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Abstract

A driver assistance system (DAS) should support the driver by monitoring road and vehicle events and presenting relevant
and timely information to the driver. It is impossible to know what a driver is thinking, but we can monitor the driver’s gaze
direction and compare it with the position of information in the driver’s viewfield to make inferences. In this way, not only do
we monitor the driver’s actions, we monitor the driver’s observations as well. In this paper we present the automated detection
and recognition of road signs, combined with the monitoring of the driver’s response. We present a complete system that reads
speed signs in real-time, compares the driver’s gaze, and provides immediate feedback if it appears the sign has been missed by
t
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. Introduction

Cars offer unique challenges in human-machine in-
eration. Vehicles are becoming, in effect, robotic sys-
ems that collaborate with the driver. As the automated
ystems become more capable, how best to manage
he on-board human resources is an intriging question.
ombining the strengths of machines and humans, and
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migitating their shortcomings is the goal of intellige
vehicle research.

Cars also provide unique challenges for robotic
sion. They operate in an environment that can be hi
dynamic and subject to extremes of illumination
is, however, a well-structured environment, desig
for easy perception. Though things can move fa
than in most robot-vision environments, many feat
are known in advance and their appearance is
constrained.

In this paper, we demonstrate how robot-vision
be used to create context sensitive driver aids. U
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Fig. 1. Introducing driver observation monitoring to supplement driver action monitoring.

developed vision systems that are effective in the dy-
namic road environment, features relevant to the driver
can be robustly identified. Then, by combining direct
driver monitoring with the extracted traffic features we
can infer far more about the driver’s behaviour, not
only through monitoring the driver’s actions, but also
by monitoring the driver’s observations (as illustrated
in Fig. 1).

Driver monitoring and real-time sign recognition are
combined to correlate eye gaze with the sign direction.
From this and the vehicle state we develop a system that
determines whether the driver should be made aware of
the detected sign. A fast image enhancement technique
for sign recognition is also demonstrated.

2. Automation in vehicles

Early research in autonomous vehicles focused on
fully autonomous driving, generally controlling steer-
ing. The revolutionary work by Dickmanns and Graefe
[8,7] was able to steer a vehicle at over 100 km/h on
well-formed roads. In the early 1990s more robust im-
age processing enabled the SCARF system from the
CMU Navlab[5] to handle more degraded roads. Sub-
sequent demonstrations by these groups in the mid
1990s showed impressive robustness. CMU’s famous
‘No Hands Across America’ demonstration, for ex-

ample, was able to steer autonomously for 98% of a
302 mile trip[13].

However, there are two key problems that prevent
the idea of a fully autonomous car being a reality in
the near future. First, the remaining few percent re-
quired for a vehicle to gain full autonomy is highly
challenging. Having an automated system handle all
conceivable scenarios is extremely difficult. As acci-
dent statistics show, even humans cannot perform this
task perfectly. The second problem is insurance. Cur-
rently, there must be a human driver.

Driver support, on the other hand, offers immediate
possibilities. Here we support the driver by ensuring
awareness of relevant aspects of the driving environ-
ment, aid simple aspects of driving, while leaving crit-
ical decisions to the driver, and importantly, maintain-
ing the driver’s sense of control over the vehicle. Giving
the driver an increasingly higher level of support is also
a path toward full autonomy.

2.1. What is a driver assistance system?

A driver assistance system (DAS) is an automated
system used to relieve the driver of tedious activities;
warn about upcoming or missed events; and possibly
take control of the car if an accident is imminent. De-
pending on the task to be performed, a DAS must have
appropriate competencies in a number of areas.
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A useful analogy for a driver assistance system is a
vigilant co-pilot. Almost every driver has experienced
a warning from a passenger about a hidden car or a
jaywalking pedestrian. This kind of assistance saves
lives every day.

If we momentarily consider a human co-pilot, it is
easy to identify the important requirements. The co-
pilot must be aware of what is going on outside of the
car, e.g., Are there any pedestrians in sight? How is the
road turning? Next, to make good judgements, the co-
pilot must know where the vehicle is going, how fast,
and whether it is braking, accelerating, etc. Moreover,
we would like our co-pilot to warn us if we have not
noticed an upcoming situation. That means the co-pilot
should not only be aware of what is going on outside the
car, but also what is happening inside i.e., the driver’s
responses. A successful driver and co-pilot team re-
quires good communication, but the co-pilot should
not be intrusive by presenting the driver with too much
or repetitive information.

