
Teaching an Old Robot New Tricks:

Learning Novel Tasks via Interaction

with People and Things

by

Matthew J. Marjanović

S.B. Physics (1993),
S.B. Mathematics (1993),

S.M. Electrical Engineering and Computer Science (1995),
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

c© Massachusetts Institute of Technology 2003. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 27, 2003

Certified by. .
Rodney Brooks

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Teaching an Old Robot New Tricks:

Learning Novel Tasks via Interaction

with People and Things

by

Matthew J. Marjanović

Submitted to the Department of Electrical Engineering and Computer Science
on May 27, 2003, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied,
experientialist realm, many projects are exploring different aspects of creating machines
which interact with and respond to the world as humans do. Techniques for visual process-
ing, object recognition, emotional response, gesture production and recognition, etc., are
necessary components of a complete humanoid robot. However, most projects invariably
concentrate on developing a few of these individual components, neglecting the issue of how
all of these pieces would eventually fit together.

The focus of the work in this dissertation is on creating a framework into which such
specific competencies can be embedded, in a way that they can interact with each other and
build layers of new functionality. To be of any practical value, such a framework must satisfy
the real-world constraints of functioning in real-time with noisy sensors and actuators. The
humanoid robot Cog provides an unapologetically adequate platform from which to take on
such a challenge.

This work makes three contributions to embodied AI. First, it offers a general-purpose
architecture for developing behavior-based systems distributed over networks of PC’s. Sec-
ond, it provides a motor-control system that simulates several biological features which
impact the development of motor behavior. Third, it develops a framework for a system
which enables a robot to learn new behaviors via interacting with itself and the outside
world. A few basic functional modules are built into this framework, enough to demon-
strate the robot learning some very simple behaviors taught by a human trainer.

A primary motivation for this project is the notion that it is practically impossible to
build an “intelligent” machine unless it is designed partly to build itself. This work is a
proof-of-concept of such an approach to integrating multiple perceptual and motor systems
into a complete learning agent.

Thesis Supervisor: Rodney Brooks
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

“Cog, you silent smirking bastard. Damn you!”

Phew. . . it feels good to get that out of my system. I should have known I was in trouble
way back in June of 1993, when Rodney Brooks both handed me a copy of Lakoff’s Women,
Fire, and Dangerous Things and suggested that I start designing framegrabbers for“the new
robot”. That was the beginning of ten years of keeping my eyes on the sky above while
slogging around in the mud below.

The truth is, it’s been great: I’ve been working on intriguing problems while surrounded
by smart, fun people and provided with all the tools I could ask for. But after spending a
third of my life in graduate school, and half of my life at MIT, it is time to wrap up this
episode and try something new.

Many people have helped over the last weeks and months and years to get me and this
document out the door. I could not have completed this research without them.

Despite a regular lament that I never listen to him, my advisor, Rodney Brooks, has
consistently told me to be true to myself in my research. That is uncommon advice in
this world, and I appreciate it. Looking back, I wish we’d had more opportunities to argue,
especially in the last few years; I learned something new every time we butted heads. Maybe
we’ll find some time for friendly sparring in the future.

Thanks to Leslie Kaelbling and Bruce Blumberg for reading this dissertation and gently
pushing me to get the last little bits out. They gave me great pointers and hints all along
the way. I should have bugged them more often over the last couple of years.

Jerry Pratt gave me many kinematic insights which contributed to the work on mus-
cle models. Likewise, I’d like to thank Hugh Herr for the inspiring discussions of muscle
physiology and real-estate in northern California.

Paul Fitzpatrick and Giorgio Metta kept me company while working on Cog over the
last couple of years. I regret that I was so focused on getting my own thesis finished that
we didn’t have a chance to collaborate on anything more exciting than keeping the robot
bolted together.

I’m awed by the care and patience displayed by Aaron Edsinger and Jeff Weber during
their run-ins with Cog, often at my request a day before a deadline. Those guys are two
top-notch mechanics; I admire their work.

Brian “Scaz” Scassellati and Matt “Matt” Williamson were my comrades in the earlier
years working on Cog. Many ideas in this dissertation were born out of discussions and
musings with them. The times we worked together were high-points of the project; I have
missed them since they graduated.

My latest officemates, Bryan “Beep” Adams and Jessica “Hojo” Howe, have been ex-
ceptionally patient with my creeping piles of papers and books, especially over the last
semester. Jessica was a sweetheart for leaving soda, PB&J’s, and party-mix on my desk
to make sure I maintained some modicum of caloric (if not nutritional) intake. Bryan is a
cynic with a top-secret heart of gold. Nothing I can write could do justice to the good times
I’ve had working with him, and I mean that with both the utmost sincerity and sarcasm.

I’ve had some of the best late-night brainstorming rambles over the years with Charlie
Kemp. Charlie also generously provided me with what turned out to be the last meal I ate
before my thesis defense.

Tracy Hammond proofread this dissertation, completely voluntarily. That saved me
from having to actually read this thing myself; I cannot thank her enough.

5

I would like to point out that the library copy of this dissertation is printed on a stock
of archival bond paper given to me years ago by Maja Matarić. (Yes, Maja, I saved it and
finally used it!) Maja was a great mentor to me during my early years at the lab. The
best summer I ever had at MIT was the summer I worked for her as a UROP on the “Nerd
Herd”, back in 1992. That summer turned me into a roboticist. (And that summer would
have never happened if Cynthia Breazeal hadn’t hired me in the first place.)

Those of us on the 9th Floor who build stuff wouldn’t be half as productive without the
help of Ron Wiken. The man knows where to find the right tools and he knows how to use
them — and, he is happy to teach you to do both. Jack Constanza, Leigh Heyman, and
Mark Pearrow have earned my perpetual regard for keeping life running smoothly at the
AI Lab, and for helping me with my goofy sanity-preserving projects.

A fortune cookie with this fortune

reassured me that I was on the right track with my research.
Carlin Vieri contributed to the completion of this work by pointing out, in 2001, that

my MIT career had touched three decades. Carlin made this same contribution numerous
times over the next two years.

My grandmother, Karolina Hajek, my mother, Johanna, and my sister, Natasha, have
been giving me encouragement and support for years, and years, and years. Three genera-
tions of strong women is not a pillar that can be toppled easily.

I have always thought that I wouldn’t have gotten into MIT without the lessons I learned
as a child from my grandfather, Josef Hajek. Those lessons were just as important for getting
out of MIT, too. They are always important.

Finally, I could not have survived the ordeal of finishing without the unwavering love
of Brooke Cowan. She has been patient and tough and caring, a steadfast companion in
a little lifeboat which made slow progress on an ever-heaving sea. Brooke proofread this
entire document from cover to cover, and she convinced me to wear pants to my defense.
For months, she has made sure that I slept, that I smiled, and that I brushed my teeth.
Most importantly, every day, Brooke gave me something to look forward to after this was
all over.

And now it is! Thank you!

