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A novel reinforcement learning algorithm is ap­
plied to a visual servoing task on a real mo­
bile robot. There is no requirement for camera
calibration, an actuator model or a knowledge­
able teacher. The controller learns from a critic
which gives a scalar reward. The learning algo­
rithm handles continuously valued states and
actions and can learn from good and bad expe­
riences including data gathered while perform­
ing unrelated behaviours and from historical
data. Experimental results are presented.

1 Introduction

Visual servoing consists of moving some part of a robot
to a desired position using visual feedback [Hutchinson
et al., 1996]. It is a basic building block for purposeful
robot behaviours such as foraging, target pursuit and
landmark based navigation. Some degree of calibration
is generally required to achieve visualservoing. This
calibration can be a time consuming and error prone
process.

In this work we show that reinforcement based learn­
ing can eliminate the calibration process and increase
flexibility. The reinforcement learning based controller
learns to act in a way that will bring rewards, in this
case rewards are given for approaching the visual target
and smoothly controlling the motors.

We demonstrate that a continuous state, continuous
action, exploration insensitive reinforcement learning al­
gorithm can learn in real time to visually servo a mo­
bile robot to a target. Exploration insensitivity allows
the algorithm to learn from a diverse range of experi­
ences gathered from performing other behaviours. The
generality of the learning algorithm makes it useful for
behaviours apart from servoing.

Figure 1: The Nomad 200 with colour camera.

2 Visual Servoing
Visual servoing [Hutchinson et al., 1996] is a useful ca­
pability for both manipulator arms and mobile robots.
Visual servoing requires the ability to track the position
of some object using vision, and to control some effector
based on feedback from the tracking.

Area correlation-based tracking is a process that lo­
cates objects between successive frames and hence can
be used to gauge the result of the robot's motion in image
space. An image (template) is captured from a particu­
lar region of the image space and stored in a buffer. The
template is then compared in the next video frame in
the neighbourhood of its location on the previous frame.
Various methods can be used to measure the degree of
similarity between the images [Hutchinson et al., 1996;
Cheng and Zelinsky, 1996]. The difference in location
between the template in the current frame and the best
match of the template in the next frame form a vector
which indicates the motion of the target. To track an
object, a template is captured, then starting from the

149



original location, the motion vectors from each succes­
sive frame are added. Failure of the tracking is indicated
when the measure of difference between the template
and the closest match in the current image is too great
[Hutchinson et al., 1996].

There are two basic approaches to the control part of
visual servoing: position based and image based. Both
generally require some form of calibration.

In position based systems an error signal is defined in
the robot's coordinate system. A model describing the
relationship between visual coordinates and the robot's
coordinate system is required. It is sometimes possible
to learn this model [Hashimoto et al., 1991; Park and
Oh, 1992; Lo, 1996; Buessler et al., 1996]. Such systems
are more suitable for servoing manipulator arms, where
joint angles define the position of an effector.

In image based systems the error signal is defined
in image space. The inverse of the image Jacobian is
used to relate desired incremental change to the image
to changes in actuator settings. It is possible to learn
an approximation of this Jacobian [Hosoda and Asada,
1994] but this is complicated because it varies with the
state [Wu and Stanley,199'7'].

Our approach is to learn a direct mapping from im­
age space and other state information to. the actuator
command using reinforcement learning. The same ap­
proach has been developed independently in [Takahashi
et al., 1999]. Our method may not.be able to achieve the
performance of well calibratea. systems but we certainly
gain flexibility; if the camera is moved or the actuator
configuration is changed the system still works.

3 Robot System Architecture
Our platform for research is a Nomad 200 with a Sony
EVI-D30 colour camera. The camera points forward and
downward from the robot (figure 1). The Nomad 200 is
capable of forward-backward translation" and rotation.

The camera signal is processed using a Fujitsu colour
tracking vision card .on-board the Nomad. The card is
capable of performing around 200,·eight by eight Sum of
Absolute Difference (SAD) correlations per frame (at a
frame rate of 30Hz).