In summary, a co-pilot/driver assistance system
must work intuitively, unobtrusively and be overrid-
able.Intuitively in that the behaviour of the system must
make immediate sense to the driver in the context of
the standard driving task. On the whole,unobtrusively,
as driver assistance is only an aid if it is not distract-
ing or disruptive unnecessarily. Beoverridable, in that
ultimate responsibility rests with the driver.

The potential benefit of these systems can be high-
lighted by examining the contribution of inattention
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tangent of the road ahead. Apostoloff and Zelinsky[1]
used lane tracking to verify this correlation on logged
data, also observing that the driver frequently moni-
tored oncoming traffic. Takemura et al.[27] demon-
strated a number of correlations between head and eye
movement and driving tasks on logged data.

Hence, in addition to direct observation for fa-
tigue detection, driver monitoring is useful for vali-
dating road scene activity. By monitoring where the
driver is looking, many unnecessary warnings can be
avoided. This is a key mechanism for implementing an
unobtrusiveand intuitive system: unnecessary warn-
ings can be suppressed and necessary warnings can be
made more relevant. As long as a hazard, such as an
overtaking car, or wandering pedestrian, is noted by the
driver no action needs to be taken.

2.3. A context sensitive sign recognition DAS

This paper presents a context sensitive sign recogni-
tion DAS. An autonomous detection system recognises
inportant signs. At the same time, a driver monitoring
system verifies whether the driver has looked in the di-
rection of the sign. If it appears the driver is aware of
the sign, the information can be made available pas-
sively to the driver. If it appears the driver is unaware
of the information, the information can be highlighted.
In this case, if the driver appears to have seen a speed
sign, the current speed-limit can be simply recorded on
the dashboard adjacent to the speedometer. However,
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o s not
o en.
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n accidents. It is estimated that at least thirty per
f fatal road accidents involve driver inattention[11].

magine the difference a vigilant co-pilot could mak

.2. Gaze monitoring in vehicles

Direct driver monitoring has been the subject of c
cal trials for decades, but such monitoring for us
river assistance systems is relatively new. Head
ition and eye closure have been identified as st
ndicators of fatigue[11]. When augmented with in
ormation about the vehicle and traffic, additional
erences can be made. Gordon[10] analysed the motio
f the road scene from the driver’s view point to dr
onclusions as to what perceptual cues were use
riving. In on-road systems, Land and Lee[16] inves-

igated the correlation between eye gaze direction
oad curvature, finding the driver tended to fixate on
f it appears the driver has not looked at the sign,
ver time, a speed adjustment is expected and ha
ccurred, a more prominent warning could be giv
his still leaves the driver in control of the critical d
ision, but supports him or her in a way that aims no
e overly intrusive. Warnings are only given when
river is not aware of the change of conditions. Fina

he warning can be cancelled by observing the dr
glance at the speedometer confirms that the driv
ware of his or her speed and the detected limit.

.4. Sign recognition

Sign recognition is an important task for a dri
upport system. Signs give information relevant to l
onditions. They appear clearly in the environment
driver may not notice a sign due to distraction

nother driving task. In this case it may be helpfu
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Fig. 2. (a) Algorithms assuming strong road scene structure can miss
valuable information, such as a sign on an unexpected side of a lane.
(b) Assuming common regions such as sky and road can be identified
by large areas of self-similar colour is not always valid.

alert the driver to the information that he or she has
missed.