6

Contents

1 Looking Forward 17

1.1 The Platform: Cog . 19

1.2 A Philosophy of Interaction . 21

1.3 Related Work . 25

1.3.1 Drescher’s Schema Mechanism . 25

1.3.2 Billard’s DRAMA . 28

1.3.3 Pierce’s Map Learning . 29

1.3.4 Metta’s Babybot . 31

1.3.5 Terence the Terrier . 32

1.3.6 Previous Work on Cog (and Cousins) 33

2 sok 35

2.1 Design Goals . 35

2.2 System Overview . 36

2.3 Life Cycle of a sok-process . 38

2.4 Anatomy of a sok-process . 39

2.5 Arbitrators and Inports . 41

2.6 Simple Type Compiler . 41

2.7 Dump and Restore . 43

3 meso 45

3.1 Biomechanical Basis for Control . 45

3.2 Low-level Motor Control . 51

3.3 Skeletal Model . 53

3.3.1 Complex Coupling . 54

7

3.3.2 Simple Coupling . 58

3.4 Muscular Model . 59

3.5 Performance Feedback Mechanisms . 61

3.5.1 Joint Pain . 61

3.5.2 Muscle Fatigue . 62

4 Touch and Vision 67

4.1 The Hand and Touch . 67

4.2 The Head and Vision . 70

4.2.1 Motor System . 71

4.2.2 Image Processing . 73

4.2.3 Vergence . 74

4.2.4 Saliency and Attention . 74

4.2.5 Tracking . 77

4.2.6 Vision System as a Black Box . 77

5 pamet 79

5.1 A Toy Example: The Finger Robot . 80

5.1.1 Learning to Move . 80

5.1.2 Learning What to Do . 82

5.1.3 Learning When to Do It . 83

5.2 Names and Data Types . 84

5.3 A Menagerie of Modules and Models . 85

5.3.1 Movers . 87

5.3.2 Controllers . 87

5.3.3 Actors . 89

5.3.4 Triggers . 90

5.3.5 Transformers . 92

5.4 Other Modules and Facilities . 94

5.4.1 Age . 94

5.4.2 Emotion . 95

8

6 Models and Modellers 97

6.1 Mover Models . 97

6.2 Action Models . 98

6.3 Trigger Models . 103

6.4 Transform Models . 112

7 Learning Simple Behaviors 117

7.1 Moving via Movers . 117

7.2 The Toy Finger Robot, Realized . 123

7.3 “It’s a red ball! It’s a green tube!” . 130

7.4 Reaching Out . 139

7.5 The Final Picture . 144

8 Looking Back, and Forward Again 145

8.1 Creating Structure: What pamet Can and Cannot Do 146

8.2 Unsatisfying Structure: Hacks . 148

8.3 New Structure: Future Work . 151

8.4 Unintended Structure . 155

8.5 Round, Flat Structure: Flapjacks . 155

A Details of the Complex Coupling Model 159

B Two Transform Models 165

B.1 Non-parametric: Memory-based Model . 165

B.2 Semi-Parametric: Loose Coordinate Transform Model 166

9

10

List of Figures

1-1 Grand overview of the components of this thesis work. 18

1-2 Cog, a humanoid robot. 20

1-3 Two of Johnson’s image schemata. 23

1-4 A schema, from Drescher’s schema mechanism. 26

2-1 A network of sok-processes. 37

2-2 Typical life-cycle of a sok-process. 38

2-3 Typical code flow for a sok-process, using the sok C library. 40

3-1 Overview of meso. 46

3-2 Virtual muscles act like antagonistic pairs of real muscles. 47

3-3 Waste of energy due to “lengthening contractions” of single-joint muscles. . 49

3-4 Torque feedback loop controlling the torso motors. 52

3-5 Example of the “complex coupling” skeletal model. 55

3-6 Description of a vector in two different linked coordinate frames. 56

3-7 Failure of the “complex coupling” skeletal model. 57

3-8 Example of the “simple coupling” skeletal model. 58

3-9 Classic Hill model of biological muscle tissue. 59

3-10 Joint pain response through the full range of a joint’s motion. 61

3-11 Effects of virtual fatigue on a virtual muscle. 65

4-1 Cog’s right hand, mounted on the arm. 68

4-2 The four primary gestures of Cog’s hand. 69

4-3 Response curves of the tactile sensors. 69

4-4 Detail image of the FSR sensors installed on the hand. 70

4-5 Outline of the vision system. 71

11

4-6 Cog’s head, viewed from three angles. 72

4-7 Saliency and attention processing while looking at a walking person. 75

4-8 Saliency and attention processing while looking at the moving robot arm. . 76

5-1 A one degree-of-freedom toy robot. 80

5-2 Two mover modules for the toy robot. 81

5-3 Acquiring an action model and actor for the toy robot. 82

5-4 Acquiring a trigger model and trigger for the toy robot. 83

5-5 General form of a controller module. 88

5-6 Two types of actor modules. 90

5-7 Two types of trigger modules. 91

5-8 General form of a transformer module. 93

5-9 The basic emotional system employed by pamet. 95

6-1 Two types of action modellers. 99

6-2 An example of position-constant-action data analysis. 100

6-3 Comparison of CDF’s to discover active axes. 101

6-4 General form of position-trigger modeller. 103

6-5 A sample of a position-trigger training data set. 105

6-6 Action and reward windows for the example position-trigger dataset. 107

6-7 Comparison of CDF’s for the position-trigger example data. 108

6-8 Possible partitions of a 2-D parameter space by a Gaussian binary classifier. 111

7-1 Schematic of the initial state of the system. 118

7-2 Joint angles θ and mover activation A recorded by the elbow mover modeller. 120

7-3 Joint velocities θ̇ and mover activation A for the elbow mover modeller. . . 121

7-4 Linear fit of θ̇ versus A by the elbow mover modeller for elbow and thumb. 122

7-5 Recorded raw data while training robot to point its finger. 124

7-6 Comparison of rewarded/unrewarded CDF’s while training robot to point. . 125

7-7 Prototype positions of the pointing and grasping action models. 126

7-8 Raw data for training the robot to point its finger in response to touch. . . 127

7-9 Reward and action windows for the pointing-trigger training session. 128

7-10 CDF comparison for two components of the tactile sense vector. 129

12

7-11 The stimulus model learned for trigger the pointing action. 129

7-12 State of the system after learning to move and point. 130

7-13 Prototype postures of three position-constant actions for the arm. 132

7-14 Data acquired in training robot to reach outward in response to a red ball. 133

7-15 Reward, action windows for training robot to reach in response to a red ball. 134

7-16 Comparison of stimulus vs. background CDF’s for red, green, and blue. . . 136

7-17 Stimulus decision boundary of the red-ball trigger. 136

7-18 Stimulus decision boundary of the green-tube trigger. 137

7-19 Data acquired by a trigger modeller while training a different action/trigger. 138

7-20 Learned arm postures (and any other actions) can be modified over time. . 139

7-21 Training performance degradation of transform models, RMS-error. 142

7-22 Ability of transform models to lock on to signal in the face of noisy data. . 143

7-23 Schematic of the final state of the system. 144

A-1 Description of a vector in two different linked coordinate frames. 160

A-2 General parameterization of linked coordinate frames. 161

13

14

List of Tables

1.1 Johnson’s twenty-seven “most important” image schemata. 24

2.1 Syntax of the sok type description language. 42

5.1 Classes of modules implemented in pamet. 86

7.1 The complete set of mover modules which connect pamet to meso. 119

15

16

Chapter 1

Looking Forward

This thesis work began with some grand goals in mind. I’m sure this is typical of the

beginnings of many thesis projects, but it is all the more unremarkable considering that

this work is part of the Cog Project. The original visions behind the Cog Project were to

build a “robot baby”, which could interact with people and objects, imitate the motions

of its teachers, and even communicate with hand gestures and winks and nods. Cog was

to slowly develop more and more advanced faculties over time, via both learning and the

steady addition of more complex code and hardware.

My own pet goal was to end up with a robot which I could successfully teach to fry

me a batch of pancakes. I was happy to settle for starting with a box of Just Add Water!

mix and a rectangular electric griddle. (And a spatula bolted to the end of one of Cog’s

paddles.) There is no sarcasm intended here. This is a task which is quite easily performed

by children. One could also quite easily design a machine specialized to perform precisely

that task, using technology from even fifty years ago. However, to build a machine which

learns to perform that task, using tools made for humans, is — still — no easy feat.

I would venture to say that none of the grandest goals of the Cog Project came to

fruition, mine included. Cog is not yet able to learn to do a real, humanly-simple task.

However, I was able to achieve some of my more humble and specific goals:

• Create a learning system in which actions and states are learned/learnable entities,

not hard-coded primitives.

• Use a real robot, physically interacting with real people.

17

processes, ports

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

[Ch. 3]

virtual muscles, joint limits, fatigue

touch sense

tactile
[Ch. 4]

[Ch. 5]

[Ch. 5,6,7]
vision

tracking,
head control

[Ch. 4]

attention,

emotion

sad

sok

happy

[Ch. 2]

transformers
actions, triggers,

movers, controllers,
models, modellers,

meso

pamet

Figure 1-1: Grand overview of the components of this thesis work. sok (Chapter 2) is

the process control and message-passing glue with which everything else is written. meso

(Chapter 3) is a biologically-motivated motor control layer implementing virtual muscles.

meso is grounded in the physical hardware, as are the vision system, tactile sense, and

rudimentary emotional system (Chapters 4 & 5). pamet (Chapters 5, 6, & 7) is the “smarts”

of the system, creating models of the interactions of the other subsystems in order to learn

simple behaviors.