The system architecture is based on the behaviour
based system by Cheng arid Zelinsky [Cheng and Zelin­
sky, 1996], shown in figure 2. The default behaviour is
free space searching (wandering). A grid of 6x '7' corre­
lations are performed on the image space against a pre­
loaded image of the carpet. The result is a binary matrix
indicating 'carpet' or 'not carpet' regions ahead of the
robot. The wandering behaviour moves the Nomad to­
ward the regions of most carpet matches (see figure 3).

The target pursuit behaviour performs visual servoing
to move the robot toward an 'interesting' object. Instead
of using a pre-loaded template, an object is identified as
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Figure 2: System Behaviour Model.

Figure 3: Typical camera view during the wandering
behaviour. The size of the squares represents the degree
of difference from the carpet template.

Figure 4: Visual servoing under the control of reinforce­
ment learning.
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interesting if it is not carpet but is surrounded by car­
pet. When an interesting' object is identified the target
pursuit behaviour dominates and servoing to the target
begins. If the target is lost wandering resumes. Tar­
get pursuit together with wandering create a foraging
behaviour.

In this work we replace the hard wired target pur­
suit behaviour with a learned visual servoing behaviour.
This behaviour generates translational and rotational ve­
locities given the target and home coordinates in image
space.

As we are looking at a 3D world through a monocular
camera we make the assumption that all targets are close
to floor level. Occasionally targets are tracked which
are above floor level (Le., on a desk). Objects which
are fairly uniform in the vertical (Le., trouser ledgs) oc­
casionally cause the template tracking to slide upward.
This erroneous data is regarded as a form of noise to the
learning process.

4 Reinforcement Learning
A learning system is required which can form a mapping
between state, including visual information, and actua­
tor commands. A supervised learning approach would
require a model of 'good behaviour' from a teacher­
performance would be limited by the ability of this
teacher. Reinforcement learning requires only a critic,
that gives scalar rewards (or punishments) based on
behaviour. An introduction to reinforcement learning
methods is given in [Sutton and Barto, 1998]. Provid­
ing a critic only requires that we have some measure
of whether a task is being achieved, we do not need to
know how to achieve the task. The reward signal need
not be given immediately when an action is performed,
as the true, effect of an action can manifest itself after
some time. In our case the reward is the negative of the
distance between the tracked target's current position,
and the desired position. Punishment is also given for
use of energy and large changes in motor commands. Be­
haviour improves based on knowledge of which actions
led to rewards and punishments. In this way, both good
and bad experiences are a valuable part of the learning
process. One popular reinforcement learning method,
Q-Iearning [Watkins and Dayan, 1992], is particularly
flexible in this sense because it can learn from actions
which it did not itself suggest, such as those from an­
other controller, or historical data. This ability is of­
ten called exploration-insensitivity, we prefer the term
policy-insensitivity. In our experiment, learning speed
is improved by gathering data from another controller
which is completely separate to the visual servoing task.

Q-learning works by incrementally updating the ex­
pected values of actions in states. For every possible
state, every possible action is assigned a value which is

a function of both the immediate reward for taking that
action and the expected reward in the future based on
the new state that is the result of taking that action.
This is expressed by the one-step Q-update equation:

D,.Q (x, 71) == a [R + l' rpax Q (51t+l, 71t+1 ) - Q (51,71)]
Ut+l

(1)

where Q is the expected value of performing action 71
in state x, R is the reward, a is a learning rate which
controls convergence and l' is the discount factor. The
discount factor makes rewards earned earlier more valu­
able than those received later. The Q-values implicitly
describe a controller-measure the state, then choose the
action with the highest Q.

4.1 Continuous States and Actions

Q-Iearning methods are best understood in the discrete
case in which the state and the actions are symbolic
rather than numerical (or continuous). Where real sen­
sors, and commands to motors are concerned this leads
to several problems: state aliasing, poor scaling with the
number of states and actions, poor generalisation and
coarse control. Several continuous state and action Q­
learning methods are briefly described in our earlier work
[Gaskett et al., 1999a]. Other methods are described
in [Takahashi et al., 1999; Jordan and Jacobs, 1990;
Berenji, 1994].