Road sign recognition research has been around
since the mid 1980s. A popular approach is to use
separate stages for sign detection and classification
[20,19,14,23], making use of a detection stage to fo-
cus classification at a few potential sign locations.
The most common means of detecting potential lo-
cations is colour segmentation[23,22,20,14,9,25,12].
These methods typically achieve some robustness un-
der varying lighting conditions by considering the ap-
parent chrominance of signs. However, they are not
robust to changing chrominance of the incident light,
which can occur in real driving conditions (compare
fluorescent and tungsten streetlights and sunlight, for
instance). Another approach to detection isa priori
assumptions about image formation and scene struc-
ture [12,22], such as assuming the road is approxi-
mately straight, that the road and sky will appear as
large uniform regions, or that signs will appear only at
particular locations within the image. However, such
assumptions can break down, as shown inFig. 2: signs
can occur on either side of a road, at ground level (in the
case of temporary roadwork signs) or directly overhead
on major highways. Roads can be curved or bumpy,
and often cluttered, making it difficult to predict where
signs will appear in an image from an on-board vision
system.

However, the appearance of road signs is highly re-
stricted. They must be of a particular shape, colour and
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driving conditions and is a strong cue for detecting po-
tential signs.

3. Detecting road sign candidates

Signs are detected by locating sign-like shapes in the
input image stream. Australian speed signs are required
to have a dark (typically red) circle enclosing the speed-
limit. These circles provide a strong visual feature for
locating speed signs. We apply the fast radial symme-
try operator[18] to detect these circular features, and
thus potential speed sign candidates, as demonstrated
in [3]. This method can also be extended to detect trian-
gular, diamond (square) and octagonal signs[17]. Here
we focus on the speed sign case, and for completeness
of presentation include a brief description of the fast
radial symmetry detector, summarising from Loy and
Zelinsky[18].

3.1. Radial symmetry detector algorithm

For a given pixel,p, the gradient,g, is calculated
using an edge operator that yields orientation, such as
Sobel. If p lay on the arc of a circle, then its centre
would be in the direction of the gradient, at distance
of the circle radius. Robustness to lighting changes is
achieved by applying the discrete form of the detector,
and insignificant gradient elements (those less than a
t will
g d as
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ize, and face on-coming trafffic. Signs are placed t
asily visible, so a driver can see them without look
way from the road. Owing to the orthogonal alignm
f signs with the road, the apparent shape of rele
igns is constant. It does not change under diffe
hreshold) are ignored. The location of a pixel that
ain a vote as a potential shape centroid is define

+ve = p + round

(
g(p)

‖g(p)‖n

)
, (1)

heren ∈ N is the radius, andN is the set of possib
adii. (A negative image is defined similarly, facilitati
onstraining the operator to find only light circles
ark backgrounds and vise-versa.) A histogram im
n is defined by counting the number of votes awar

o each pixel, and truncated to form̃On as follows

˜
n(p) =

{
On(p), if On(p) < kn,

kn, otherwise.
(2)

here kn is a scaling factor that subsequently n
alisesÕn across different radii.
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Fig. 3. The radial symmetry detector running on a still image, (a) shows the input image obtained from the internet, (b) the response at radius
20, and (c) the sum of responses for radii 15, 20 and 25.

The response for radiusn is then determined as

Sn = G

(
sgn(Õn(p))

( |Õn(p)|
kn

)α
)

, (3)

whereG is the Gaussian, andα is the radial strictness
parameter (typically 2).

Each radii ofN votes into a separate image to facil-
itate recovery of radius. The full transform is the mean
of the contributions over all radii considered

S = 1

|N|�n∈NSn. (4)

See Loy and Zelinsky[18] for full details.Fig. 3shows
the result of running this detector on a still image con-
taining a speed sign. The speed sign centroid appears
as the dominant maximum in both the response at ra-
dius 20 (the closest to the true target radius) and the
full response (radii 15, 20 and 25).

This shape-based approach to sign detection has
strong robustness to changing illumination as it de-
tects shape based on edges. It returns the centroid
of candidate signs as well as their scale. Subsequent
computation for classification is well targeted, and
comparatively little further computation is needed to
assess a candidate.

3.2. Implementation and real-time issues

To adapt the algorithm for the road sign detection
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will never appear closer to the camera than several me-
tres. Given a camera of approximately known focal
length, we can impose an upper limit on the possible
radii that we are interested in. As the basic shape of a
sign will be clear, even if it is faded, we set a thresh-
old that requires a large number of the possible edge
pixels to be detected. Further consistency checking can
be performed over time i.e., a shape must appear for at
least two concurrent frames, its radius must not have
changed greatly during that time, and it must not move
far in the image.

