity for damage to the robots on parked cars,
concrete barriers, DARPA traffic vehicles, and build-
ings. The fact that the two vehicles were not dam-
aged, other than minor scrapes in the collision,
despite hours of driving emphasizes the fact that
the circumstances leading to the collision were the
product of confounding assumptions across the two
vehicle architectures. The robots negotiated many
similarly complex situations successfully.

This paper begins with a brief summary in Sec-
tion 2 of the robot-robot interactions during the 6-h
race. Then, to aid in the collision analysis, summaries
of the MIT and Cornell vehicle software architectures
are given in Sections 3 and 4, respectively. Section 5
describes the Skynet-Talos collision in detail, before
branching out in Sections 6 and 7 to provide detailed

Table I. Robot-robot collisions or close calls during the race.

accounts of the robots’ software state during the inci-
dent. The apparent causes of the incidents are stud-
ied here to shed light on the deeper design issues in-
volved. In Section 8, we draw together the insights
from the software architecture analysis to summarize
the common themes, the lessons learned, and the im-
pediments to using these robots on real urban roads.

2. CHRONOLOGY OF ROBOT-ROBOT
INTERACTIONS

Table I is a list of robot-robot collisions or close calls
during the UCE. The list was compiled from the
race day Webcast and vehicle data logs. The loca-
tions of the incidents are marked in Figure 2. We in-
vited teams with vehicles actively involved in the in-
cidents [CarOLO, Intelligent Vehicle Systems (IVS),
and Ben Franklin Racing Team] to coauthor or com-
ment on the interactions. Received comments are in-
cluded in the incident descriptions. A full discussion
of the Skynet-Talos collision is given Section 5.

Diagrams have been drawn describing each inci-
dent. In the drawings, a solid line shows the path of
the vehicle, and a dashed line shows the intended/
future path of the vehicle. A lateral line across the
path indicates that the vehicle came to a stop in this
location. DARPA vehicles are driven by DARPA per-
sonnel in the roles of either traffic or chase vehicles.

Videos of the log visualization for incidents in-
volving Talos can be found in Section 9.

2.1. Skynet Passing with XAV-250 and Ben
Oncoming at Utah and Washington

The first near miss occurred at the intersection of
Utah and Washington. The University of Central
Florida's (UCF's) Knight Rider was at the intersec-
tion. Skynet pulled up behind a traffic vehicle, which

Time (Approx.) Location Description Reference
1 h00 min Utah and Washington Cornell’s Skynet passing with IVS’s XAV-250 and ~ Section 2.1
Ben Franklin Racing Team’s Ben oncoming
1 h 30 min George Boulevard Ben and Team UCF’s Knight Rider Section 2.2
2 h00 min North Nevada and Red Zone CarOLO’s Caroline turns across MIT’s Talos Section 2.3
3 h00 min White Zone Caroline and Talos collide Section 2.4
4 h00 min Carolina Avenue and Texas Avenue Talos swerves to avoid VictorTango’s Odin Section 2.5
4 h 30 min George Boulevard and Main Circuit ~ Skynet and Talos collide Section 5
5 h20 min Utah and Montana Talos turns across Ben Section 2.6

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. After queuing behind the stationary Knight Rider, Skynet passes. (a) Visualization of XAV-250 log when ap-
proaching Skynet (image courtesy of Team IVS). (b) Diagram of incident: (1) Vehicle positions when XAV-250 approaches.
(2) Vehicle positions when Ben approaches. (c) XAV-250 camera view (image courtesy of Team IVS). (d) Skynet (26) once

XAV-250 (15) had passed.

was queued behind Knight Rider’s chase vehicle
(the chase vehicle was queued behind Knight Rider).
The relative positions of the vehicles are shown in
Figure 3(b). Knight Rider was making no apparent
progress through the intersection, so after waiting,
Skynet elected to pass. Skynet was behind three cars,
which put it beyond the safety zone in which passing
was prohibited (DARPA, 2007). The rules also stated
that vehicles should enter a traffic-jam mode after a
prolonged lack of progress at an intersection. Skynet
began to pass. Shortly into the maneuver, the IVS
vehicle XAV-250 turned right from Washington onto
Utah and into the oncoming path of Skynet. Skynet

and XAV-250 were paused. XAV-250 was un-paused
and permitted to drive past Skynet, clearing the area.
Skynet was then also permitted to continue. Skynet
determined that it could not get back into the correct
lane and was too near the intersection, so it pulled
over to the curb side of the lane and waited. Next Ben
also turned onto Utah from Washington and again
was oncoming to Skynet. Skynet was paused. Initially
Ben stopped as the way was blocked by Skynet. The
Skynet DARPA chase vehicle then moved to permit
Ben to pass on the left. Interestingly, Ben's chase ve-
hicle drove onto the curb around to the right to pass
the Skynet vehicle. This provides an example of the

Journal of Field Robotics DOI 10.1002/rob
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Knight Ride

George Boulevard D
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Figure 4.

assessment made by a human driver in this scenario.
Faced with Skynet in the oncoming lane, the chase
vehicle driver elected to drive far right onto the curb
to accommodate the potential behavior of the Skynet
vehicle. The passage of Ben shows that mounting the
curb was not necessary to physically pass the vehi-
cle. Given a clear intersection, the Skynet vehicle was
able to negotiate the intersection and continue the
mission. A more detailed account of this event from
Skynet’s point of view is given in Miller et al. (2008).

2.2. Ben and Knight Rider on George
Boulevard

Figure 4 shows a near miss featured in the Webcast
in which Ben appeared to be merging into Knight
Rider on George Boulevard. Earlier Knight Rider had
merged in front of Ben. Knight Rider’s chase vehi-
cle, due to insufficient space, had been forced to fol-
low behind Ben. The vehicles continued on to George
Boulevard. The course was laid out such that on
George Boulevard, a dual-lane road, vehicles began
in the left lane and then were required to move to
the right lane before turning at the end of the road.
DARPA decided to pause Knight Rider as soon as it
had moved into the right lane, expecting Ben to con-
tinue past in the left lane, permitting Knight Rider
and its chase vehicle to be reunited. However, Ben, af-
ter initially checking for sufficient space, had already
commenced a right merge maneuver as Knight Rider
was paused. Unexpectedly, Ben found Knight Rider
stopped in the destination lane. Ben was paused by
DARPA in time to prevent the collision.

Journal of Field Robotics DOI 10.1002/rob
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(a) Diagram of incident. (b) Knight Rider (13) and Ben (74) near miss.

2.3. Caroline and Talos at North Nevada
and Red Zone

Figure 5 shows the first of two close encounters be-
tween Caroline and Talos. The figure shows the dia-
gram of the incident and how it appeared in the Talos
software. In this incident Talos was driving straight
down North Nevada. Caroline was approaching in
the oncoming direction down Carolina Avenue and
then turned left into the Red Zone across the path of
Talos.

Talos detected the moving object of Caroline and
found the closest intersection exit to project the as-
sumed trajectory. Talos’s intended motion plans were
then severed by Caroline’s predicted trajectory, so
the vehicle commenced an emergency stop. DARPA
paused both vehicles. A full account of this event
from Talos’s view is given in Leonard et al. (2008).

2.4.

The second incident between Caroline and Talos
ended in a collision. The Caroline vehicle was retired
from the race shortly after this event. Figure 6 shows
the diagram of the incident and collision between
Caroline and Talos in the White Zone. Caroline was
near the Indiana Lane exit of the White Zone. Talos
entered the Kentucky Lane entrance to the White
Zone and was en route to the Indiana Lane exit. Ini-
tially, Talos planned a route around Caroline’s chase
vehicle to get to the zone exit on the left. Caroline’s
chase vehicle then drove away from Talos. Talos then
replanned a more direct route to the left, to the zone

Caroline and Talos in White Zone
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Figure 5.
Talos’s log.

exit. As Talos drove toward the zone exit, Talos also
approached Caroline. Initially Caroline was station-
ary and then drove slowly forward toward Talos.
Talos, with the zone fence to the left and what it
perceived as a static obstacle (which was actually
Caroline) to the right, attempted to negotiate a path
in between. Caroline advanced toward Talos. Talos
kept adjusting its planned path to drive around to
the left of what appeared to the Talos software as a
stationary object. Just before the collision Talos’s
motion plans were severed, causing a “planner
emergency stop.” Owing to Talos’s momentum and
Caroline’s forward movement, the braking failed to
prevent physical contact. DARPA then paused the ve-
hicles. A detailed account of this chain of events from
Talos’s view is given in Leonard et al. (2008).