• Teach the robot to do something.

• Design a system which is capable of long-term, continuous operation, both tended and

untended.

This dissertation describes these goals and constraints, and the resulting system imple-

mented on Cog.

A grand overview of the system is given in Figure 1-1. The work comprises three

significant components. The first is sok (Chapter 2), an interprocess communication (IPC)

and process control architecture. sok is specifically adapted to the QNX real-time operating

system, but could be ported to other POSIX-based OS’s. It is a general-purpose tool

18

useful for anyone building a behavior-based system distributed over a network of processors.

The second piece is meso (Chapter 3), a biologically-inspired motor control system which

incorporates the notion of “virtual muscles”. Although tuned for Cog, it provides a quite

general system for controlling a robot composed of torque-controlled actuators. The third

and final piece, built upon the first two, is pamet (Chapters 5–7). pamet is a framework

for designing an intelligent robot which can learn by self-exploration and by interacting

with human teachers. It is by no means a complete system; it is missing several important

elements, but the structure necessary for adding those elements is in place. As it stands,

it is capable of being taught a simple class of actions by a human teacher and learning to

perform those actions in response to a simple class of stimuli. Learning systems always live

at the mercy of the sensory and motor systems they are built upon, and the sensory systems

used here are quite basic. Chapter 7 discusses what Cog and pamet can currently do and

explores what elements they would require to do more.

1.1 The Platform: Cog

As alluded to already, the robot platform used in this project is Cog (Figure 1-2). This is

an anthropomorphic robot, with a design which captures significant features of the human

body from the waist up. Cog’s hips are a large, two degree-of-freedom (dof) gimble joint;

the torso has a third dof in the rotation of the shoulder yoke. Cog has two arms, each with

six degrees of freedom — three in the shoulder, one in the elbow, and two in the wrist.

(The human wrist has three.) The left arm ends in a simple paddle, but the right arm is

outfitted with a 2-dof hand with tactile sensors. Atop the shoulder yoke is a 7-dof head,

which includes two eyes consisting of two video cameras apiece. The actuators used in the

torso and arms are described in Chapter 3, and the hand and head are described in greater

detail in Chapter 4. At various times, microphones have been mounted around the head

to provide auditory input, but none are used in this project. The entire robot is bolted to

a sturdy steel base so that it stands at average human eye-level. Cog is not a particularly

“mobile” robot; the base stays where it is.

All the processing for Cog is performed off-board, by racks of 28 x86 architecture proces-

sors running the QNX4 operating system. These nodes are networked together via 100baseT

100Mb/s ethernet. All nodes are connected to one another via a locally-switched backbone

19

Figure 1-2: Cog is a humanoid robotics platform. It has a total of 24 degrees of freedom:

3 in the torso, 6 in each arm, 2 in the hand, and 7 in the head. The torso and arms

feature torque-controlled actuators; the head/eyes are under conventional position control.

Four cameras provide stereoscopic vision at two different resolutions and fields-of-view. The

hand is equipped with tactile sensors. All processing and control is done off-board, on an

expandable network of twenty-eight off-the-shelf x86 processors.

20

hub. Many nodes with large data throughput requirements (such as those handling video

data) are also connected to each other directly via full-duplex point-to-point 100baseT con-

nections. The processor speeds range from 200 to 800 MHz, and each node hosts 128 to 512

MB of RAM. About half of the nodes are dedicated to specific sensory or motor I/O tasks.

1.2 A Philosophy of Interaction

This project is motivated by the idea that perception is meaningless without action. The

semantic content of a sensory experience is grounded in an organism’s ability to affect its

environment and in its need to decide what effect to produce. The meaning of what we see

and hear and feel comes from what we can do about it.

A disembodied perceptual system cannot assign much intrinsic value to the information

it processes. When a face detection algorithm draws bounding boxes around faces in a

scene displayed on a computer screen, the meaning of those boxes typically arises from

their observation by a human, to whom a “face” has meaning because it is attached to a

large repertoire of social cues, interactions, desires, and memories.

The layers upon layers of interwoven concepts constituting intelligence are rooted in

primitives that correspond to simple, direct interactions between motor systems and sensory

systems, coupled either internally or through the environment. It is the interactions between

these systems, and the patterns discovered among these interactions, which are the basis of

thought.

Experience and Metaphor

In Metaphors We Live By [30], George Lakoff and Mark Johnson explore a philosophy

of meaning and understanding which revolves around the pervasive use of metaphor in

everyday life. Metaphors, they claim, are not simply poetic linguistic constructs:

The most important claim we have made so far is that metaphor is not just a

matter of language, that is, of mere words. We shall argue that, on the contrary,

human thought processes are largely metaphorical. [p. 6]

Linguistic metaphors are expressions which describe one entity or concept as being another,

drawing on structural parallels between the two: e.g. “Time is Money”. Time and money

21

are not literally one and the same, however we treat the abstract Time in many of the

same ways we treat the more physical Money ; they are subject to similar processes in our

culture. We quantify Time, treating it as a commodity, which is valuable and often scarce.

Time can be spent, wasted, given, received — even invested. In a literal sense, we can do

none of these things with ephemeral Time. Nonetheless, this metaphor permeates our daily

interaction with Time; we treat Time as an entity capable of such interactions.

Lakoff and Johnson reject the objectivist philosophy that meaning is wholly reducible to

propositional forms which are independent of the agent doing the understanding. Thought,

at all levels, is structured by the interrelations of a great number of metaphors (if enumerable

at all) derived from cultural, physical, and emotional experience.

The“Time is Money”metaphor is cultural and largely tied to post-Industrial Revolution

western culture. In the later The Body in the Mind [27], Johnson focuses on metaphorical

structures which are the result of the basic human physical form — and are thus (more or

less) universally experienced by all humans. These simple structures, which he terms image

schemata, become the basic elements out of which the more abstract metaphors eventually

form. As he describes them:

A schema is a recurrent pattern, shape, and regularity in, or of, these ongoing

ordering activities. These patterns emerge as meaningful structures for us chiefly

at the level of our bodily movements through space, our manipulation of objects,

and our perceptual interactions.. . . [p. 29]

. . . [schemata] are not just templates for conceptualizing past experiences; some

schemata are plans of a sort for interacting with objects and persons.. . . [p. 20]

Examples are the container and related in-out schemata (Figure 1-3). These schemata

are manifest in many physical acts, such as “Lou got out of the car” or “Kate squeezed out

some toothpaste.” However, they also apply to non-physical acts, such as “Donald left out

some important facts” or “June got out of doing the dishes.”

Johnson goes so far as to explain formal logic itself in terms of the container schema

[27, p. 38]. The requirement that a proposition P be either true or false is the analog of the

requirement that an object is either inside a container or outside the container. Transitivity

is explained in the same way as a marble and a sack: if a marble is contained in a red

sack, and the red sack is contained in a blue sack, then the marble is also contained in the

22

IN−OUTCONTAINER

Figure 1-3: Two of Johnson’s image schemata. The container schema captures the various

notions of containment, of something held with something else, of something comprising a

part of something else. The in-out schema captures the action of something leaving or

entering a container. These schemata apply to physical events (“George put his toys in the

box.”) as well as abstract events (“Emil went out of his mind.”).

blue sack. Negation, too: just as P is related to the objects contained in some box, ¬P is

equivalent to the objects outside of the box. In Johnson’s view, abstract logical reasoning

does not exist in some absolute objective sense; rather, it is derived from physical experience

with containment:

Since we are animals, it is only natural that our inferential patterns would emerge

from our activities at the embodied level. [p.40]

Johnson produces a “highly-selective” list of 27 schemata (Table 1.1). Some (near-far) are

topological in nature, describing static relationships. Many (blockage, counterforce)

are force gestalts, describing dynamic interactions. While not an exhaustive list, these

schemata are pervasive in everyday understanding of the world. These schemata are not

just tied to physical interactions, either; they also cross-correlated with recurrent emotional

patterns and physiological patterns.