Previously[3] we demonstrated that shape detec-
tion can combine effectively with classification. Using
the fast radial symmetry detector, we were able to de-
tect and classify speed signs correctly in the major-
ity of cases using normalised cross-correlation. The
full classification was implemented in C++ to eval-
uate real-time performance. It was found that for a
320 image× 240 image, the full radial symmetry de-
tection and classification was able to be run at 30 Hz,
with classification taking≤1 ms.

3.3. Classification

As the detection phase of the sign recognition pro-
cess is very effective at culling potential sign candi-
dates i.e., circular objects moving consistently over
time, only a simple classification scheme is necessary.
The classification needs to reject circular objects that
a et of
p igns
a ation.
I lar
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ase, we apply it only to radii that are practical
etecting signs in traffic images. Small shapes ca

gnored, as if there are insufficient pixels present to
ern what the sign says there is no point in further
essing: we should wait until the sign is close eno
o be recognised. In normal driving conditions a s
re not signs and differentiate between a small s
otential symbols. Circular objects that are not s
re rejected as a consequence of symbol classific

t is extremely rare that a feature will have a circu
order, move consistently and have a high correla
ymbol within. Classifying the sign between a se
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potential symbols is more difficult: symbol misclassi-
fications far outweigh false sign detections. This topic
is examined further in Section5. The top three peaks
detected in the output of the shape detector are tracked
over time. Any peak that exhibits temporal and spatial
consistency (i.e., small movements) over three frames
begins to be enhanced and classified. The classification
is done with a (NCC) template correlation of the text
as used for the verification above. For these trials the
speeds ‘40’, ‘60’, ‘70’ and ‘80’ were classified. The
sign detection system signals a sign found when three
consecutive frames are classified consistently.

4. Driver awareness

The behaviour of the driver several seconds before
and after a sign is detected is used to decide whether
to issue a warning. Driver monitoring is achieved via
an eye gaze tracking system and vehicle speed moni-
toring.

4.1. Correlating eye gaze with the road scene

Scene camera and eye configuration is analogous
to a two-camera system (seeFig. 4). Gaze directions
trace out epipolar lines in the scene camera. If we had a
depth estimate of the driver’s gaze, we could project to
a point in the scene camera. Similarly, if we had the sign
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Fig. 4. The scene camera and gaze direction is analogous to a two
camera system.

The effect of an unknown stereo disparity will be
a displacement along the epipolar line defined by the
gaze direction on to the scene camera. The disparity, as
with any stereo configuration, will be most apparent for
close objects and reduce by a 1/x relationship with dis-
tance from the baseline. The angular deviation reduces
as the angle becomes more obtuse. To get an upper
bound of the likely disparity deviation we can compute
the worst case disparity for our camera configuration.
With reference toFig. 4, and using the scene camera
centre as a world reference frame, the scene camera
and gaze angles for a sign at (Xsign, Ysign, Zsign) can
easily be derived as the following equations

�θ = (θcam− θgaze)

= arctan
Xsign

Zsign
− arctan

Xsign + Xgaze

Zsign + Zgaze
, (5)

�φ = (φcam− φgaze)

= arctan
Ysign

Zsign
− arctan

Ysign + Ygaze

Zsign + Zgaze
. (6)

The worst case disparity then translates to when the
sign is closest to the vehicle on the driver’s side of the
road, equivalent to a sign on the right shoulder of a sin-
gle lane road (note that our system is in a right-hand
drive vehicle). The field of view of the scene camera
limits the closest point at which the sign is visible. The
closest visible sign is at (−3.0, −1.6, 8.0) for the 50◦
field of view of the camera. The worst case height of
t

epth we could re-project on to the eye and estim
he required gaze. A depth estimate of the gaze is
o obtain. A common assumption is that the gaze a
nd angle in the scene camera are the same. In pr

his assumption amounts to supposing that eithe
cene camera is sufficiently close to the driver’s h
equivalent to a trivial baseline) or that the object
nterest are near infinity[16,27,26]. In these cases err
ounds on the gaze direction (not fixation duration)