(a) Diagram of incident. (b) Talos’s view of the final pose Caroline-Talos turning near miss. (c) Visualization from

2.5. Odin and Talos at Carolina and Texas

This incident featured a close call negotiated by the
robots without intervention from DARPA. Figure 7
shows the diagram and view from the Talos log.
Talos arrived at a stop line at the intersection of
Carolina and Texas. Talos was intending to go from
Oregon to Texas [from bottom to top in Figure 7(a)].
Talos yielded to Odin approaching. Odin arrived
at the intersection intending to turn left into Texas
Avenue. Odin came to a stop entering the inter-
section. Talos detected that the time to contact for
approaching vehicles had gone to infinity and so
proceeded across the intersection. Odin also pro-
ceeded from Carolina Avenue into Texas Avenue.
Odin, much quicker off the mark, was ahead of Talos.

Journal of Field Robotics DOI 10.1002/rob
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Indiana Lane
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(b)

Figure 6.
ization from Talos’s log.

Talos reacted to Odin approaching by braking and re-
planning an evasive maneuver, turning hard to the
left. Odin and Odin’s chase vehicle completed the
turn and cleared the intersection. Talos then resumed
course down Texas Avenue behind the vehicles.

2.6. Ben and Talos at Utah and Montana

The final incident, a close call, is illustrated in
Figure 8. Log data show that Talos turned left from
Montana onto Utah. Talos arrived at the intersection
and yielded to oncoming traffic. Ben was approach-
ing, so Talos remained stopped. At the intersection
Ben also came to a stop. Again, Talos detected that

Journal of Field Robotics DOI 10.1002/rob
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(a) Diagram of incident. (b) Final pose of Caroline and Talos collision from Talos’s front right camera. (c) Visual-

the time to contact for approaching vehicles had now
gone to infinity, so commenced the left-hand turn. As
Talos crossed in front of Ben, Ben then also entered
the intersection. At this point, Ben was quite far to the
right of Talos, so Talos’s forward path collision check-
ing was not altered by the vehicle approaching to the
side. Talos exited the intersection while Ben came to a
stop. Once the intersection was clear, Ben continued
the mission.

3. TEAM MIT'S TALOS

This section is a summary of the Talos software ar-
chitecture. The purpose is to describe the vehicle
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Oregon St

Carolina Ave

(a) Diagram of incident. (b) View from Talos’s front camera. (c) Talos’s log visualization. Odin is turning right.

Talos brakes and turns hard left to avoid Odin’s projected motion direction.

software in sufficient detail to understand the vehi-
cle behavior and factors contributing to the collision.
A thorough description of the robot architecture is
given in Leonard et al. (2008).

Talos is a Land Rover LR3 fitted with cam-
eras, radar, and LIDAR sensors (shown in Figure 9).
Forward-, side-, and rear-facing cameras are used
for lane marking detection. The Velodyne HDL-64
LIDAR is used for obstacle detection supplemented
in the near field with seven horizontal SICK LMS-
291 LIDARSs. Five additional downward-facing SICK
LMS-291 LIDARs are used for road-surface haz-
ard detection including curb cuts. Fifteen Delphi
ACC3 millimeter-wave radars are used to detect fast-
approaching vehicles.

The system architecture developed for the vehi-
cle is shown in Figure 10. All software modules run
on a 40-core Quanta blade server. The general data
flow of the system consists of raw sensor data pro-
cessed by a set of perception software modules: the
position estimator, obstacle detector, hazard detector,
fast [approaching] vehicle detector, and lane tracker.

The navigator process decomposes mission-level
decisions into a series of short-term (1-60 m) motion
goals and behavioral constraints. The output from
the perception modules is combined with the be-
havioral constraints to generate a drivability map of
the environment. The motion planning to the next
short-term goal is done in the motion planner mod-
ule with paths vetted against the drivability map. The

Journal of Field Robotics DOI 10.1002/rob
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Figure 8.
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Ben
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Montana St

(a) Diagram of incident. (b) View from Talos’s right front camera. Talos’s view of the Little Ben—Talos turning near

miss. Talos yielded to the velocity track of oncoming Ben (74). Ben came to a stop at the intersection. Talos began motion.
Ben began to go through the intersection. Talos saw Ben as a creeping “static obstacle” and continued. Talos completed the
turn. Ben stopped. (c) Talos’s log visualization. Ben approaching on the right of Talos.

trajectory created by the motion planner is executed
by the controller module. Each module is now dis-
cussed in detail.

During the Urban Challenge, the navigator
tracked the mission state and developed a high-level
plan to accomplish the mission based on the map
(RNDF) and the mission data (MDF). The primary
output was the next short-term goal to provide to
the motion planner. As progress was made the short-
term goal was moved, like a carrot in front of a don-
key, to achieve the mission. In designing this sub-
system, the aim was to create a resilient planning
architecture that ensured that the autonomous ve-

Journal of Field Robotics DOI 10.1002/rob

hicle could respond reasonably and make progress
under unforeseen conditions. To prevent stalled
progress, a cascade of events was triggered by a pro-
longed lack of progress. For example, after 10 s of
no progress queuing behind a stationary vehicle, the
navigator would trigger the passing mode if permit-
ted by the DARPA rules. In this mode the lane center-
line constraint was relaxed, permitting the vehicle to
pass. The drivability map would then carve out the
current and oncoming lanes as drivable. After check-
ing for oncoming traffic, the navigator would then
permit the vehicle to plan a passing trajectory around
the stopped vehicle.
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Figure 9. MIT’s Talos, a Land Rover LR3 featuring five
Point Grey FireFly cameras, 15 Dephi ACC3 radars, 12
SICK LMS-291 LIDARS, and a Velodyne HDL-64 LIDAR.

The obstacle detector used LIDAR to identify sta-
tionary and moving obstacles. Instead of attempting
to classify obstacles as vehicles, the detector was de-
signed to avoid vehicle classification using two ab-
stract categories: “static obstacles” and moving ob-
stacle “tracks.” The output of the obstacle detector
was a list of static obstacles, each with a location and
size, as well as a list of moving obstacle “tracks,” each

containing position, size, and an instantaneous veloc-
ity vector. The obstacle tracker integrated nonground
detections over relatively short periods of time in
an accumulator. In our implementation, the tracker
ran at 15 Hz (matching the Velodyne frame rate). At
each time step, the collection of accumulated returns
were clustered into spatially nearby “chunks.” These
chunks were then matched against the set of chunks
from the previous time step, producing velocity esti-
mates. Over time, the velocity estimates were fused
to provide better estimates. The tracking system was
able to provide velocity estimates with very low la-
tency, increasing the safety of the system. The reli-
able detection range (with no false negatives) was
about 30 m, with good detections out to about 60 m
(but with occasional false negatives). The system was
tuned to minimize false positives.

For detecting vehicles, an initial implementation
simply classified any object that was approximately
the size of a car as a car. In cluttered urban scenes this
approach quickly led to many false positives. An al-
ternative approach was developed based on the clus-
tering and detection of moving objects in the scene.
This approach was much more robust in cluttered en-
vironments; however, one new issue arose. In partic-
ular circumstances, stationary objects could appear to
be moving. This was due to the changing viewpoint
of our vehicle combined with aperture/occlusion ef-
fects of objects in the scene. Owing to this effect, a

Perception Sensors
—
. =
P&C \‘-, ;‘f T detection [ _'L-h_ Cameras
Y \'l\ I =9
i Fmt R i . —!
MNavigator Vehicles || —
M £ - —= .I\." H rds .--‘!I —|
oton 5 i | § aza 18
Planner Brivabiity: Map M sick
Obsiacles - Velodyne
b,
IMU, GPS,

Figure 10. MIT’s Talos system architecture.
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high velocity threshold (3.0 m/s in our implemen-
tation) was used to reduce the frequency at which
stationary objects were reported to be moving.
Downstream software was written to accommodate
that vehicles could appear as a collection of stationary
objects or as moving obstacle tracks.

Vehicles were also detected using the radar-
based fast-vehicle detector. The narrow 18-deg-field-
of-view (FOV) radars were fanned to provide 255-deg
coverage in front of the vehicle. The raw radar detec-
tions were compensated for vehicle egomotion and
then data association, and position tracking over time
was used to distill the raw returns into a second set of
obstacle “tracks.” The instantaneous Doppler veloc-
ity measurement from the radar returns was particu-
larly useful for detecting distant but fast-approaching
vehicles. The information was used explicitly by the
navigator module to determine when it was safe to
enter an intersection or initiate merging and passing
behaviors. Figure 11 shows the sensor coverage pro-
vided by SICK LIDAR and radar sensors.

The low-lying hazard detector used downward-
looking planar LIDARs mounted on the roof to as-
sess the drivability of the road ahead and to detect
curb cuts. The module consisted of two parts: a haz-
ard map and a road-edge detector. The “hazard map”
was designed to detect hazardous road surfaces by
discontinuities in the LIDAR data that were too small
to be detected by the obstacle detector. High values
in the hazard map were rendered as high-penalty ar-
eas in the drivability map. The road-edge detector
looked for long strips of hazardous terrain in the haz-
ard map. If strips of sufficiently long and straight haz-

(a)

Figure 11.

ardous terrain were detected, some poly lines were
explicitly fitted to these regions and identified as a
curb cut or berm. These road edges were treated as
obstacles: if no road paint was detected, the lane
estimate would widen, and the road-edge obstacles
(curbs) would guide the vehicle.