We use a continuous state, continuous action reinforce­
ment learning algorithm based on an artificial neural net­
work combined with an interpolator. Previously we ap­
plied this approach to a simulation task [Gaskett et al.,
1999b]. The combination of neural network and interpo­
lator holds the Q-values for all actions in all states. The
input to the neural network is the state (x), the output
is a set of real valued actions (71) and their values (if)
which is a sample of the Q-function. The interpolator
generalises between these actions.

Baird and Klopf describe a suitable interpolation
scheme called 'wire-fitting' [Baird and Klopf, 1993]. In
their work they combine the wire-fitter with a memory
based reinforcement learning scheme, rather than a neu­
ral network. The wire-fitting function is a moving least
squares interpolator, closely related to Shepard's func­
tion [Lancaster and Salkauskas, 1986]. Each 'wire' is
a combination of an action vector, 71, and its expected
value, q, which is a sample of the Q-function. The wire­
fitting function is:
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Figure 5: The learning procedure. Step 1 is done in real
time, steps 2 and 3 can be done opportunistically.

2. Calculate a new estimate of Q from the current value,
the reward and the value of the next state. This can be
done when convenient'.

In simulation experiments Advantage Learning improved
convergence speed and reliability [Gaskett et al., 1999a].

~A (x, u) = a[t (R +- "YrpaxA (Xt+l, Ut+l))
Ut+l .

+ (1'- t) rpaxA(xt,ut) - A (x, it)1 (3)
Ut+l

4.2 Advantage Learning

A problem in Q-Iearning is that a single suboptimal ac­
tion may not prevent a high value action from being
carried out at the next time step-the value of actions
in a particular state can be very similar, as the value of
the action in the next time step will be carried back. As
the Q-value is only approximated· for continuous states
and actions it is likely that most of the approximation
power will be used representing the values of the states
rather than actions in states. The relative values of ac­
tions will be poorly represented, resulting in an unsat­
isfactory controller. This is compounded as the time
intervals between control actions get smaller.

Advantage Learning [Harmon and Baird, 1995J ad­
dresses the issue of action similarity by emphasising the
differences in value between the actions. In advantage
learning the value of the optimal action is the same as
for Q-Iearning, but the lesser value of non-optimal ac­
tions is emphasised by a scaling factor (k ex ~t). This
makes a more efficient use of the approximation resources
available. Equation 3 is the advantage learning update.
The ,quantity A is analogous to Q in (1).

the highest value. is always one of the the input actions.
When choosing an act.ion it is sufficient to propagate
the state through the neural network, then compare the
output q to find t,he best action. The wire-fitter is not
required at this stage, the only calculation is a forward
pass through the neural network. Wire-fitting also works
with many dimensional scattered data while remaining
computationally tractaBle; no inversion of matrices is re­
quired. Interpolation is local, only near wires influence
the value of Q. Areas far from all wires have a value
which is the, average of if, wild extrapolations 'do not
occur. It does not suffer from oscillations, unlike most
polynomial schemes.

Importantly, partial derivatives in terms of each q and
u of each point can be quickly calculated [Gaskett et'·

al., 1999a]. These partial derivatives allow error in the
output of the Q-function to be propagated to the· neural
network according to the chain rule.

The training procedure is shown in figure 5. Training
of the single hidden layer, feedforward neural network is
done through incremental backpropagation. The learn­
ing rate is kept constant throughout. As suggested in
[Watkins and IDayan, 1992], experiences are buffered and
replayed repeatedly as if they are re-experienced.
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where i is the wire number, n is the total number of
wires, x is the state vector, Ui (x) is theith action vector,
qi (x) is the value of the ith action vector, U is the action
vector to be evaluated, c is a small smoothing factor
and € avoids division by zero. The dimensionality of
the action vectors U andui is the number of continuous
variables in the action.

The wire-fitting function has several properties
which make it a useful ·interpolator for implement­
ing Q-Iearning. Updates to the Q-value (1) require
maxa Q (x, u) which can be calculated quickly with the
wire-fitting function. argmaxa Q (x, u) can also be cal­
culated quickly. This is needed when choosing an action
to carry out. A property of this interpolator is that
the highest interpolated value always coincides with the
highest valued interpolation point, so the action with

state

3. Calculate new values of u and if to produce the new
value of Q. Train the neural network to output the new u
and if. This can be done when convenient.