nfrequently used and even less frequently justifie
The sign depth could be estimated using a se

cene camera running the same detection softwa
ssumptions on sign size and/or road layout. How

t is desirable to maintain flexibility of the implement
ign detection system which only uses a single cam
nd has no strong assumptions on the sign scale.
epth of the sign is unknown we can instead mode
ffect of the disparity in our confidence estimate.
 he sign relative to the scene camera,−1.6, would be
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when it is on the ground (this is actually worse than any
actual case as the sign is not visible due to the bonnet).
With pessimistic estimates of the driver (far) eye posi-
tion relative to the scene camera manually measured to
be: (Xgaze= 0.22, Ygaze= 0.1, Zgaze= 0.2) the final
errors become;

�θ = (θcam− θgaze) = (20.6◦ − 18.7◦) = 1.9◦, (7)

�φ = (φcam− φgaze) = (11.3◦ − 10.4◦) = 0.9◦. (8)

Therefore the worst expected deviation due to stereo
disparity is±1.9◦ horizontally and±0.9◦ vertically
which is on par with other error sources in the sys-
tem. The expected deviation for the majority of cases
where the sign is further away is significantly less. The
deviation is twice as large in the horizontal direction,
implying that a suitable approximation of the tolerance
region will be an ellipse with a horizontal major axis.

To determine the overall tolerance of the system,
two further factors need to be accommodated. The
gaze tracking system has an accuracy of±3◦ and the
field of view of the foveated region of the eye is es-
timated to be around±2.6◦ [29]. The accumulated
tolerance is the sum of these sources which for our
experimental setup comes to±7.5◦ horizontally and
±6.6◦ vertically. That is, a 70 pixel× 46 pixel ellipse
in the 320 pixel× 240 pixel scene camera image. This
allows us to claim that the driver was very unlikely to
have seen the sign if the sign and gaze directions deviate
by more than this tolerance.
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4.3. Implementation

The system was implemented using a modular dis-
tributed architecture. Other systems developed within
our group, including lane tracking, blind spot monitor-
ing, pedestrian and vehicle detection, can be added and
a relatively simpleDAS logicmodule written to imple-
ment other similar kinds of driver assistance systems.
The driver assistance system framework is designed
around (see:[21,15]):

• Video based driver monitoring.
• Multi-cue video based road scene monitoring.
• Multi-hypothesis, ambiguity tolerant algorithms.
• Intuitive, unobtrusive, overridable and integrated

DAS design goals.

The DAS runs on Pentium IV computers located in
the rear of the vehicle. A scene camera was mounted in
the centre of the vehicle with approximately the same
view (though not field of view) as the driver. The vehi-
cle is fitted with a FaceLAB eye gaze tracking system.
Fig. 5(a)shows the scene camera and FaceLAB cam-
eras in the test vehicle. FaceLAB is a driver monitoring
system developed by SeeingMachines[24] in conjunc-
tion with ANU and Volvo Technological Development.
It uses a passive stereo pair of cameras mounted on the
dashboard to capture video images of the driver’s head.
These images are processed in real-time to determine
the 3D pose of the driver’s head (to±1mm,±1◦) as
w
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.2. System setup

To align the scene camera with the gaze direc
he default rotation and scaling between the gaze
rdinate system and the scene camera must be
ined. While these parameters can be obtained thr

nowledge of the scene camera parameters and th
tive position of the gaze tracking system, an on

nitialisation is effective and allows easy re-calibrat
for zoom changes, gaze head model changes,
he driver is asked to look at several (≥ 4) features
isible from the scene camera. Best features are p
hat approximate points at infinity such as along
orizon. The gaze direction is measured and the p
re manually selected in the scene camera. The

ional offset and scaling can then be computed u
east squares.
ell as the eye gaze direction (to±3◦). Blink rates and
ye closure can also be measured.Fig. 5(b) shows a
creen-shot of this system measuring the driver’s
ose and eye gaze.