The lane tracker reconciled RNDF data with
lanes detected by vision and LIDAR. Two different
road-paint detectors were developed, each as a sep-
arate, stand-alone process. The first detector used
a matched “top hat” filter scaled to the projected
ground plane line width. Strong filter responses and
the local gradient direction in the image were then
used to fit a series of cubic Hermite splines. The sec-
ond road-paint detector fitted lines to image contours
bordering bright pixel regions. Both road-paint detec-
tors produced sets of poly lines describing detected
road paint in the local coordinate frame. A lane cen-
terline estimator combined the curb and road-paint
detections to estimate the presence of nearby lanes.
The lane centerline estimator did not use the RNDF
map to produce its estimates. It relied solely on de-
tected features. The final stage of the lane tracking
system produced the actual lane estimates by recon-
ciling the RNDF data with the detected lane center-
lines. The map data were used to construct an a priori
estimate of the physical lanes of travel. The map esti-
mates were then matched to the centerline estimates,
and a minimization problem was solved to snap the
RNDF lanes to the detected lane centerlines.

The drivability map was constructed using per-
ceptual data filtered by the current constraints spec-
ified by the navigator. This module provided an

(b}

Sensor FOVs on 20-m grid. (a) Our vehicle used a total of seven horizontally mounted 180-deg planar LIDARs

with overlapping FOVs. Front and rear LIDARs have been drawn separately to make the overlap more obvious. For ground
plane rejection two LIDARs were required to “see” the same obstacle to register the detection (except in the very near field).
(b) Fifteen radars with 18-deg FOV each were fanned to yield a wide (255-deg) total FOV.

Journal of Field Robotics DOI 10.1002/rob
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efficient interface to perceptual data for motion plan-
ning. Queries from the motion planner about future
routes were validated by the drivability map. The
drivability map consisted of the following:

® “infeasible regions,” which were no-go areas
due to proximity to obstacles or just undesir-
able locations (such as in the path of a mov-
ing vehicle or across an empty field when the
road is traversable)

e “high-cost regions,” which would be avoided
if possible by the motion planning

® “restricted regions,” which were regions that
could be entered only if the vehicle were able
to stop in an unrestricted area farther ahead.

Restricted regions were used to permit minor vi-
olations of the lane boundaries if progress could be
made down the road. Restricted regions were also
used behind vehicles to enforce the requisite num-
ber of car lengths” standoff distance behind a traffic
vehicle. If there was enough room to pass a vehicle
without crossing the lane boundary (for instance if
the vehicle was parked on the side of a wide road),
then Talos would traverse the restricted region and
pass the vehicle, continuing to the unrestricted re-
gion in front. If the traffic vehicle blocked the lane,
then the vehicle could not enter the restricted re-
gion because there was no unrestricted place to stop.
Instead, Talos would queue behind the restricted
region until the traffic vehicle moved or a passing
maneuver was commenced. No explicit vehicle de-
tection was done. Instead, moving obstacles were
rendered in the drivability map with an infeasible
region projected in front of the moving obstacles in
proportion to the instantaneous vehicle velocity. As
shown in Figure 12(c), if the moving obstacle was in
a lane, the infeasible region was projected along the
lane direction. If the moving obstacle was in a zone
(where there was no obvious convention for the in-
tended direction), the region was projected in the ve-
locity direction only. In an intersection the obstacle
velocity direction was compared with the intersec-
tion exits. If a good exit candidate was found, a sec-
ond region was projected from the obstacle toward
the exit waypoint as a prediction of the traffic ve-
hicle’s intended route [shown in Figure 12(d)]. The
motion planner identified, then optimized, a kinody-
namically feasible vehicle trajectory that would move
the robot toward the goal point. The module was
based on the rapidly exploring random tree (RRT)

algorithm (Frazzoli, Dahleh, & Feron, 2002), where
the tree of trajectories was grown by sampling nu-
merous configurations randomly. A sampling-based
approach was chosen due to its suitability for plan-
ning in many different driving scenarios. Uncertainty
in local situational awareness was handled through
rapid replanning. By design, the motion planner con-
tained a measure of safety as the leaves on the tree
of potential trajectories were always stopping loca-
tions [Figure 12(a)]. Shorter trees permitted lower top
speeds as the vehicle had to come to a stop by the
end of the trajectory. In this way, if for some reason
the selected trajectory from the tree became infeasi-
ble, another branch of the tree could be selected to
achieve a controlled stop. The tree of trajectories was
grown toward the goal by adding branches that con-
nected to the randomly sampled points. These were
then checked for feasibility and performance. This
module then sent the current best vehicle trajectory,
specified as an ordered list of waypoints (position, ve-
locity, headings), to the low-level motion controller at
a rate of 10 Hz.

The controller was a pure pursuit steering con-
troller paired with a proportional integral derivative
(PID) speed controller. It executed the low-level con-
trol necessary to track the desired path and velocity
profile from the motion planner.

4. TEAM CORNELL'S SKYNET

Team Cornell’s Skynet, shown in Figure 13, is an au-
tonomous 2007 Chevrolet Tahoe. Skynet was built
and developed at Cornell University, primarily by
team members returning with experience from the
2005 DARPA Grand Challenge. The team consisted
of 12 core members supported by 9 parttime contrib-
utors. Experience levels included professors, doctoral
and master’s candidates, undergraduates, and Cor-
nell alumni.

The high-level system architecture for Team Cor-
nell’s Skynet is shown in Figure 14 in the form of key
system blocks and data flow. These blocks formed the
multilayer perception and planning/control solution
chosen by Team Cornell to successfully drive in an
urban environment. General descriptions of each of
these blocks are given below. Detailed descriptions
of the obstacle detection and tracking algorithm and
the intelligent planning algorithm, both root causes of
Skynet’s behavior during the Cornell-MIT collision,
are given in Sections 4.2 and 4.3.
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Figure 12. (a) RRT motion planning. Each leaf on the tree represented a stopping location. (b) Drivability map explanation.
While driving down a two-lane road, Talos (top right) is waiting before passing a parked vehicle. Circles: Waypoints. Lines:
Lanes from RNDEF shifted to match detected lane markings. Arrow (left of image): Short-term goal location. Light regions
(adjacent to road): Infeasible regions off-limits to the vehicle. Dark region (in front of Talos): Restricted region, which may
be entered if the vehicle is able to stop in an unrestricted region farther on. Light gray shading: High-cost regions accessible
to the vehicle. Black areas: Low-cost drivable regions. (c) An infeasible region was projected down lane in the direction of
the moving obstacle’s velocity excluding maneuvers in front of an oncoming vehicle. In this case the areas adjacent to the
lane were rendered as high cost instead of infeasible due to a recovery mode triggered by the lack of progress through the
intersection. (d) Within an intersection an infeasible region was created between a moving obstacle and the intersection exit
matching the detected velocity direction, preventing Talos from driving into the path of the turning vehicle.

Journal of Field Robotics DOI 10.1002/rob



788 « Journal of Field Robotics—2008

SICK 1D

LIDAR
(mounted
inside)
" Ibeo LIDAR scanners (4 lasers) DELPHI millmster wave RADAR
Figure 13. Team Cornell’s Skynet.
4.1. General System Architecture wheel encoders. These raw measurements were fused
in the pose estimator, an extended square root infor-
Skynet observed the world with two groups of sen-  mation filter, to produce robust pose estimates in an

sors. Skynet’s position, velocity, and attitude were  Earth-fixed coordinate frame. Skynet’s external envi-
sensed with raw measurements collected from GPS  ronment, defined in the Urban Challenge as parked
receivers, an inertial measurement unit (IMU), and and moving cars, small and large static obstacles, and

Local Map
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Operational Layer
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Tactical Planner -obstacie avoidance
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Figure 14. System architecture of Team Cornell’s Skynet.
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attributes of the road itself, was sensed using a combi-
nation of laser range finders, radar, and optical cam-
eras.

Skynet used two levels of probabilistic data fu-
sion to understand its external environment. The lo-
cal map fused laser, radar, and optical data with
Skynet’s motion estimates to initialize, locate, and
track static and dynamic obstacles over time. The
scene estimator then used the local map’s tracking
estimates, pose estimates, and road cues from pro-
cessed optical measurements to develop key statis-
tics about Skynet and nearby obstacles. Two sets of
statistics were generated: those concerning Skynet,
including location with respect to the road and lane
occupancy, and those concerning other obstacles,
including position/velocity, an identification num-
ber, lane occupancy, car likeness, and whether each
obstacle was currently occluded.