Ut

1. In real time, feed the state into th.e neural network.
Carry out the action with the highest q. Store the resulting
change in state.
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Figure 6: Example target trajectories.
Figure 7: Example Step response and motor commands.

5 Experimental Results

The experimental system has been described in section
3. The task is for the robot to learn to visually servo a
target object to the center lower half of the visual field.
Figure 4 shows a sequence of three frames, one per sec­
ond of a 10Hz video sequence. The target selected by
the interest operator in this case is a soccer ball.

Table 1 shows the state, actions and reward for the re­
inforcement learning algorithm for learned visual servo­
ing. The reward function includes a term which punishes
for energy use. This helps to reduce reactions to minor
changes in the target position due to tracking noise.

The learning data is organised into the form: state,
action, next state, reward. Two hundred of these 'ex­
periences' are gathered while wandering. The rest are
gathered while attempting to servo to the target. The
learning algorithm processes these experiences (between
frames) and incrementally increases its ability to servo to
the target. Figure 6 shows trajectories of targets in im-

Visual Servoing:

State x, y: pixels error to target
~x, ~y: pixels velocity of target
t, r: translational and rotational velocity of robot
(measured by encoders)

Action T, R: commanded translational and rotational
velocity of robot

Reward -x2 - y2: movement to target
- T 2 - R 2

: saving energy
-{(T - t)2 + (R - r)2}: smooth motion

Table 1: Learning specification for visual servoing.

age space. Example step response and motor commands
are shown in figure 7.

The robot successfully learns to servo to the target.
The learned behaviour is to turn toward the target while
driving forward until the target is at the goal position.
The robot also learns to reverse if the target is closer
than the goal location.

It is important that the state representation be as
accurate and complete as possible. Early in testing,
the velocity of the robot (measured with encoders) was
not given as state information. Learning failed in this
case. Analysis of the data showed that because of the
restricted acceleration available, the difference between
the current and next state was negligible, being of the
same order as the noise in the system. As a result the
state information was simply filtered out-there was ef­
fectively no correlation between the command and the
change in state.

Gathering data while performing other behaviours,
such as wandering, is beneficial. Without this the robot
needs a long period of learning to begin moving in any
purposeful way. The servoing behaviour does more than
just reuse parts of the built in wandering behaviour­
the wandering behaviour never moves the robot back­
ward, but the learned servoing behaviour does move the
robot backward if the target is too close to the robot.
The policy-insensitivity which allows this flexible learn­
ing is an important characteristic of Q-learning systems
for real world applications.

Visual servoing performance is adequate after 15 min­
utes of real time, or about 1500 tracking frames. Per­
formance continues to improve over an hour of experi­
mentation. The robot learns to servo to objects placed
in any position in its visual field.
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The experiment was repeated with a grossly mis­
aligned camera (200 roll, 450 yaw). This necessitated a
zig-zagging strategy in order to reach the goal. Results
were similar in terms of steps and learning time.

Conclusion
We have demonstrated a visual servoing behaviour for a
real mobile robot which is learned through trial and error
using reinforcement learning. No calibration is required.
The distinctive features of the reinforcement learning al­
gorithm used are its ability to use continuous states and
actions, and its policy-insensitivity. In future work we
will attempt to develop other learned behaviours.

Acknowledgements
The visual servoing software is based on the work of Gor­
don Cheng [Cheng and Zelinsky, 1996] and uses corre­
lation software developed by Jochen Heinzmann for real
time face tracking [Heinzmann and Zelinsky, 1997].

References
[Baird and Klopf, 1993] Leemon C. Baird and A. Harry

Klopf. Reinforcement learning with high-dimensional,
continuous actions. Technical Report WL-TR-93­
1147, Wright Laboratory, 1993.

[Berenji, 1994] H. R. Berenji. Fuzzy Q-Iearning: a
new approach for fuzzy dynamic programming. In
Proc. Third IEEE Int. Conf. on Fuzzy Systems, NJ,
1994. IEEE Computer Press.