The speed and acceleration of the vehicle was
ated using a hall effect sensor on the tail-shaft o

ehicle. A touch-screen monitor was used to pre
elevant information and allow the driver to inter
ith the system.
To correlate the eye gaze with the sign position

istories of the two information sources were ex
ned. The sign detection sub-system provides a his
f the sign location since detected. This includes

rames from when the sign was first detected be
he sign was able to be verified or classified. Simila
he FaceLAB data provides the historical head p
nd gaze direction. When a sign has been class

he sign angles and gaze directions are checked
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Fig. 5. (a) The cameras in the test vehicle. The CeDAR active vision platform containing the scene camera and FaceLAB passive stereo cameras
are labelled. (b) Driver head pose and eye gaze tracking using SeeingMachines FaceLAB system.

in time to when the sign was first detected. If the an-
gles from any previous frame fall within the tolerance,
the sign is reported as seen by the driver. If the angles
never coincide, the sign is reported as missed. The sys-
tem provides a four second tolerance for the driver to
achieve the speed-limit. The timer is instigated when
the measured speed exceeds the limit and the measured
acceleration is not significantly decreasing.

4.4. Verification

We conducted a verification experiment to test that
the DAS was indeed able to detect whether the driver
missed a sign. The driver was asked to fix his gaze on an
object in the scene. A sign was then placed at a certain
distance from the fixation point. The driver was then
asked to identify the sign. The sign was one of eight
possibilities. The proportion of correct classifications
was logged along with the driver gaze angle and appar-
ent sign position in the scene camera. 30, 20 and 10 m
depths were tested against four different displacements
between the sign and fixation point. The sign size was
0.45 m in diameter. For each combination of depth and
displacement 10 trials were done.

Fig. 6 shows the driver’s sign classification error
rate versus the angle between gaze and sign position.
Expected recognition rates fall as the sign becomes
more peripheral in the driver’s field of view. The results
of this trial verify our expectation that while it is hard
t ate,
w un-
l iced
( ph)
w rge

apparent size of the sign in the driver’s field of view
seemed to aid the recognition rate. However, this only
occurred when signs were close to the vehicle, which
is not when drivers typically read signs. The driver re-
ported not consciously being able to see the sign in this
case.

This verification demonstrates the expected strength
of the system: the ability to detect when the driver has
missed a sign. It is impossible to determine whether the
driver saw the sign as, even with perfect measurement
of a perfect gaze direction match, the driver’s attention
and depth of focus cannot be determined. If the driver is
looking in the direction of the sign, it is an ambiguous
case whether the driver read the sign, thus no warning

Fig. 6. Driver recognition rate of signs in peripheral vision for vari-
ous sign depths. Dotted horizontal line shows expected value due to
chance. Vertical dashed line represents±7.5◦ derived tolerance. it
squares: 30 m points. it circles: 20 m points. it crosses: 10 m points.
o prove the driver saw a sign, it is possible to estim
ith reasonable confidence, when the driver was

ikely to have seen a sign. A curious effect was not
represented by a cross in the middle of the gra
hen the driver was very close to the sign. The la
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Fig. 7. Screen-shot showing ‘60’ sign detected and seen by driver. Top left: live video showing eye gaze (large circles) and status (overlaid text).
Bottom left: last detected sign (small circles) and eye gaze (large circles). Top right: 3D model of current vehicle position, eye gaze (oversize head)
and sign location. Bottom right: current detected speed-limit, vehicle speed, acceleration and count down for speeding grace period in frames.

is issued. If the driver feels uncertain of the current
speed-limit he can always glance at the system and see
the last detected sign. In this way the system can create
a minimum amount of interference in the normal driv-
ing process whilst providing timely information when
deemed suitible.

4.5. On road trials

The system was able to detect speed signs around the
university and evaluate the implications for the driver.
Fig. 7shows a screenshot of the system demonstrating
a typical case.Fig. 8 illustrates the primary scenarios
encountered. InFig. 8(a) the driver was watching a
pedestrian and failed to notice a ‘40’ sign. The DAS
has detected that the driver did not see the sign and has
issued a redsign: missed!warning.Fig. 8(b)shows an
instance where an ‘80’ sign was detected; the driver
saw the sign and the vehicle was not speeding so no
red warning was issued. Similarly, inFig. 8(c)a ‘40’
sign was detected. The driver saw the sign, the sys-
tem assumed the driver was intentionally speeding so a
warning was displayed but no alert issued. InFig. 8(d)
the driver has missed the last sign and is speeding for
more than a predefined grace period without decelerat-

ing. TheSLOW DOWN!warning is shown and an alert
issued.