Planning over DARPA’s RNDF and MDF oc-
curred in three layers. The topmost behavioral layer
combined the RNDF and MDF with obstacle and po-
sition information from the scene estimator to rea-
son about the environment and plan routes to achieve
mission progress. The behavioral layer then selected
which of four behaviors would best achieve the
goal: road, intersection, zone, or blockage. The se-
lected behavior was executed in the tactical layer,
where maneuver-based reasoning and planning
occurred. The operational layer, the lowest level of
planning, produced a target path by adjusting an ini-
tial coarse path to respect speed, lane, obstacle, and
physical vehicle constraints. Skynet drove the target

Table Il. Skynet’s obstacle detection sensors.

path by converting it to a series of desired speeds
and curvatures, which were tracked by feedback
linearization controllers wrapped around Skynet’s
steering wheel, brake, transmission, and throttle
actuators.

4.2. Obstacle Detection and Tracking

Team Cornell’s obstacle detection and tracking sys-
tem, called the local map, fused the output of all ob-
stacle detection sensors into one vehicle-centric map
of Skynet’s environment. The local map fused in-
formation from three sensing modalities: laser range
finders, radars, and optical cameras. Mounting po-
sitions are shown in Figure 13. Table II summarizes
Skynet’s obstacle detection sensors, and Figure 15
gives a top-down view of Skynet’s sensor coverage.
All sensor measurements were fused in the local map
at the object level, with each sensor measurement
treated as a measurement of a single object. Skynet’s
Delphi radars and MobilEye SeeQ software (run on
Skynet’s rear-facing Unibrain optical camera) fitted
easily into this framework, as their proprietary al-
gorithms transmitted lists of tracked obstacles. Data
from the laser range finders were clustered to fit into
this object-level framework.

The local map formulated obstacle detection and
tracking as the task of simultaneously tracking mul-
tiple obstacles and determining which sensor mea-
surements corresponded to those obstacles (Miller &
Campbell, 2007; Miller et al., 2008). The problem was
cast in the Bayesian framework of estimating a joint

Sensor Location Type Rate (Hz) FOV (deg) Resolution
Ibeo ALASCA XT Front bumper left Laser 125 150 1 deg
Front bumper center Laser 12.5 150 1deg
Front bumper right Laser 12.5 150 1 deg
SICK LMS 291 Left back door Laser 75 90 0.5 deg
Right back door Laser 75 90 0.5 deg
SICK LMS 220 Back bumper center Laser 37.5 180 1 deg
Velodyne HDL-64E Roof center Laser 15 360 0.7 deg
Delphi FLR Front bumper left (2x) Radar 10 15 20 tracks
Front bumper center Radar 10 15 20 tracks
Front bumper right (2x) Radar 10 15 20 tracks
Back bumper left Radar 10 15 20 tracks
Back bumper center Radar 10 15 20 tracks
Back bumper right Radar 10 15 20 tracks
Unibrain Fire-i 520b Back roof center Optical 15 20-30 N/A
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Figure 15.
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(Left) Laser range finder azimuthal coverage diagram for Team Cornell’s Skynet. (Right) Radar azimuthal

coverage diagram. Skynet faced right in both coverage diagrams. A rear-facing optical camera is not shown, nor are two
laser range finders with vertical scan planes that detected obstacles immediately to the left and right of Skynet.

probability density:
pIN( : k), X(1: k)| Z(1 : k)], )

where N(1:k) were a set of discrete variables as-
signing sensor measurements to tracked obstacles at
time indices 1-k, X(1 : k) were the continuous states
of all obstacles being tracked at time indices 1%,
and Z(1 : k) were the full set of sensor measurements
at time indices 1-k. The number of obstacles being
tracked was also implicitly represented in the cardi-
nality of the measurement assignments and obstacle
states and needed to be estimated by the local map.
To do so, Eq. (1) was factorized to yield two manage-
able components:

pPINA:RI|ZA )] - plXA:K)INI k), ZA : k)], (2)

where, intuitively, p[N(1:k)|Z(1:k)] describes the
task of determining the number of obstacles and as-
signing measurements to those obstacles and p[X(1 :
k)N : k), Z(1 : k)] describes the task of tracking a
known set of obstacles with known measurement
correspondences. In the local map, these two den-
sities were estimated separately using a particle fil-
ter to make Monte Carlo measurement assignments
and banks of extended Kalman filters (EKFs) to

track obstacles given those assignments (Miller &
Campbell, 2007; Miller et al., 2008). The obstacles
were then broadcast at 10 Hz on Skynet’s data net-
work. A second layer, called the track generator,
combined these obstacles with Skynet’s position es-
timates to generate high-level obstacle metadata for
the planner, including a stable identification number,
whether each obstacle was stopped or shaped like a
car, and whether each obstacle occupied any nearby
lanes.

4.3. Intelligent Planning

Team Cornell’s intelligent planning system used
Skynet’s probabilistic interpretation of the environ-
ment to plan mission paths within the context of the
rule-based road network. The planner’s top-level be-
havioral layer combined offline mission information
with sensed vehicle and environment information to
choose a high-level behavioral state given Skynet’s
current situation. The middle-level tactical layer then
chose contextually appropriate maneuvers based on
the selected behavior and the states of other nearby
agents. The low-level operational layer translated
these abstract maneuvers into actuator commands,
taking into account road constraints and nearby ob-
stacles. The following sections describe each of the
three primary layers of the planner.
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4.3.1.

The behavioral layer was the most abstract layer
in Team Cornell’s planner. Its job was to plan the
fastest route to the next mission checkpoint and then
to select one of four high-level behavior states to
achieve the planned route. The first part of that task,
route planning, was solved using a modified ver-
sion of the A* graph search algorithm (Ferguson,
Stentz, & Thrun, 2004; Russell & Norvig, 2003). First,
the DARPA road network was converted from the
RNDF format to a graphical hierarchy of segments
(Willemsen, Kearney, & Wang, 2003). The behavioral
layer planned routes on this graphical hierarchy us-
ing dynamically calculated traversal times as costs
for road partitions, lane changes, turns, and other ma-
neuvers. After planning a route, the behavioral layer
selected a high-level behavior state to make progress
along the desired path. Four behavioral states were
defined for the Urban Challenge: road, intersection,
zone, and blockage, each deliberately defined as
broadly as possible to promote planner stability. Each
of these high-level behaviors executed a correspond-
ing tactical component that drove Skynet’s actions
until the next behavior change.

Behavioral Layer

4.3.2. Tactical Layer

When Skynet transitioned to a new behavior state,
a corresponding tactical component was executed.
All components divided the area surrounding Skynet
into regions and created monitors to detect events
that might have influenced Skynet’s actions. All com-
ponents also accessed a common list of intelligent
agents, whose behavior was monitored in the planner
using estimates from the track generator. Differences
between tactical components lay in the types of re-
gion monitors they used and in the actions they took
in response to nearby events.

The first tactical component was the road tac-
tical, which controlled Skynet when it drove down
an unblocked road. This component was responsible
for maintaining a desired lane, evaluating possible
passing maneuvers, and monitoring nearby agents.
At each planning cycle, the road tactical checked
agents in front of Skynet for speed adjustment, adja-
cent to Skynet for lane changes, and behind Skynet
for impending collisions and reverse maneuvers
(Sukthankar, 1997). Using these checks, the road tac-
tical selected a desired speed and lane to keep. These
were passed to the operational layer as a reference
path.

Journal of Field Robotics DOI 10.1002/rob

The second tactical component was the inter-
section tactical, which controlled Skynet in intersec-
tions. This component was responsible for achiev-
ing proper intersection queuing behavior and safe
merging. It accomplished these goals by monitoring
agent arrival times and speeds at each intersection
entry, maintaining a queue of agents with precedence
over Skynet. When the intersection monitors deter-
mined that Skynet was allowed to proceed, a target
speed, goal point, and polygon defining the intersec-
tion were passed along to the operational layer as a
reference path.

The third tactical component was the zone tacti-
cal, which controlled Skynet after it entered a zone.
This component was responsible for basic navigation
in unconstrained zones, including obstacle avoidance
and alignment for parking maneuvers. The zone tac-
tical planned over a human-annotated graph drawn
on the zone during RNDF preprocessing. The graph
imposed wide artificial lanes and directions of travel
onto portions of the zone, allowing Skynet to treat
zones as if they were roads. The zone tactical gener-
ated the same type of local lane geometry information
as the road tactical to send to the operational layer as
a reference path.