Philosophers and Auto Mechanics

The Cog Project was born out of these ideas [8, 12]. If even our most abstract thoughts

are a product of metaphors and schemata which are themselves grounded in our bodies’

physical interaction with the world, then human intelligence is inseparable from the human

condition. Therefore, if we want to construct a machine with a human-like mind, that

23

container balance compulsion

blockage counterforce restraint removal

enablement attraction mass-count

path link center-periphery

cycle near-far scale

part-whole merging splitting

full-empty matching superimposition

iteration contact process

surface object collection

Table 1.1: The twenty-seven “most important” image schemata listed by Johnson [27, p.

126].

machine must also have a human-like body, so that it too can participate in human-like

experiences.

The entire philosophical debate between objectivism, cognitivism, phenomenology, ex-

perientialism, etc., is just that, debatable. Maybe reality can be reduced to a set of symbolic

manipulations, maybe not. As roboticists however, we must eventually get our feet back

on the ground and go and actually build something. The notion of embodied intelligence

suggests an approach to the task worthy of exploration. We should build robots capable of

physically interacting with the world (including people) in basic human-like ways. We should

try to design these robots such that they can learn simple image-schema-like relationships

via such interactions. We should work on mechanisms for connecting such relationships

together, for creating more abstract layers woven from the same patterns. Perhaps we will

then end up with not only a machine capable of some abstract thought, but a machine

which shares enough experience with its creators that its thoughts are compatible with ours

and communicable to us.

Even if philosophers eventually conclude that a complete shared experience is not a

formal requirement for a human-like thinking machine, the approach has practical merit.

For example, eyes are certainly no prerequisite for human thought — a congenitally blind

person can be just as brilliant as a person with 20/20 vision. But, perhaps mechanisms

which co-evolved with our sense of sight contribute to the greater mental process; if we

force ourselves to solve problems in implementing human visual behavior, we might happen

24

to discover those mechanisms as well.

This brings up a host of other questions: Have our brains evolved to accommodate any

metaphors, or a particular limited set? What types of models underlie such metaphors, and

which should we build? How much are the metaphors we develop an artifact of whatever

brain/body combination we happen to have? (Visually, with our coordinated stereoscopic

eyes and foveated retinas, we only focus on one thing at a time. What if we were wired-up

like chameleons, with eyes which could be controlled completely independently? Would we

have expressions like “I can only focus on two things at a time, you know!”)

1.3 Related Work

Many projects have taken these philosophies to heart to some degree. The entire subfield

of “embodied AI”, in contrast to the symbol-crunching “Good Old Fashioned AI”, is driven

onward by replacing cognitivism with experientialism. This section describes a represen-

tative sample of projects which explore some aspect of knowledge as interaction. Each of

these projects shaped my own work in some way because they contained ideas which either

appealed to me or unnerved me and thus provided vectors along which to push my research.

1.3.1 Drescher’s Schema Mechanism

Drescher [16] presents a learning system in which a simulated “robot” learns progressively

more abstract relations by exploring and interacting with objects in its grid-world. This

system is presented as an implementation of the earliest stages of Piaget’s model of human

cognitive development [40], namely the sensorimotor stage, in which an agent discovers the

basic elements of how it interacts with the world.

This schema mechanism comprises three basic entities: items, actions, and schemas

(Figure 1-4). Items are binary state variables, which can be on or off as well as unknown.

Actions correspond to a monolithic operation. Schemas are predictive or descriptive rules

which specify the resulting state of a set of items after executing a particular action, given

a particular context (specified by the states of another set of items). The system is created

with a number of primitive items and actions, which are derived from the basic sensory

and motor facilities built into the simulation. The goal of the system is to develop schemas

which describe the relations between the items and actions and to develop a hierarchy of

25

A

Q
xyab~c

context action result

Q
xyab~c

P
d~fxy

B

extended result

ex
te

nd
ed

 c
on

te
xt

Figure 1-4: Drescher’s schema mechanism [16]: A schema (A) is a rule which specifies the

resulting state of some binary items (“x” and “y”) if an action (“Q”) is performed while

the system’s initial state satisfies some context (“a”, “b”, and “not c”). A schema maintains

statistics on all other (“extended”) context and result states as well, which are used to

decide to “spin-off” new schemata with more specific context or results. Composite actions

are instantiated as chains of schemas (B) with compatible result and context clauses.

26

new items and actions based on the schemas.

Every action is automatically assigned a blank schema, with no items in its context

or its result. In Drescher’s notation, such a schema for action Q is written “−/Q/−” .

Whenever the action is executed, the system updates statistics on the before and after

states. Eventually, if the action seems to affect certain state items, a new schema will be

“spun-off” which includes those items in the result slot, e.g. “−/Q/a∼b”. This schema

predicts that executing Q always leads to a state in which a is on and b is off. Such a

schema will be further refined if a particular context makes it more reliable. This would

yield, for example, “de∼f/Q/a∼b”, a schema which predicts that, when d and e are on and

f is off, executing Q leads to a being on and b being off.

Composite actions can be created, which refer to chains of schemas in which the result of

the first satisfies the context of the next, and so on. Executing a composite action amounts

to executing each subaction in sequence. Synthetic items can also be created. Instead

of being tied to some state in the world simulation, each synthetic item is tied to a base

schema. The item is a statistical construct which represents the conditions that make its

basic schema reliable.

These two methods for abstraction give the schema system a way to represent concepts

beyond raw sensor and motor activity. Drescher gives the example that a schema that says

“moving to (X,Y) results in a touch sensation” effectively defines the item of state “tactile

object at position (X,Y)”. For that schema to be reliable, that bit of knowledge must be

true — so in the schema system, that schema is that knowledge.

Limitations The concepts espoused in Drescher’s work resonate strongly with the

founding goals of the Cog Project. The schema mechanism is, unfortunately, of little practi-

cal value in the context of a real-world robot. However, my own work was greatly influenced

by the desire to address its unrealistic assumptions.

The schema system is essentially a symbolic AI engine. It operates in a toy grid-world

with a small number of binary features. The “robot” has 10 possible primitive actions:

moving its “hand” in 4 directions, shifting its “glance” in 4 directions, and opening or closing

the hand. The primitive state items correspond to bits for each possible hand location (in a

3x3 region), each possible glance position, contact of “objects” with the “body”, each visual

location occupied by an object, etc. — a total of 141 bits. Sensing and actuation are perfect;

27

there is no noise in any of those bits. Actions are completely serialized, carried out one-at-

a-time and never overlapping or simultaneous. Furthermore, except for occasional random

movement of the two objects in this world, the world-state is completely deterministic,

governed by a small set of logical rules. The lack of a realistic notion of time and the lack

of any material physics in the grid-world reduces the system to an almost purely symbolic

exercise.

This grid world is very unlike the world inhabited by you or me or Cog. Cog’s sensors

and actuators are closer to continuous than discrete; they are certainly not binary. They

are also (exceptionally) noisy. Cog has mass and inertia and the dynamics that accompany

them. And Cog interacts with very unpredictable people.

In my work, I have made a concerted effort to avoid any grid-world-like assumptions. The

lowest-level primitive actions (roughly, the movers described in Section 5.3.1) are velocity-

based and controlled by a continuous parameter (well, a float). Sensors provide time-

series of vectors of real numbers, not binary states. Via external reward, the system distills

discrete contexts representing regions of the parameter spaces of the sensors; the states of

these contexts are represented as probabilities. Real-time is ever present in the system both

explicitly and implicitly.

1.3.2 Billard’s DRAMA

Billard’s DRAMA (Dynamical Recurrent Associative Memory Architecture) also bills itself

as a complete bottom-up learning system. It [3, p.35]

tries to develop a single control architecture which enables a robot to learn

and act independently of a specific task, environment or robot used for the

implementation.

The core of the system is a recurrent neural network which learns relations between sensor

states and motor activity. These relations can include time delays. Thus, the system can

learn a bit more about the dynamics of the world than Drescher’s schema mechanism.

DRAMA was implemented on mobile robots, both in simulation and the real world.