5. Sign image enhancement

By enhancing the sign image we can classify the sign
reliably several frames sooner. Poor resolution ham-
pering classification is most evident in still frames of
video.Fig. 9shows a frame from a two sequences. At a
glance the speed sign seems well formed and readable,
but on closer examination we find substantial degrada-
tion of the text. A much studied method of enhancing
image quality in video sequences is super-resolution.

Super-resolution is the process of combining
multiple low resolution images to form a higher reso-
lution result[28]. The super-resolution problem is usu-
ally modelled as the reversal of a degradation process.
A high resolution imageI undergoes a homographic
transformation followed by a motion and optical blur-
ring, then, finally, image space sub-sampling to gener-
ate the low resolution observation imagesO [4]

Ok = S ↓ (bk(HkI )) + nk, (9)
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whereHk is the homography,bk( ) is the blurring func-
tion andS ↓ ( ) is a down sampling operation for the
kth observationOk, andnk is a noise term representing
all other errors not modelled. The solution amounts to

the ‘undoing’ of the degradation Eq.(9). The process
consists of some form of imageregistration, which is
recovering the alignment between the images, then im-
agereconstructionwhere the images are combined to

F
s

ig. 8. Primary scenarios for signs driver assistance system. Left: live
tatus (overlaid text) during screenshot. Right: last detected sign (small circ
video feed showing current view, eye gaze (dots/large circles) and current
les) and eye gaze (dots/large circles).
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Fig. 9. Still frames from a video camera, with close ups of speed sign. Classifying the signs as 60 or 80 is not obvious.

resolve an estimate of the original image. Registration
is usually done by matching feature points with one of
the observation images used as a reference and comput-
ing the geometric or homographic transforms between
each observation image. Reconstruction requires com-
bining the registered images while accounting for the
effects ofS ↓ ( ), bk( ) andnk.

A novel approach was advocated by Dellaert et al.
[6] who tracked an object in an image sequence and
used an extended Kalman filter to estimate the pose
and augmented the state with the super-resolved image.
With some optimising assumptions, the group was able
to perform online pose and image estimation. The ef-
fect of prior knowledge is incorporated neatly into this
framework in the derivation of the Jacobian matrices.

5.1. Our approach

For our application, image registration is primarily
done using the sign detection algorithm. From each
output frame the sign shape is cropped from the video
frame and resized. The image is resized using bi-cubic
interpolation to the size of the high resolution result
image. Baker and Kanade[2] found, as a good rule
of thumb, eight times magnification is the upper limit
for significant image enhancement. In our case, the
lower diameter used by the shape detector is eight
pixels, so the high resolution image is chosen to be
64 pixels× 64 pixels. The image is then correlated us-
ing normalised cross correlation with the current en-
h . The
l ith
t n co-
e are
d s es-
t nant
s hape
c

The reconstruction is considered as a series of in-
cremental updates of the resolved image from the ob-
servations, as shown in Eq.(10). The equation can be
rearranged into a first order infinite impulse response
(IIR) filter shown in Eq.(11), allowing a fast imple-
mentation

Î k = Î k−1 + λc(S ↑ (Ok) − Î k−1) (10)

Î k = (1 − λc)Î k−1 + λcS ↑ (Ok) (11)

whereS ↑ ( ) is the up-sizing function for thekth ob-
servationOk of the estimated enhanced imageÎ k and
λ is a weighting constant andc is the above mentioned
normalised cross correlation result. The constantλ is
set so that, when combined with the correlation coef-
ficient, the update weighting (λc) is around 0.15–0.25.
The correlation result is a scalar between 0.0 and 1.0,
correlations of contributing frames are around 0.6–0.9
soλ is set to 0.25. The aim of this weighting scheme
is to allow better estimates, particularly later in the se-
quence as the sign gets larger, to have a greater impact
on the result. To recover text on a sign, we know the
expected image has a smooth background and lettering
with sharp edges. Thus, a suitable prior/penalty func-
tion is one that minimises local smoothness of inten-
sity but discounts penalties for large steps in intensity.
To incorporate the text prior into the real-time imple-
mentation we pre-emphasise the up-sampled images
b
c r and
e dis-
c und
a ises).
T nd to
s f the
fi