The final tactical component was the block-
age tactical, which controlled Skynet when obsta-
cles blocked forward progress on the current route.
This component was responsible for detecting and re-
covering from roadblocks to ensure continued mis-
sion progress. Team Cornell’s blockage detection
and recovery relied on the operational layer’s con-
strained nonlinear optimization strategy, described in
Section 4.3.3, to detect the location of the block-
age and any possible paths through it. After initial
blockage detection, the blockage tactical component
proceeded through an escalation scheme to attempt
recovery. First, the blockage was confirmed over mul-
tiple planning cycles to ensure that it was not a short-
lived tracking error. Second, a reverse or reroute
maneuver was executed to find an alternate route
on the RNDF, if one was available. If no al-
ternate route existed, Skynet reset the local map
and scene estimator to remove long-lived mistakes
in obstacle detection. If this step failed, planning
constraints were relaxed: first the admissible lane
boundaries were widened, and then obstacles were
progressively ignored in order of increasing size.
Skynet’s recovery process escalated over several
minutes in a gradual attempt to return to normal
driving.
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4.3.3. Operational Layer

The operational layer converted the tactical layer’s
reference path and speed into steering, transmission,
throttle, and brake commands to drive Skynet along
the desired path while avoiding obstacles. To accom-
plish this task, the operational layer first processed
each obstacle into a planar convex hull. The obstacles
were then intersected with lane boundaries to form
a vehicle-fixed occupancy grid (Martin & Moravec,
1996). The A* search algorithm was used to plan an
initial path through the free portion of the occupancy
grid (Russell & Norvig, 2003). This initial path was
then used to seed a nonlinear trajectory optimization
algorithm for path smoothing.

Skynet’s nonlinear trajectory optimization algo-
rithm attempted to smooth the initial path to one
that was physically drivable, subject to actuator con-
straints and obstacle avoidance. The algorithm dis-
cretized the initial path into a set of n equally spaced
base points p;, i € {1, n}. A set of n unit-length “search
vectors” u;, i € {1, n} perpendicular to the base path
are also created, one for each base point. The trajec-
tory optimizer then attempted to find a set of achiev-
able smoothed path points z; = p; + w; - u;, i € {1, n}
by adjusting search weights w;, i € {1, n}. Target ve-
locities v;, i € {1, n} were also considered for each
point, as well as a set of variables ¢! and ¢!, i € {1, n}
indicating the distance by which each smoothed path
point z; violated desired spacings on the left and right
of Skynet created from the list of polygonal obstacles.
Search weights, velocities, and final obstacle spacings
were chosen to minimize the cost function J:

n—1 n-2

1 2 2

T (wi,viiglq) =Y F+aay (cip—ci)
i=2 i=2
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where ., a4, oy, @4, a4, and o, are tuning weights; c;
is the approximated curvature at the ith path point;
w! is the target search weight at the ith path point;
and g; is the approximated forward vehicle accelera-
tion at the ith path point. This cost function is opti-
mized subject to a set of six rigid path constraints:

1. Each search weight w; cannot push the
smoothed path outside the boundary polygon
supplied by the tactical layer.

2. Each obstacle spacing variable g/ and g/ can-
not exceed any obstacle’s minimum spacing
requirement.

3. Curvature at each path point cannot exceed
Skynet’s maximum turning curvature.

4. Total forward and lateral vehicle acceleration
at each path point cannot exceed assigned
limits.

5. Each search weight w; and set of slack vari-
ables ¢! and ¢/ must never bring Skynet closer
to any obstacle than its minimum allowed
spacing.

6. The difference between consecutive path
weights w; and w;4; must not exceed a min-
imum and maximum.

Additional constraints on initial and final path head-
ing were also occasionally included to restrict the
smoothed path to a particular end orientation, such
as remaining parallel to a lane or a parking spot.

The constrained optimization problem is solved
using LOQO, an off-the-shelf nonlinear, noncon-
vex optimization library. Two optimization passes
were made through each base path to reach a final
smoothed path. The first step of the smoothed path
was then handed to two independent low-level track-
ing controllers, one for desired speed and one for de-
sired curvature. The optimization was restarted from
scratch at each planning cycle and was run at 10 Hz.

5. THE COLLISION

Undoubtedly the most observed incident between
robots during the Urban Challenge was the low-
speed collision of Talos with Skynet. The location of
the incident and a diagram of the accident progres-
sion are shown in Figure 16.

The collision between Skynet and Talos occurred
during the second mission for both teams. Both ve-
hicles had driven down Washington Boulevard and
were attempting to merge onto Main Circuit to com-
plete their latest submission. Skynet drove down
George Boulevard and was the first to arrive at the in-
tersection. The vehicle paused, moved forward onto
Main Circuit (around two car lengths), and then
came to a stop. It backed up about three car lengths,
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George Boulevard

Figure 16.
waypoint (6.4.7) to (3.1.2).

stopped, drove forward a car length, and stopped
again before finally moving forward just as Talos was
approaching Main Circuit. Talos was behind Skynet
and Skynet’s chase vehicle on approach to the inter-
section. Talos then passed the queuing Skynet chase
vehicle on the left. Talos then stopped beside the
chase vehicle while Skynet was backing up back over
the stop line. When Skynet moved forward again,
Talos drove up and came to a stop at the stop line
of the intersection. Talos then drove out to the left of
Skynet as if to pass. Talos was alongside Skynet in
what was looking to be a successful passing maneu-
ver, when Talos turned right, pulling close in front of
Skynet, which was now moving forward.

Next, in Sections 6 and 7, we will branch off and
look at the collision from inside the Skynet and Talos
software.

6. THE COLLISION FROM INSIDE SKYNET

UCE spectators characterized Skynet as having three
erratic maneuvers in the seconds leading up to its
collision with Talos. First, Skynet stuttered through
its turn into the south entrance of the traffic circle,
coming to several abrupt stops. Second, Skynet drove
backward after its second stop, returning almost fully
to the stop line from which it had just departed. Fi-
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(b)

(a) Diagram of the incident. (b) The collision took place while the vehicles traversed the intersection from

nally, Skynet stuttered through the turn once again,
ignoring Talos as it approached from behind, around
to Skynet’s driver side, and finally into a collision
near Skynet’s front left headlight. Sections 6.1, 6.2,
and 6.3 describe, from a systems-level perspective,
the sequence of events causing each erratic maneuver.

6.1. Stuttering through the Turn

Although it did not directly cause the collision,
Skynet’s stuttering through its turn into the traffic cir-
cle was one of the first erratic behaviors to contribute
to the collision. At its core, Skynet’s stuttering was
caused by a complex interaction between the geome-
try of the UCE course and its GPS waypoints near the
turn, the probabilistic obstacle detection system dis-
cussed in Section 4.2, and the constraint-based plan-
ner discussed in Section 4.3.3. First, Team Cornell de-
fined initial lane boundaries by growing polygonal
admissible driving regions from the GPS waypoints
defining the UCE course. This piecewise-linear in-
terpretation of the lane worked best when the lane
was straight or had shallow curves: sharp turns could
yield polygons that excluded significant portions of
the lane. The turn at the southern entrance to the traf-
fic circle suffered from this problem acutely, as the
turn was closely bounded on the right by concrete
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operational layer: path
constraints around obstacles

convex hulls around
concrete barrier obstacles

Figure 17.
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(Left) The lane polygon implied by piecewise-linear interpolation of DARPA waypoints in the turn near the

south entrance to the traffic circle. Obstacle constraints from nearby concrete barriers occupied a significant portion of the
lane polygon. (Right) Skynet camera view of the concrete barriers generating the constraints.

barriers and a spectator area. Figure 17 shows that
these concrete barriers occupied a large region of the
lane polygon implied by the DARPA waypoints. The
resulting crowded lane polygon made the turn diffi-
cult: Skynet’s constraint-based operational layer, de-
scribed in Section 4.3.3, would not generate paths that
drive outside the lane polygon. With space already
constrained by Skynet’s internal lane polygon, small
errors in absolute position or obstacle estimates could
make the path appear infeasible.

Path infeasibility caused by these types of errors
resulted in Skynet’s stuttering through the south en-
trance to the traffic circle. At the time leading up
to the collision, small variations in clusters of laser
range finder returns and Monte Carlo measurement
assignments in the local map caused Skynet’s path
constraints to change slightly from one planning cy-
cle to the next. In several cases, such as the one
shown in Figure 18, the constraints changed to make
Skynet’s current path infeasible. At that point Skynet
hit the brakes, as the operational layer was unable to
find a feasible path along which it could make for-
ward progress.

In most cases, variations in the shapes of obsta-
cle clusters and Monte Carlo measurement assign-
ments, like the one shown in Figure 18, cleared in one
or two planning cycles: for these, Skynet tapped the
brakes before recovering to its normal driving mode.
These brake taps were generally isolated but were
more deleterious near the traffic circle for two rea-
sons. First, the implied lane polygons forced Skynet
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the operational planner
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Figure 18. Small variations in Skynet’s perception of
a concrete barrier cause its planned path to become
infeasible.

to drive close to the concrete barriers, making it more
likely for small mistakes to result in path infeasibil-
ity. Second, Skynet’s close proximity to the concrete
barriers actually made clustering and local map mis-
takes more likely: Ibeo laser range finders and Delphi
radars tended to produce more false detections when
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Figure 19. A measurement assignment mistake causes a phantom obstacle to appear, momentarily blocking Skynet’s path.

within 1.5 m of an obstacle. The interaction of these
factors produced the stuttering behavior, which hap-
pened several times at that corner during the UCE.