(Further experiments were also conducted with a “doll robot” [2].) Two types of experi-

ments were performed. In the first, a hard-wired “teacher” robot would trundle about a

world populated with colored boxes (and, in simulation, sloped hills). As it encountered

28

different landmarks, it would emit a preprogrammed radio signal describing the landmark.

A “learner” robot would follow the teacher, and learn the radio names for landmarks (as

it experienced them via its own sensors). In the second set of experiments, the learner

would follow the teacher through a constrained twisting corridor and learn the time-series

of sensory and motor perceptions as it navigated the maze.

The results of experiments were evaluated by inspecting the connections learned by the

DRAMA network and verifying that the expected associations were made and that the

knowledge was “in there”. It is not clear, however, how that knowledge could later be put

to use by the robot. (Perhaps, once the trained learner robot were let loose, it would emit

the right radio signals at the right landmarks?)

The fact that this system was implemented on real robots is significant, because it

demonstrates that DRAMA could function with noisy sensing and actuation. The sensor

and motor encodings are still overly simple, however. The robots have two motors each,

controlled by a total of six bits (three per motor, corresponding to on/off, direction, and

full/half speed settings). Each robot has five or six sensors each, totalling 26 bits of state.

However, the encodings are unary. For single-bit sensors, like bump detectors, they are

simply on/off. For multi-bit sensors, such as the 8-bit compass, each possible state is

represented by a different bit. (The compass can register one of eight directions; only one

bit is active at any given moment.) Overall, this situation is not very different from the

discrete on/off items of Drescher’s schema mechanism.

Although DRAMA can learn the time delays between sensor and motor bit-flips, it has

no mechanism for abstraction. DRAMA cannot condense patterns of activation into new

bits of state. The structure of the network is fixed from start to end.

1.3.3 Pierce’s Map Learning

Pierce [41] created a system in which a simulated mobile robot learns the physical relation-

ship of its sensors and then learns control laws which relate the sensors to its actuators.

The simulated robot is simply a two-dimensional point with an orientation, which moves

around in a variety of walled environments with immovable obstacles (e.g. more walls).

The agent is equipped with a ring of 24 distance sensors, a 4-bit/direction compass, and

a measurement of “battery voltage”. It moves via two velocity-controlled actuators in a

differential-drive “tank-style” configuration.

29

Pierce’s system discovers its abilities in four stages:

1. Model the sensory apparatus.

2. Model the motor apparatus.

3. Generate a set of “local state variables”.

4. Derive control laws using those variables.

In the first stage, the robot moves around its environment randomly. The sensors are

exercised as the robot approaches and leaves the vicinity of walls. The sensors’ receptive

fields overlap, and thus the data sampled by neighboring sensors is highly correlated. The

system uses that correlation to group sensors together and derive their physical layout.

In the second stage, the robot continues to move around randomly. The distance sensors

are constantly measuring the distances to any obstacle in the line of sight — and thus

they measure the robot’s relative velocity with respect to the obstacles. Since the distance

sensors are in a known configuration, these values give rise to velocity fields, and applying

principle-components analysis to these fields yields a concise description of the principle

ways in which the robot can move. The third stage amounts to applying a variety of filters

to the sensor values to find combinations which result in constraints on the motion of the

robot. The filtered values are used as new state variables and, finally, the constraints they

impose are turned into control laws for the robot.

This system is intriguing because it uses regularities in the robot’s interaction with the

environment to distill the simple physics of the robot from a complex array of sensors. And,

unlike the previous two projects, it broaches the confines of binary state and action, using

real-valued sensors and actuators. Furthermore, it does incorporate a notion of abstrac-

tion, in the derivation of the “local state variables”. However, it depends heavily on many

assumptions which are not valid for a humanoid robot.

Pierce makes the claim that his system transcends its implementation [41, p. 3]:

The learning methods are domain independent in that they are not based on

a particular set of sensors or effectors and do not make assumptions about the

structure or even the dimensionality of the robot’s environment.

30

Actually, the methods are completely dependent on the linearity constraints imposed by

the simulation. His system would not fare so well discovering the kinematics of a 6-dof arm,

in which the relation between joint space and cartesian space is not translation invariant.

The methods also depend on locality and continuity constraints applied to the sensors.

They work with 24 distance sensors which exhibit a lot of redundancy and correlation; the

methods would not work so well if there were only four sensors. Furthermore, the sensors

and actuators in Pierce’s simulation are completely free of noise. It is not clear how robust

the system is in the face of imperfect information.

1.3.4 Metta’s Babybot

Metta’s graduate work [36] revolves around “Babybot”, a humanoid robot consisting of a 5-

dof stereoscopic head and a 6-dof torque-controlled arm. The robot follows a developmental

progression tied extensively to results in developmental psychology and cognitive science:

1. The robot begins with no motor coordination at all, making a mixture of random eye

movements and arm motions.

2. Using visual feedback, it learns to saccade (a one-shot eye movement to focus on a

visual stimulus) progressively more accurately as it practices. The head moves very

rarely.

3. As saccade performance improves, the head moves more frequently, and the robot

learns to coordinate head and eye movement. The head is moved to keep the eyes

centered “within their sockets”.

4. As visual target tracking improves, now that the head can be controlled, the robot

learns to coordinate movement of its arm, as a visual target.

5. Finally, the robot will look at moving targets and reach out its arm to touch them.

Each stage in the sensorimotor pipeline in this system depends on the stage before, so a

succeeding stage cannot begin learning until the preceding stage has gained some compe-

tence. However, the noisier, lower-resolution data provided by the preceding stage early in

its own development actually helps the succeeding stage in learning.

Metta’s project culminates in essentially the same demo goal as my work: to have the

robot reach out and touch objects. We have very different approaches, though. Babybot

31

follows a preset, preprogrammed developmental progression of learning motor control tasks.

Its brain is prewired with all the functions and look-up tables it will ever need, only they

are missing the correct parameters. These parameters are acquired by hard-coded learning

algorithms which are waiting to learn particular models as soon as the training data is good

enough. In my work, on the other hand, I have tried to avoid as many such assumptions

about what needs to happen as possible. The goal of my system is to try to discover where

certain models can be learned, and which models are worth learning.

Both approaches have their places. The tabula rasa makes for a cruel classroom; no

learning is successful without being bootstrapped by some initial structure. On the other

hand, in a dynamic, complex world, there is only so much scaffolding that one can build

— at some point a learning agent must be provided with pipes and planks and allowed to

continue the construction on its own.

1.3.5 Terence the Terrier

Blumberg et al [5] have created an animated dog, Terence (third in a distinguished pedigree,

following Duncan and Sydney [52]). This creature, living in a computer graphics world, can

be trained to perform tricks by a human trainer who interacts with it using two rendered

hands (controlled via joystick) and vocal commands (via microphone). The trainer can

reward the dog with a CG treat. Using a clicker training technique, the trainer clicks

(makes a sharp sound with a mechanical clicker) and rewards the dog when it (randomly)

performs the desired action. The click tells the dog when the action is complete, and the

dog soon associates the action with receiving reward. The dog starts performing the action

more frequently, and then the trainer rewards the dog only when the action is performed

in conjunction with a verbal utterance. The dog then learns to perform the action on

cue. This process is, in a reinforcement-learning-like fashion, a matter of linking states

to actions. However, this dog’s states and actions are not necessarily discrete and not

completely enumerated at the outset.

Terence’s states take the form of binary percepts, composed of individual model-based

recognizers organized in a hierarchical fashion. As new raw sensory data arrives, it is passed

down the percept tree to more and more specific recognizers, each dealing with a more specific

subset of the data. These models are added to the tree dynamically, in response to input

patterns that are reliably coincident with reward. Thus, only the regions of the sensory

32

state space which are conducive to receiving reward are noted.

Terence’s initial action space consists of a collection of short, hand-picked animation se-

quences which constitute its behavioral and motor primitives. These actions are represented

as labelled trajectories through the pose space of the dog, which is itself a set of snapshots

of the motor state (joint angles and velocities). The poses are organized in a directed graph

which indicates preferential paths for transitioning from one pose to another. Some of the

primitive actions are parameterized (the “shake-paw” amplitude is mentioned). It is further

possible to create new actions (trajectories through the pose space). The percept tree in-

cludes recordings of short sequences of motion; if such a sequence is reliably rewarded, it is

added to the action list. Note, however, that all actions, even novel ones, are paths through

the nodes of the same static pose graph.