anced image to locate the latest image accurately
atest image is shifted accordingly and combined w
he enhanced image. Images where the correlatio
fficient is below a certain threshold (usually 0.5)
iscarded as these tend to be gross errors in radiu

imate by the shape detector or momentary domi
hapes near the tracked sign, such as apparent s
aused by tree foliage or background clutter.
s

efore they are integrated by Eq.(11). We perform a
ontrast enhancing homogeneous point operato
rosion on the grey images which sharpens the
ontinuity between the foreground and backgro
nd also reduces the spread of the text (skelton
hese steps sharpen the textual boundaries a
ome extent compensate for the over-smoothing o
lter.
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Fig. 10. (a) Resized final image in original sequence. (b) Enhanced
image.

Fig. 11. Normalised cross correlation coefficient for ‘60’ sequence
with ‘40’ (.), ‘60’ ( +) and ‘80’ (∗) templates. Top: original resized
image sequences. Bottom: enhanced image sequences. The drop outs
between 40 and 43 are caused by failures in the sign detection phase.

5.2. Results and verification

The enhanced image is an improvement from the
original up-sized image, as shown inFig. 10. The effi-
cacy of the original and enhanced image in speed classi-
fication was then tested by correlating a template image
of ‘40’, ‘60’ and ‘80’ signs with the images. The tem-
plate images consisted of only the number on the sign,
not the bounding circle.Fig. 11shows the correlation
results for a ‘60’ sign sequence. In all cases trialled

the enhanced image sequence showed a consistent im-
provement in reliability over the original image. Both
the original and enhanced sequences show the expected
upward trend in correlation value over time as the sign
becomes larger. The relative differences between the
templates and the consistency over time justify the ex-
pectation of better classification. The correlation drops
slightly as the sign approaches the edge of the field of
view as motion blur introduces repeated strongly non-
Gaussian noise in the observations.

To verify our enhancement technique we imple-
mented a recent super-resolution algorithm based on
global optimisation and compared the results. The
method used was the MAP algorithm used by Capel
and Zisserman[4]. In this method a penalty function is
used to influence the result based on the priorp(I ). A
suitable text prior/penalty is implemented as a function
of the gradient magnitude of the image. For small gra-
dient magnitudes the penalty is a quadratic (f (I ′2));
as the gradient magnitude increases and crosses the
thresholdα the penalty has linear ‘tails’ (f (|I ′|)). Our
implementation used the Matlabfmincon( ) function
with a scalar error composed of the sum of the squared
differences plus the weighting (λ) of the penalty contri-
bution. Best results were obtained withλ = 0.025 and
α = 40. Please refer to[4] for a full description of the
implementation.Fig. 12shows the result of the minimi-
sation. The off-line image has more consistent intensity
within the foreground and background regions but has
lost some contrast overall. While an improvement on
t of
a all
t time
r ugh
e age
s ental
u

Fig. 12. Result from off-line n
he temporal mean image is achieved, the tuningλ
ndα that would provide a significant benefit across

he test image sequences proved difficult. The real-
esult seemed similar to the off-line technique tho
xhibited more artifacts from the latter end of the im
equence, which is to be expected with the increm
pdate approach.

on-linear minimisation.
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6. Conclusion

This paper has presented a context sensitive driver
assistance system. By not only monitoring the driver’s
actions, but also the driver’s observations we were able
to infer whether the driver was likely to have seen a sign.
If an important sign was detected the system checked
whether (a) the driver had looked at the sign, and (b)
whether the state of the vehicle was compliant with the
sign. If the driver has not seen the sign, and the car’s
state is not compliant with the sign, the driver can be
informed with high priority. If, however, the driver ap-
pears to be aware of the sign, or the vehicle is not in
an incorrect state, the information can be made avail-
able to the driver in a more passive manner. Automatic
sign classification was improved significantly by online
image enhancement of the sequences of approaching
signs.
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