6.2. Reversing toward the Stop Line

Occasionally, variations in obstacle clusters and poor
Monte Carlo measurement assignments in the local
map were more persistent: in these cases phantom
obstacles may appear in the lane, blocking forward
progress for several seconds. In these failures the lo-
cal map typically did not have enough supporting
sensor evidence to delete the phantom obstacle im-
mediately and allowed it to persist until that evidence
was accumulated. When this happened, Skynet con-
sidered the path blocked and executed the blockage
recovery tactical component to deal with the situa-
tion. Blockage recovery was activated 10 times over
the 6 h of the UCE.

One of the 10 blockage recovery executions oc-
curred immediately prior to Skynet’s collision with
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Talos. In this scenario, a measurement assignment
mistake caused a phantom obstacle to appear part-
way into Skynet’s lane. The phantom obstacle, shown
in Figure 19, caused Skynet to execute an emer-
gency braking maneuver. The phantom obstacle was
deleted after approximately 2 s, but the adjustments
to the operational layer’s constraints persisted long
enough for the operational layer to declare the path
infeasible and the lane blocked. The mistake sent
Skynet into blockage recovery. In blockage recovery,
the operational layer recommended that the tactical
layer reverse to reposition itself for the turn. The tac-
tical layer accepted the recommendation, and Skynet
reversed one vehicle length to reposition itself.

6.3. Ignoring Talos

After the reverse maneuver described in Section 6.2,
Skynet still had not completed the turn necessary
to continue with its mission. The planner there-
fore remained in its blockage recovery state, though
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recommendation and completion of the reverse ma-
neuver left it in an escalated state of blockage re-
covery. In this state the tactical layer and operational
layer once again evaluated the turn into the traffic cir-
cle, this time ignoring small obstacles according to the
blockage recovery protocol described in Section 4.3.2.
The operational layer decided that the turn was fea-
sible and resumed forward progress. Although the
local map produced no more phantom obstacles for
the duration of the turn, small errors in laser range
finder returns once again forced the operational layer
to conclude that the path was infeasible. At this point,
the tactical layer escalated to its highest state of block-
age recovery, removing constraints associated with
lane boundaries. Figure 20 shows this escalation from
Skynet’s normal turn behavior to its decision to ig-
nore lane boundaries.

Unfortunately, Skynet still perceived its goal state
as unreachable due to the nearby concrete barriers.
At the highest level of blockage recovery, however,
Skynet was deliberately forbidden to execute a sec-
ond reverse maneuver to prevent an infinite planer
loop. Instead, it started a timer to wait for the error
to correct itself, or barring forward progress for sev-
eral minutes, to reset the local map and eventually
the planner itself. Neither of these soft resets would
be realized, however, as Talos was already weaving
its way behind as Skynet started its timer.

While Talos passed behind and then to the left of
Skynet, the operational layer continued to believe the
forward path infeasible. Coincidentally, just as Talos
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(Left) Skynet resumed its turn after a reverse maneuver. (Right) Perceiving the turn infeasible a second time,
Skynet dropped constraints associated with lane boundaries.

pulled out to pass Skynet on the left, a slight varia-
tion in the obstacle clustering and measurement as-
signments accumulated enough evidence in the lo-
cal map to perceive the path as feasible. With the
path momentarily feasible, Skynet began to drive for-
ward as Talos passed on its left. Here Skynet’s tac-
tical layer ignored Talos, because Talos drove out-
side the piecewise-linear polygonal lane boundary,
as shown in Figure 21. Skynet’s operational layer
also ignored Talos, as Talos did not constrain the
target path in front of Skynet in any way. Once
Talos passed to Skynet’s left, Talos was no longer
detected as a moving obstacle; Skynet’s sideways-
facing SICK LMS-291s were mounted with a ver-
tical scan plane and provided only weak position
information and no velocity information. The local
map began tracking Talos as a moving obstacle only
1 s before the collision, when it entered into view
of Skynet’s forward-mounted Ibeo ALASCA XTs.
Unfortunately, with concrete barriers on Skynet’s
right and Talos approaching on its left, no eva-
sive maneuver was available. At that point, given
the preceding chain of events, the collision was
inevitable.

Figure 22 shows the speed and heading, as esti-
mated on Skynet, for both the Skynet and Talos ve-
hicles. Skynet tracked Talos’s approach until approx-
imately 0.5 s before collision, where Talos was too
close to be sensed correctly. After that, Skynet as-
sumed Talos continued to drive at its prior speed
and heading. Skynet did not change its heading or

Journal of Field Robotics DOI 10.1002/rob



Fletcher et al.: The MIT-Cornell Collision and Why It Happened o

lane boundary
polygon

MIT Talos -—-—""'[E

A

ego-vehicle/ \

MIT chase vehicle-—-—""\

B

POVPIIIIIINK

R
-

Cornell chase
vehicle

\

Figure 21. Skynet ignored Talos as it drove outside
Skynet’s polygonal lane boundary.

velocity before the collision, indicating that no adjust-
ments were made to the Talos movements. Finally, af-
ter impact, there was a fast change in Skynet’s head-
ing, indicating the collision, and its velocity decreases
quickly to zero soon after.
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7. THE COLLISION FROM INSIDE TALOS

The incident from the Talos viewpoint is shown in
Figures 23-25. Figure 23 shows that earlier along
George Boulevard, the road was dual lane. Talos
was going faster along the straight road than the
Skynet chase vehicle, so Talos passed to the left of
the chase vehicle [Figure 23(a)]. At the end of Wash-
ington Boulevard, the road merged (via cones on the
left) into a single lane on the right. Talos did not
have room to merge right in front of the chase vehi-
cle, so Talos slowed to a stop while the Skynet chase
vehicle moved ahead. When space was available,
Talos merged behind the Skynet chase vehicle
[Figure 23(b)]. Skynet and the chase vehicle then
came to a stop at the intersection [Figure 23(c)].

In Figure 24 we see that at first, Talos stopped be-
hind the chase vehicle. However, the lane width was
sufficient that Talos soon found a path to the left of
the chase vehicle [Figure 24(a)]. In this case Talos was
not in a passing mode; it had simply found room on
the left-hand side of the current lane to squeeze past
the DARPA chase vehicle.

7.1. Wide Lane Bug

The lane was significantly wider to the left because of
a drivability map construction bug. As described in
Section 3, lanes were carved out of the lane-cost map

100 . ! .

— Skynet
/
time of collision
90|
I
85r
80r
75r
701

65[

Heading (CCW East, deg.)

]

551

50 . . .
0 0.5 1 1.5
Mission Time (sec + 24,503.8sec.)

Figure 22. From Skynet logs: Speed (left) and heading (right) for both Skynet and Talos just before and after collision. Flat
line in Talos’s plot indicates where Skynet stopped tracking Talos.
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(b)
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Figure 23. Talos’s view of the lead-up to the Skynet-Talos incident. (a) Talos started to pass Skynet’s chase vehicle. (b) Talos
was forced to slow down and merge behind the Skynet chase vehicle. (c) Talos queued behind the Skynet chase vehicle.

like valleys through a plateau. Adjacent lanes carved
out often resulted in small islands remaining between
the valleys. These islands were addressed by explic-
itly planing down the region between adjacent lanes.
This strategy worked well in general; however, in this
case the road merged down to one lane shortly be-
fore the intersection. The adjacent lane was not ren-

dered after the merge, which was correct. However,
the planing operation was done all the way along the
right lane past the merge point. The effect of the plan-
ing alone made the road 3 m wider on the left than it
would otherwise have been. Without the extra width,

Talos would have been forced to queue behind the
DARPA chase vehicle.

Journal of Field Robotics DOI 10.1002/rob
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(b)

(d)

Figure 24. Lead-up to the Skynet-Talos incident. (a) Talos found a route around the chase vehicle. (b) Skynet backed up
onto Talos’s goal position; Talos braked. (c) Skynet advanced again. Talos passed the chase vehicle. (d) Talos yielded at the

intersection. There were no moving vehicles nearby, so it proceeded.
Journal of Field Robotics DOI 10.1002/rob
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(a)

(b)

Figure 25. Skynet-Talos incident. (a) Talos planned a route around Skynet, which appeared as a static object. (b) While
Talos was passing, Skynet began to move. (c) While applying emergency braking, Talos turned into Skynet.