1.3.6 Previous Work on Cog (and Cousins)

Over the years, Cog has spawned a lot of work on many elements of motor control, social

interaction, and cognitive systems. Matt Williamson investigated control of the arms with

kinematically-coupled non-linear oscillators [48]. Brian Scassellati explored a theory of body

and mind, resulting in a system which could distinguish animate from inanimate objects and

which could imitate simple gestures [45]. Cynthia Breazeal, working on Cog’s close relation

Kismet, developed a robot with a wide range of convincing facial and auditory gestures and

responses [7]. Although it was only a head, Kismet was quite successful at “engaging” and

shaping the attention of people around it. Bryan Adams developed a biochemical model for

Cog’s motor system [1]. I worked on using motor knowledge to enhance sensory performance

[33, 32].

Until Paul Fitzpatrick’s contemporaneous work on understanding objects by poking

them [18], these projects all sorely lacked a significant feature: learning of any long-term

behaviors. These projects all had adaptive components, where parameters were adjusted or

calibrated as the robots ran, but the maps or functions learned there were hard-wired into

the system. Scassellati’s imitation system could observe, encode, and mimic the trajectory

of an object, but that knowledge was transient. The last trajectory would be thrown away

as soon as a new one was observed. Furthermore, that was the system’s sole behavior,

to imitate gestures; there were no mechanisms for deciding to do something else. Kismet

could hold and direct a person’s attention, could express delight and frustration in response

33

to the moment — but all of its behavior was a transient dance of hard-coded primitives,

responding to that moment. It attended to people and objects but didn’t learn anything

about them.

That’s where this work comes in: creating a framework which enables Cog to actually

learn to do new things, to retain that knowledge, and to manipulate that knowledge. Unfor-

tunately, this work suffers from a converse problem: the components built for it so far, and

thus the knowledge it can acquire, are few and simple. In a perfect world (i.e., if the robot

were not quickly sliding into obsolescence) I would revisit all the previous projects and try

to adapt their systems to this new framework. In doing so, the framework would certainly

evolve. The dream is to reach a point where enough of the right common representations

and interfaces are developed that it becomes trivial to drop in new models which shuffle

around and find their place and function among the old ones.

That, however, is for later. Now it is time to discuss what has actually been done.

34

Chapter 2

sok

sok is an API for designing behavior-based control systems, and it is the foundation upon

which the software in this thesis is built. sok shares many of the same goals as Brooks’

original Behavior Language (BL) [11], and it is the evolutionary successor to InterProcess

Socks (IPS) [10] and MARS [9], which had been used in earlier work on Cog. Unlike its

Lisp-based ancestors, sok is implemented as a C library and API, and it allows computation

to be distributed throughout a multiprocessor network running the QNX operating system

(i.e. Cog’s current, third, and final computing environment).1 sok provides a real-time,

dynamic environment for data-driven programming, which is essential to realizing the goals

of this project.

This chapter describes the essential features and structure of programming with sok. A

complete description can be found in the sok User Manual [31].

2.1 Design Goals

sok was designed with a number of specific goals in mind. First and foremost, the purpose

of sok is to enable coding which distributes computation over many processors. Much of

the computation on Cog is I/O bound (i.e. simple computations applied to large continuous

flows of data), so sok has to be lightweight and to make efficient use of the network. QNX

provides an optimized network-transparent message-passing system, and sok uses this as its

communication medium.

1
sok is built on top of the message-passing features of the QNX operating system. However, it could

probably be ported to another OS given the appropriate communication layers.

35

sok supports dynamic networks of processes. Processes, and connections between them,

can be added to and removed from the running system. This is in contrast to Behavior

Language (or the C40 network in Cog’s second brain): processes and their connections were

specified statically at compile time, and there was no runtime process control. sok builds

on top of QNX’s POSIX process control, so processes can be started, suspended, resumed,

and killed from the QNX shell.

The network of processes maintained by sok is tangible. A program can traverse the

network and explore how processes are connected together. This allows for code which

programmatically spawns new processes and attaches them to appropriate places in the

network. sok includes a simple typing system which allows programs to identify what type

of data is being passed via various ports.

sok’s process network is also saveable and restoreable. Cog’s software has many adaptive

and learning modules; the goal of the research is to create a system which grows and develops

as it runs. It is crucial that sok be able to save and restore the complete state of the system,

so that the system can continue to develop between power-cycles, and to aid off-line analysis.

Since processes can be created and hooked into the network on the fly, this state consists

of the connections between processes as well as their individual runtime states.

Lastly, sok is robust in the face of temporary failures in the system. sok allows dead or

hung modules to be restarted without losing connection state. If a processing node fails,

the processes which ran on it are lost (until restarted), but the rest of the system marches

onward without deadlocking.

2.2 System Overview

The sok world consists of three parts: individual processes compiled with the sok C library,

a locator daemon, and some shell utilities.

The fundamental unit in the sok paradigm is a sok-process (Figure 2-1), which can be

considered a typical POSIX-like process executing in its own memory space, augmented with

some built-in communication and control features. A sok-process exchanges data with peer

sok-processes via inports and outports. Typically, a sok-process responds to received data

on its inports, performs some calculation, and then sends messages with the results via its

outports. The intent is that each sok-process encapsulate some behavioral primitive such as

36

state

port
state

init code

body code

runtime
state

port
state

init code
body code

runtime
state

port
state

init code
body code

runtime
state

port
state

runtime

init code
body code

runtime
state

port
state

init code
body code

runtime
state

port
state

init code
body code

runtime
state

port
state

init code
body code

runtime
state

port
state

init code
body code

Figure 2-1: A network of sok-processes, connected via inports and outports. The inset

highlights the structure of a sok-process with a number of ports. Multiple incoming and

outgoing connections are allowed. The body code runs asynchronous to and independent of

the message passing (both in time and process space).

“visual motion detection”or“arm motor interface”. Such primitives are coded independently

of each other. Yet, by connecting ports, they are glued together to form a complete control

system.

The connections of a sok-process are independent of the process execution; messages are

sent and received asynchronously. Furthermore, a sok-process can be suspended, or even

killed and restarted, without affecting the state of its connections. This is useful for graceful

crash recovery, preserving system state, and testing by “lesioning” the system.

Each sok-process has a unique name in a hierarchical namespace managed by the locator

daemon, soklocate. This program runs on one node in the network and maintains a record

of the names, process id’s, and port lists of all registered sok-processes. The locator is

consulted when a new sok-process is created, or when process and port names are referenced

to create connections. Once sok-processes are running and connected, however, they will

continue to run even if the locator goes down. When the locator is restarted, sok-processes

will automatically reconnect to it, allowing it to re-establish the registry of sok space.

External to all of this is the sok utility program, which can be used in the shell (and

in shell scripts) to connect and disconnect ports, start and stop processes, examine process

status, etc. sok provides a command-line interface to the more useful public parts of the

sok messaging library. The final utility provided by sok is the simple type compiler, sokstc,

37

visible as sok process

− process command−line
− declare ports
− initialize state

Prologue

− send data messages
− answer port queries
− spawn body process

Sender Loop

− receive data messages
− answer port queries

Receiver Loop

− init state
− event loop

Body Code

Epilogue
− deregister process
− deregister ports
− loop back to Prologue

program
exit

child
exit

thread
exit

− instantiate ports
− register with locator
− fork receive thread

Register

program
execution

Figure 2-2: The typical life-cycle of a sok-process: it begins as a regular process, and does

not become visible in sok space until it registers with the sok locator daemon. At that point,

the original process forks into two threads to handle sending and receiving port messages.

When the body code is spawned, the sender thread forks an independent child process.

When the sok-process removes itself from sok space, it notifies the locator and then kills

any extra threads and children.

which turns port type descriptions into code for creating typed ports.

2.3 Life Cycle of a sok-process

Figure 2-2 depicts the life cycle of a typical sok-process. It begins, like any other POSIX

process, with the execution of a program. The program processes command-line arguments,

and perhaps reads a configuration file. It is not actually a sok-process, however, until it

registers with the locator daemon.