[Buessler et al., 1996] J.L. Buessler, J.P. Urban,
H. Kihl, and J. Gresser. A neural model for the visual
servoing of a robotic manipulator. In Proc. Sym­
posium on Control, Optimization and Supervision,
Computational Engineering in Systems Applications
(CESA '96), Lille, France, 1996.

[Cheng and Zelinsky, 1996] G. Cheng and A. Zelinsky.
Real-time visual behaviours for navigating a mobile
robot. In Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS '96), vol­
ume 2, Osaka, Japan, 1996.

[Gaskett et al., 1999a] Chris Gaskett, David Wetter­
green, and Alexander Zelinsky. Q-learning in contin­
uous state and action spaces. In Proc. of the 12th
Australian Joint Conference on Artificial Intelligence,
Sydney, Australia, December 1999. Lecture Notes in
Computer Science, Springer-Verlag.

[Gaskett et al., 1999b] Chris Gaskett, David Wetter­
green, and Alexander Zelinsky. Reinforcement learn­
ing applied to the control of an autonomous underwa­
ter vehicle. In Proc. of the Australian Conference on
Robotics and Automation (AUCRA '99),1999.

[Harmon and Baird, 1995] Mance E. Harmon and
Leemon C. Baird. Residual advantage learning

applied to a differential game. In Proc. of the Inter­
national Conference on Neural Networks, Washington
D.C, 1995.

[Hashimoto et al., 1991] H. Hashimoto, T. Kubota,
M. Kudou, and F. Harashima. Self-organizing vi­
sual servo system based on neural networks. In
Proc. American Control Conference, Boston, 1991.

[Heinzma~n and Zelinsky, 1997] Jochen Heinzmann and
Alexander Zelinsky. Robust real-time face tracking
and gesture recognition. In Proc. of the Int. Joint
Conf. on Artificial Intelligence, IJCAI'97, 1997.

[Hosoda and Asada, 1994] K. Hosoda and M. Asada.
Versatile visual servoing without knowledge of true ja­
cobian. In Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS'94), 1994.

[Hutchinson et al., 1996] S. Hutchinson, G. D. Hager,
and P. I. Corke. A tutorial on visual servo con­
trol. IEEE Transactions on Robotics and Automation,
12(5):651-670, October 1996.

[Jordan and Jacobs, 1990] M.l. Jordan and R.A. Ja­
cobs. Learning to control an unstable system with
forward modeling. In Proc. Advances in Neural Infor­
mation Processing Systems 2, San Mateo, CA, 1990.

[Lancaster and Salkauskas, 1986.] Peter Lancaster and
K<:;stutis Salkauskas. Curve and Surface Fitting, an
Introduction. Academic Press, 1986.

[Lo, 1996] Wai Chau Lo. Robotic visual servo con­
trol. In Proc. Twelfth International Conference on
CAD/CAM, Robo~ics and Factories of the Future,
London, 1996.

[Park and Oh, 1992] Jae Seock Park and Se Young Oh.
Dynamic visual servo control of robot manipulators
using neural networks. Journal of the Korean Institute
of Telematics and Electronics, 29B(10), 1992.

[Sutton and Barto, 1998] Richard S. Sutton and An­
drew G. Barto. Reinforcement Learning: An Intro­
duction. Bradford Books, MIT, 1998.

[Takahashi et al., 1999] Y. Takahashi, M. Takeda, and
M. Asada. Continuous valued Q-Iearning for vision­
guided behavior. In Proc. of IEEE/SICE/RSJ Inter­
national Conference on Multisensor Fusion and Inte­
gration for Intelligent Systems, 1999.

[Watkins and Dayan, 1992] Christopher J. C. H.
Watkins and Peter Dayan. Technical note: Q
learning. Machine Learning, 8:279-292, 1992.

[Wu and Stanley, 1997] Q.M.J. WU and K. Stanley.
Modular neural-visual servoing using a neuro-fuzzy
decision network. In Proc. IEEE International Con­
ference on Robotics and Automation (lCRA '97), Al­
buquerque, NM, 1997.

154