7.2. At the Intersection

Figures 24(b) and 24(c) show how Talos pulled out
and drove around to the left of the chase vehicle. The
robot had a motion plan that was attempting to reach
a goal point on the stop line of the intersection. Talos
was beside the chase vehicle when Skynet backed up
and occupied Talos’s goal position. Talos came to a

stop, unable to drive through the restricted region to
get to the goal. In the visualization, Skynet did not
have a restricted region in front of and behind the
vehicle. This was because Skynet was within the in-
tersection. Obstacles detected inside the intersection
did not have restricted regions because the heuris-
tic was that obstacles inside intersections were things
like sign posts, traffic islands, and encroaching trees.

Journal of Field Robotics DOI 10.1002/rob



Fletcher et al.: The MIT-Cornell Collision and Why It Happened « 801

Skynet then moved forward again, making Talos’s
goal position clear. Talos drove to the stop line. Al-
though now adjacent to Skynet’s chase vehicle, Talos
was not in a fail-safe mode. The artificially widened
lane permitted Talos to drive up to the intersection as
it would passing a parked car or any other object on
the side of the road not blocking the path. At the in-
tersection Talos followed the standard procedure of
giving precedence to obstacle/vehicles approaching
on the left. There were no moving or static obstacles
in the intersection to the left of Talos on Main Circuit,
so the software moved the short-term goal point to
the exit of the intersection (waypoint 3.1.2), and Talos
proceeded.

7.3. The Collision

Finally, Figures 24(d) and 25(a) show that Talos
planned a path out to the left through a region that
had a low cost by avoiding Skynet (which Talos per-
ceived as a static obstacle). Talos’s goal point moved
farther down Main Circuit, requiring the robot to
find a trajectory that would have an approach angle
to the lane shallow enough to drive within the lane
boundaries of Main Circuit. Talos was now inside
the intersection-bounding box. Talos planned a path
around the “Skynet static object” and down Main Cir-
cuit within the lane boundaries. The path was close to
Skynet, so the route had a high cost but was phys-
ically feasible. Talos drove between Skynet (on the
right) and the lane boundary constraint (on the left).
Talos then pulled to the right so that it could make
the required approach angle to enter the lane. Had
Skynet remained stationary, at this point Talos would
have completed the passing maneuver successfully.
In Figure 25(b), we can see that Skynet starts moving
forward. Had Skynet been moving faster (i.e., >3 m/s
instead of 1.5 m/s), a moving obstacle track would
have been initiated in the Talos software and a “no-
go” region would have been extruded in front of the
vehicle. This region would have caused Talos to yield
to Skynet (similar to what occurred with Odin and
Talos as described in Section 2.5). Instead Talos
turned to the right to get the correct approach angle
to drive down the lane; Skynet moved forward; the
robots collided [Figure 25(c)].

7.4. Clusters of Static Objects

Talos perceived Skynet as a cluster of static objects.
The positions of the static objects evolved over time.
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This may sound strange; however, it is not uncom-
mon for a cluster of static obstacles to change shape
as the ego-vehicle position moves. It could be due,
for instance, to more of an object becoming visible to
the sensors. For example, the extent of the concrete
barrier detected on the right of Talos in Figures 23(a)-
23(c) varied due to sensor range and aspect in rela-
tion to the ego-vehicle. Because the software treated
Skynet as a collection of static objects instead of a
moving obstacle, no forward prediction was made on
Skynet’s motion. Talos was driving between a lane
constraint on the left and a collection of static objects
on the right. If Skynet had not moved, Talos would
have negotiated the gap just as it had to avoid K-rails
and other static objects adjacent to the lanes through-
out the day. Instead, unexpectedly for Talos, Skynet
moved forward into the planned path of Talos. With-
out a forward-motion prediction of Skynet, by the
time Skynet was in Talos’s path, Talos was unable to
come to a stop before colliding.

Figure 26 shows the vehicle state during the col-
lision. Talos had straightened its wheels to around
9 deg to the right and was traveling around 2 m/s.
The vehicle detected that the motion planning tree
had been severed 550 ms before the collision. It was
replanning, and no evasive maneuver was performed
yet; 150 ms later the vehicle was coasting and DARPA
paused the vehicle. At the collision Talos was moving
at 1.5 m/s, dropping to zero 750 ms after the initial
collision. In the log visualization Talos was pushed
slightly forward and to the left of its heading by the
impact (about 0.3 m).

The contributing factors of Talos’s behavior can
be decomposed as the inability to track slow-moving
objects, the use of a moving-obstacle model ver-
sus explicit vehicle classification, and the dominant
influence of lane constraints on motion planning
and emergency path diversity. The other contribut-
ing factor, the drivability map rendering bug, which
widened the lane to allow Talos to attempt to drive
around instead of queue, is a test-coverage issue and
holds little to analyze further.

7.5. Inability to Track Slow-Moving Objects

At the lowest layer, all objects tracked by the obsta-
cle detection system had a velocity component. How-
ever, both sensor noise and changing viewpoint ge-
ometry can masquerade as small velocities, making it
difficult to reliably determine whether an object is ac-
tually moving. The problem of changing viewpoint is
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Figure 26. Talos's speed, wheel angle, and pedal gas and brake positions during the collision. Time 0.0 is the initial colli-
sion. Motion planner E-stop was at —550 ms. DARPA pause at —400 ms. The vehicle came to rest after 750 ms.

especially problematic. If Talos is moving, the visible Apertures between the sensor and the obstacle
portion of other obstacles can change; the “motion”  present additional complications. Figure 27 shows an
of the visible portion of the obstacle is difficult to dis-  example in which a small near-field aperture resulted
tinguish from an obstacle that is actually moving. in a hallucinated car. In this case, only a small patch

/;
v/
/

il

(a)

Figure 27. (a) Illustration of LIDAR aperture problem. The building on the right generates a LIDAR return indistinguish-
able from the fast-approaching vehicle on the left. (b) Walls entering the White Zone generate phantom moving obstacles
from building LIDAR returns.
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of wall was visible through the aperture: as Talos
moved, an object appeared to be moving in the oppo-
site direction on the other side of the aperture. Sev-
eral groups have attempted to counter this problem
using algorithms to determine the shadowing of dis-
tant objects by near-field returns (Thrun et al., 2006).
However, with more complex sensor characteristics
such as the 64-laser Velodyne sensor and more com-
plex scene geometries for urban environments, these
techniques become difficult to compute. A flat obsta-
cle occlusion map is no longer sufficient because ob-
stacle height must be considered.

7.6. Moving Obstacles versus Explicit
Vehicle Classification

As described in Section 3, the MIT vehicle did not ex-
plicitly detect vehicles. Instead, objects in the scene
were classified as either static or moving obstacles.
Moving obstacles were rendered with exclusion re-
gions in the direction of travel along the lane. The de-
cision to use moving obstacles was taken to avoid the
limitations of attempting to classify the sensing data
into “vehicle” or “nonvehicle” classes. The integrated
system was fragile, however, as classification errors
or outages caused failures in downstream modules
blindly relying on the classifications and their per-
sistence over time. Up until and including the MIT
site visit in June 2007, the software did attempt to
classify vehicles based on size and lane proximity.
During one mission, lane precedence failed due to
sensor noise, causing a vehicle to be lost momen-
tarily and then reacquired. The reacquired vehicle
had a different ID number, making it appear as a
new arrival to the intersection, so Talos incorrectly
went next. In reaction to this failure mode, Team
MIT migrated to use the concept of static and mov-
ing obstacles. The rationale for this was that sensor
data classification schemes, by requiring a choice to
be made, introduced the potential for false-positive
and false-negative classifications. Much care could be
taken in reducing the likelihood of misclassifications;
however, classification errors could almost always
still occur. Developers have often designed down-
stream applications to be overconfident in the classes
assigned to objects. Avoiding the assignment of
“vehicle” /“nonvehicle” classes to detected objects
was an attempt to cut down assumptions made by the
downstream applications interpreting the detected
obstacle data. The assumptions were made in relation
to the strict definition of “static” and “moving” obsta-
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cles instead. On the whole this approach scaled well
with the additional complexity of the final race. The
apparent gap was in the correct treatment of active
yet stationary vehicles. The posture of Skynet was not
very different from that of the stationary cars parked
in the gauntlet of Area B during the qualifiers.

7.7. Lane Constraints and Emergency
Path Diversity

In the nominal situation, the tree of trajectories ended
in stopped states, so that Talos always knew how to
come to a safe stop. When Talos was moving and the
planner could not find any feasible safe path from
the current configuration (possibly due to a change in
the perceived environment caused by sensing noise
or dynamic obstacles that changed the constraints),
the planner generated an emergency braking plan.
This emergency plan consisted of the steering pro-
file of the last feasible path and a speed profile with
the maximum allowable deceleration. Before the col-
lision [Figure 25(b)], the tree of trajectories was go-
ing toward the target farther down the road. When
the gap between the left lane boundary and Skynet
was narrowed as Skynet moved forward, no feasible
plan was found that stopped Talos safely. When no
feasible solution is found, a better approach would
be to prioritize the constraints. In an emergency sit-
uation, satisfying lane constraints is not as important
as avoiding a collision. Therefore, when generating
an emergency plan, the planner could soften the lane
constraints (still using a relatively high cost) and fo-
cus on ensuring collision avoidance with the maxi-
mum possible braking.