Upon registering with the locator daemon, the process declares its unique sok name and

the names and types of all of its ports. It also forks into two threads: one for sending

messages, and one for receiving them.2 Once registration is complete, the process is fully

visible in sok space. Its ports can be connected to ports on other processes, and it is ready

to receive and send messages.

The newborn sok-process will not actually do anything with messages, though, until the

2This is necessary to avoid a deadlock condition in QNX which may occur when a cycle of processes

attempt to send messages to each other.

38

body code is “spawned”. This causes the original process to fork again and run the user’s

code in a separate process, which protects the message handling code from segmentation

faults and other damage. This new body process is the actual “meat” of the sok-process

and performs the user’s computation, acting on data received from inports (or hardware)

and sending data via outports. The body process can be killed and respawned; this does

not affect the ports or their connections, or the status of the process in sok space.

At this point, the sok-process is happily doing its job. It can then be told to “exit”,

which causes it to kill the receiver and body threads, disconnect all ports, deregister and

disappear from sok space, and then, usually, exit. But, the process could be written to

reconfigure itself, reregister with the locator, and begin the cycle anew.

2.4 Anatomy of a sok-process

The anatomy of a typical sok-process (Figure 2-3) reflects its life cycle. The first part, the

prologue, is where the sok configuration is set up. SokParseOptions() is used to parse

standard sok-related command-line options. All input and output ports are declared with

SokRegisterInport() and SokRegisterOutport(). (The ports are not actually created

until the sok-process is registered.) SokParamAllocate() can be used to create a block of

memory which is preserved between invocations of the body code.

The process becomes a true sok-process once SokInit() is called. This function allocates

memory for port data buffers, forks off the handler threads, and registers the process with

the locator daemon.

SokInit() never actually returns to the original process until the sok-process is told

to exit. However, whenever the sok-process is told to spawn the body code, SokInit()

will fork and return SOK_OK to the child process. Thus, the code following a “successful”

invocation of SokInit() is considered the body block.

The body block is usually an event-driven loop. At the beginning of a cycle, it waits

for activity on a sok port (new data, new connection) or the expiration of a timer. Then, it

may lock inports and read data, perform calculations, and finally send data via outports.

If the body block ever exits, the body process dies, but may be respawned again.

Any code that executes after SokInit() returns a non-SOK_OK condition is considered

part of the epilogue. Most processes will simply exit at this point. However, it is possible

39

int main(int argc, char **argv)
{

/**** Prologue ****/
sok_args_t sargs;
sok_inport_t *in;
sok_outport_t *out;

SokParseOptions(argc, argv, &sargs);
in = SokRegisterInport("color", SokTYPE(uint8), 0, NULL);
out = SokRegisterOutport("shape", SokTYPE(uint8), 0, NULL);

/**** Registration ****/
if (SokInit(&sargs) == SOK_OK) {
/**** Body Code Block ****/
/* ...setup body */
.
/* ...event loop */
while (1) {
SokEventWait(...);
.
.

}
}
/**** Epilogue (SokInit() has failed or returned) ****/
.
.
exit(0);

}

Figure 2-3: Outline of typical code flow for a sok-process, created via the C library. The call

to SokInit() instantiates all the ports and registers the process in sok space. The original

process does not return from this call until the sok-process is deregistered. A child process

is forked and returns from this call in order to spawn the body code block.

40

for a process to reconfigure itself — by declaring new ports, for example — and then call

SokInit() again to return to sok space, reborn as a new sok-process.

2.5 Arbitrators and Inports

By default, an inport acts like a pigeonhole for incoming data from connected outports.

When a new message is received, it overwrites any old message and a “new data” flag is

set for the inport. This default behavior can be changed by defining an arbitrator for the

inport.

An arbitrator allows one to implement more complex data handling, including processing

which is connection-specific. It is essentially a stateful filter. Possibilities include accumu-

lating inputs (the port delivers a running sum of all received messages), per-connection noise

filtering, subsumption-type connections (where incoming messages on one connection inhibit

other connections for a fixed period of time), and neural-net-like weighting of connections.

Arbitrators are implemented as sets of callback functions which are run at a number of

points in an inport’s life-cycle: creation/destruction, connection/disconnection, data recep-

tion, and dump/restore. These functions are called in the process space of the handler code

— not the body code — so they must be written carefully. In particular, the data-received

callback must be lightweight since it is called for every incoming message.

Arbitrators can also request a shared memory block so that they can communicate pa-

rameters with the body process, such as weights or timeout values for incoming connections.

2.6 Simple Type Compiler

One of the main goals of sok is to enable processes to automatically connect themselves to

each other at runtime. To provide some clue as to when such connections are appropriate,

sok ports are typed. Each port carries a type signature — the typeid — which identifies

the type in terms of primitive integer and floating-point elements. Ports with mismatched

typeid’s are not allowed to connect to each other. Typeids are also catalogued by the

locator daemon, so it is possible to query the locator for a lists of compatible ports on other

sok-processes.

The sok type system is similar to the IDL of CORBA [38]. sok types are defined in a

description file which is processed by sokstc, the sok type compiler, to produce appropriate

41

primitive types: float, double, int8, int16, int32, uint8, uint16, uint32

compound types: (array subtype N)

(struct (type-spec name) ...)

constant definition: (defconst NAME value)

type definition: (deftype name type-spec)

Table 2.1: Syntax of the sok type description language. A name must be a valid C identifier,

since type definitions are literally converted into C code. A type-spec can be any single

primitive or compound type. The primitive types correspond to the standard floating point

and integer C data types, and the compound types are equivalent to C arrays and structs.

C code and header files. sokstc is also embedded in the sok C library. This allows programs

to dynamically parse type descriptions at run-time.

sokstc is implemented using SIOD [14], a small embeddable Scheme interpreter which

compiles very easily on the QNX platform. sokstc description files are actually Scheme

programs with support for rudimentary macro operations. The description language syntax

is outlined in Table 2.1. defconstant is used to define symbolic constants, which appear as

#define’d constants in the header files generated by sokstc. deftype defines a typeid in

terms of predefined primitive or compound types. The ten primitive types correspond to the

common floating-point and signed/unsigned integer types in C. The two compound types

are arrays and structures. Arrays are fixed-length vectors of a single subtype; structures

are fixed, named collections of any other defined types. Variable length or recursive type

definitions are not allowed.

The standalone sokstc reads a description (.stc) file and produces a pair of C header

(.h) and code (.c) files. These contain definitions for the type signatures as well as matching

C type declarations (typedef) which can be used in user code. The signatures are used

to register ports, and the declarations are used to access the port buffers. The embedded

compiler can be accessed by calling SokstcParseFile(). This will open a file by name,

parse it, and return an array of typeids.

The sok C library includes a number of other functions for working with typeids, such as

walking through a typeid or typed buffer, locating elements in a typed buffer, and generating

new structure or array typeids from other typeids.

42

2.7 Dump and Restore

sok supports the ability to dump and restore the state of sok space. This is important be-

cause the collection of running sok-processes and the connections between them can change

as the robot runs. The results of learning and adaptation by the robot accumulate in the

process network as well as the individual processes themselves.

sok-processes respond to a “dump” request by saving the following information to a disk

file:

• process info: name, time stamp, command-line used to invoke the process;

• connection info: lists of connections (by name) for each port;

• runtime info: contents of a specially-allocated block of parameter memory.

The sok utility can be used to tell any or all processes to save their state to time-stamped

files in a given directory.

When sok-processes receive a “restore” request, they read the designated state file and

reverse the procedure, loading any parameter memory and establishing the specified con-

nections. The sok utility can be used to recreate sok space from a collection of process state

files. It will invoke each process in turn, as directed by the state file, and tell each new

sok-process to restore itself.

If a process has any runtime state which should be saved, such as a neural net which has

been learned at runtime, that data needs to be kept in a parameter memory buffer. This

is a block of shared memory which is accessible to the handler code and which is preserved

between invocations of the body code.

43

44

Chapter 3

meso

meso is the motor control architecture developed for this project. meso provides a uniform

interface for controlling the arms, torso, and head of Cog via a collection of virtual muscles.