8. DISCUSSION

Neither vehicle drove in a manner “sensible” to a hu-
man driver. On a day of fine weather and good vis-
ibility, Skynet backed up in a clear intersection and
started to accelerate when another vehicle was clos-
ing in. Talos passed a vehicle instead of queuing in
a single-lane approach and then pulled in much too
close to an active vehicle in an intersection.

To summarize, contributing factors identified in
the two vehicles’ software were as follows:

e Talos’s lane-rendering bug permitting Talos
to pass the DARPA chase vehicle
¢ Talos’s inability to track slow-moving objects
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® Skynet's sensor data associations inducing
phantom objects

e Talos’s failure to anticipate potential motion
of an active stationary vehicle

® Skynet’s failure to accommodate the motion
of an adjacent vehicle in an intersection

e Talos’s overly constrained motion due to tar-
get lane constraints

® Skynet’s lane representation narrowing the
drivable corridor

Apart from the lane-rendering problem, these fac-
tors were more than just bugs: they reflected hard
trade-offs in road environment perception and mo-
tion planning.

8.1. Sensor Data Clustering

Skynet’s phantom obstacles and Talos’s inability to
track slow-moving objects represent the downsides
of two different approaches to address the same prob-
lem of sensor data clustering. Team Cornell chose
to estimate the joint probability density across ob-
stacles using Monte Carlo measurement assignments
to associate sensor data with objects (Section 4.2).
The consequence was that sometimes the associa-
tions would be wrong, creating false positives. Team
MIT found LIDAR data clustering too noisy to use
for static objects. Instead, relying on its sensor-rich
vehicle, the accumulator array with a high entropy
presented static objects to motion planning directly.
Once the velocity signal was sufficiently strong, the
clustered features robustly tracked moving objects. A
high threshold was set before moving obstacle tracks
were reported to suppress false positives. The conse-
quence was that until the threshold was passed, there
was no motion prediction for slow-moving objects.

8.2. Implicit and Explicit Vehicle Detection

The treatment of vehicles in the road environment
must extend past the physics-based justification of
obstacle avoidance due to closing rate. For example,
humans prefer never to drive into the longitudinal
path of an occupied vehicle, even if it is stationary.
In Section 2 we mentioned how the DARPA chase ve-
hicle driver preferred to drive on the curb rather than
in front of the paused Skynet vehicle.

Many teams in the contest performed implicit
vehicle detection using the object position in the
lane and size to identify vehicles (Leonard et al.,

2008; Miller et al., 2008; Stanford Racing Team, 2007).
Moving objects detected with LIDAR or using radar
Doppler velocity were also often assumed to be ve-
hicles. To prevent identified vehicles being lost, sev-
eral teams had a “was moving” flag associated with
stationary tracked objects, such as queuing vehicles,
that had once been observed moving (Tartan Racing,
2007). It is not difficult to imagine a case in which a
vehicle would not have been observed moving and
the vehicle size and position rules of thumb would
fail. Some teams also used explicit vehicle detectors
such as the Mobileye SeeQ system. However, explicit
vehicle detectors struggle to detect all vehicles pre-
sented at all aspects. The reconciliation of the two
approaches—explicit vehicle detection/classification
and the location/moving-obstacle approach—seems
a promising solution.

Figure 28 shows the result of explicit vehicle
detection run on Talos’s logged data. Both Skynet
and the DARPA chase vehicle are detected, though in
only a fraction of the frames in the sequence. There
were also a number of false detections that would
need to be handled. Explicit vehicle detection could
have possibly bootstrapped Talos’s data association
and tracking, permitting standoff regions to be
placed in front of and behind Skynet. There still
was an apparent gap in the correct treatment of
active yet stationary vehicles. The posture of Skynet
was not very different from those of the stationary
cars parked along the side of a road [such as in the
gauntlet of Area B during the National Qualifying
Event (NQE)]. Even with perfect vehicle detection,
sensor data and modeling can recover only the
current vehicle trajectory. Nonlinear motions like the
stop—start behaviors require conservative exclusion
regions or an additional data source.

8.3. Communicating Intent

Drivers on the road constantly anticipate the poten-
tial actions of fellow drivers. For close maneuver-
ing in car parks and intersections, for example, eye
contact is made to ensure a shared understanding.
In a debriefing after the contest, DARPA stated that
traffic vehicle drivers, unnerved by being unable to
make eye contact with the robots, had resorted to
watching the front wheels of the robots for an in-
dication of their intent. As intervehicle communica-
tion becomes ubiquitous, autonomous vehicles will
be able to transmit their intent to neighboring vehi-
cles to implement the level of coordination beyond

Journal of Field Robotics DOI 10.1002/rob
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(b)

Figure 28. Results of explicit vehicle detection in the collision. (a) DARPA chase vehicle detected. (b) Last frame: Skynet is
detected. Trees and clutter in the background also generate false positives during the sequence. In the intersection there are
no lane markings, so lane estimate confidence cannot be used to exclude the false detections.

what human drivers currently achieve using eye con-
tact. This would not help in uncollaborative environ-
ments such as defense. There are also many issues
such as how to handle incomplete market penetra-
tion of the communications system or inaccurate data
from equipped vehicles. However, a system in which
very conservative assumptions regarding other vehi-
cle behavior can be refined using the intent of other
vehicles, where available, seems a reachable objec-
tive. We look forward to these synchronized robot
vehicle interactions.

8.4. Placing Lane Constraints in Context

Leading up to the collision, both Talos and Skynet
substantially constrained their behavior based on the
lane boundaries, even though the physical world was
substantially more open. Skynet lingered in the in-
tersection because the lane was narrowed due to an
interaction between the lane modeling and the inter-
section geometry. Then the vehicles collided due to
a funneling effect induced by both vehicles attempt-
ing to get the optimum approach into the outgoing
lane. The vehicles were tuned to get inside the lane
constraints quickly; this behavior was tuned for cases
such as the Area A test during the NQE, in which
the vehicles needed to merge into their travel lane
quickly to avoid oncoming traffic. In test Area A,
the robots needed to drive assertively to get into the
travel lane to avoid the heavy traffic and concrete bar-
riers lining the course. In the collision scenario, how-
ever, the road was one way, so the imperative to avoid
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oncoming traffic did not exist. The imperative to meet
the lane constraints remained. For future urban vehi-
cles, in addition to perception, strong cues for behav-
ior tuning are likely to come from digital map data.
Metadata in digital maps are likely to include not
only the lane position and number of lanes but also
shoulder drivability, proximity to oncoming traffic,
and partition type. This a priori information vetted
against perception could then be used to weigh up
the imperative to maximize clearance from detected
obstacles with the preference to be within the lane
boundaries. A key question is how the quality of the
map data will be lifted to a level of assured accuracy
that is sound enough to base life-critical motion plan-
ning decisions on.

9. CONCLUSION

The fact that the robots, despite the crash, negotiated
many similarly complex situations successfully and
completed the race after 6 h of driving implied that
the circumstances leading to the collision were the
product of confounding assumptions across the two
vehicles. Investigating the collision, we have found
that bugs and the algorithms in the two vehicles” ar-
chitectures, as well as unfortunate features of the road
leading up to the intersection and the intersection
topology, all contributed to the collision.

Despite separate development of the two vehi-
cle architectures, common issues can be identified.
These issues reveal hard cases that extend beyond a
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particular software bug, vehicle design, or obstacle
detection algorithm. They reflect complex trade-offs
and challenges: (1) Sensor data association in the face
of scene complexity, noise, and sensing “aperture”
problems. (2) The importance of the human ability to
anticipate the expected behavior of other road users.
This requires an estimation of intent beyond the ob-
servable physics. Intervehicle communication has a
good chance of surpassing driver eye-contact com-
munication of intent, which is often used to mitigate
low-speed collisions. However, incomplete system
penetration and denial of service for defense applica-
tions are significant impediments. (3) The competing
trade-offs of conforming to lane boundary constraints
(crucial for avoiding escalating problems with on-
coming traffic) versus conservative obstacle avoid-
ance in an online algorithm. Map data and metadata
in maps about oncoming traffic and road shoulder
drivability would be an invaluable data source for
this equation. However, map data would need to be
accurate enough to support safety-critical decisions.

MULTIMEDIA APPENDICES

Talos’s race logs and log visualization software, as
well as videos of the incidents made from the logs, are
available at http:/ /grandchallenge.mit.edu/public/.
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