It simulates a number of key features of the human musculoskeletal system, features which

are important in a machine which will learn to move in a human-like way and which should

experience human-like interaction with the world.

meso breaks down into roughly three layers: low-level (hardware) control, a skeletal

model, and a muscular model. These are implemented by several sok-processes distributed

over several processors (Figure 3-1). This chapter first describes the rationale behind meso,

followed by details of each layer of the system. The last section describes feedback mecha-

nisms provided by meso and how they affect the operation of the robot.

3.1 Biomechanical Basis for Control

Cog is an anthropomorphic robot: one fundamental principle of its mechanical design is

that it should have enough degrees of freedom and articulation to enable it to recognizably

emulate human motor behavior. This mandates a minimum hardware requirement: e.g.

Cog needs two human-like arms, because it can’t pretend to move an arm it doesn’t have.

There is no such fundamental requirement for the control system, though. A very elabo-

rate animatronic motor controller can produce very life-like canned motion, although the

controller itself bears little resemblance to a biological motor system.

Cog was not built to produce canned animations; the goal of the project is to explore

mechanisms for generating and learning social behavior. Perhaps, if Cog’s emulation of the

45

~θ

joint angle

A/D

upper arm

D/A
lower arm

D/A
torso/hand

D/A

skeletal model

~l
~F

~F0
~B ~v, ~K

Skeletal Model

Torque-Control

Muscular Modelmuscular model
δ

~τ

Figure 3-1: Overview of meso. Black boxes indicate sok-processes; blue boxes indicate

separate processors. Due to hardware I/O peculiarities, each motor controller (D/A) board

runs on its own processing node. Originally implemented as separate processes, the skeletal

and muscular models eventually merged into the same process to reduce communication

latencies and improve performance.

46

BA

Figure 3-2: Cog’s arms have six single-axis actuators (A); however, they are controlled as

if they were actuated by antagonistic pairs of real muscles (B). These virtual muscles can

span multiple joints, coupling their movements together.

human form includes key features of the motor system, the learning mechanisms will have

a very natural form. With that in mind, Cog’s actuators should incorporate human-like

control as well as mechanics.

It would be impossible to give muscles to Cog without entirely rebuilding the robot from

scratch. But, it is possible to implement an abstraction layer which provides an effective

simulation of human musculature. meso is this abstraction layer. Cog’s raw actuators are

torque-controlled motors [49]. meso builds on top of them, simulating “virtual muscles”

which mimic the operation of muscles in a human body (Figure 3-2).

meso incorporates three essential features of the human musculoskeletal system: reflex

stiffness, polyarticulate coupling, and a fatigue model. This allows production of human-

like movement which a higher-level control system can tune and optimize via biologically

relevant feedback cues.

Reflex Stiffness

Human muscle tissue is mechanically very different from electric motors, even motors under

force-control. Much work has been done to model how muscle tissues produce forces and

react to loads [51]. However, an accurate simulation of muscle tissue itself is not necessary.

The brain’s motor cortex does not directly activate muscles; the cortex connects to spinal

motor neurons which control the muscles in conjunction with spinal reflex loops. Using input

from stress and strain sensors in the muscles and tendons, these reflexes make antagonistic

pairs of muscles act like simple damped, linear springs over a wide range of motion [29].

47

meso incorporates this subcortical machinery into its simulation in the form of a spring

law to calculate muscle force. Each virtual muscle plays the role of a pair of biological

muscles along with their associated spinal feedback loops.

Polyarticulate Coupling

Many muscles in the human body span more than one joint. For example, the biceps

and triceps each span both the elbow and shoulder joints. Such muscles are kinematically

redundant, because identical arm configurations can be produced using muscles which span

only one joint. However, polyarticulate muscles have at least two important effects on the

dynamics of the limbs.

First, a multi-joint arm actuated by single-joint linear springs will not have isotropic

stiffness in endpoint coordinates [24]. In other words, the hand will react with varying

stiffness when pushed in different directions, and the stiffness profile will be a function of

limb configuration. Polyarticulate muscles add a tunable interjoint coupling, which allows

for control of the endpoint stiffness over a wide range of the workspace, independent of

the limb configuration. The endpoint stiffness can be made not only isotropic, but can be

tuned to match the task at hand. For example, accurately placing a puzzle piece on a table

requires high XY stiffness but low Z stiffness, to get precise position control in the plane

of the table yet avoid bouncing when eventually making contact with the table.

A second dynamic effect is that polyarticulate muscles can make the musculoskeletal

system more efficient [21, pp.298–303]. Applying a force in certain configurations of a

multi-joint limb results in some muscles undergoing a “lengthening contraction” (Figure 3-

3). That is, the muscle applies force while being stretched, thus doing negative work.

Although this quantity of energy is wasted as heat, other muscles must provide that work,

which is never seen at the output of the limb. In these cases, a stiff biarticulate muscle can

act as a mechanical linkage which lets the limb produce the same force, but without wasting

the work.

Cog has no real polyarticulate actuators (each joint is driven by a single motor), and a

simulation of such won’t make the robot any more efficient in terms of real physical energy.

However, if energy consumption is part of the simulation, then movements which utilize

polyarticulate virtual muscles in this way will appear more optimal than those which don’t.

This bias will further favor the development of human-like movement.

48

A B

~x

~τb

~τa

~τb

~τa

~x

Figure 3-3: The illustrations depict a simple two-segment arm with monoarticulate muscles

at each joint. The initial position of the arm is shown in black. (A) To do work along ~x —

that is, to apply a force along that vector — the arm must move into the blue configuration.

The torques required to produce such a force are given by ~r × ~F , where moment arm ~r is

the vector from the joint to the endpoint. The two joints apply torques ~τa and ~τb in the

same directions as they are displaced, thus both contributing to the output work. (B) In

a different configuration which does the same overall work, the lower joint must apply a

torque in opposition to its displacement. (This is counterintuitive, but readily apparent

when you consider that the dotted line is the moment arm.) This joint is absorbing energy,

and that energy must ultimately be provided by the other joint.

49

Fatigue

Cog’s motors have completely alien fatigue characteristics compared to human muscle.

Given an unquenched power supply from the national power grid, the motors can apply

a wide range of forces indefinitely, as long as they don’t overheat. Human muscles get tired

much more quickly, and this affects not only how much they are used, but also how they

are used.

Constraining the motors to operate under a muscular fatigue model should encourage

the development of both human-like movement and behavior. The model used by meso

reflects the basic metabolic processes in muscle [35, ch. 6], including a reservoir of energy for

penalty-free short-term activity. The fatigue level of a virtual muscle implicitly affects motor

performance and is also accessible as direct feedback to the higher-level control system. The

model is tunable, making it possible to simulate different stages of growth and ability, as

well as different types of muscle tissue.

What meso Doesn’t Do

meso does not implement motor control using postural primitives [50]. The notion of a pos-

tural primitive came out of work by Bizzi and Mussa-Ivaldi on motor activity in spinalized

frogs [4, 37, 22]. They discovered that the endpoint forces in a frog’s leg produced by acti-

vating neurons in certain regions of its spinal cord took the form of force fields modulated

by the activation. Each neuron produced a specific force field (forces varying with the po-

sition of the endpoint), and the overall magnitude of the field was scaled by the activation.

Activation of multiple neurons is additive; the fields of each individual neuron seem to be

simply summed. Most fields were convergent, meaning there was some endpoint position

to which the limb was pushed from any direction — in other words, an equilibrium point.

On a simple level, this is all consistent with treating the muscle groups as spring-like when

acting in conjunction with spinal feedback.

In a number of robotics projects ([36, 34, 32]), these equilibrium points are abstracted

into a collection postural primitives. Each primitive corresponds to one vector of set-points

for the set of spring-like controllers driving each joint. Movement is produced by interpo-

lating between primitives, i.e. moving the set-points of the springs from one position to

another. The joint angle set-points can be moved around within the convex hull of the

50

chosen primitives, although the joint angles themselves will stray because the joints are

springy.

This has always been a profoundly unsatisfying control scheme to me. The way it is

typically implemented amounts to little more than a sloppy (low-stiffness) position control

loop. The stiffness of each spring is made constant, and all the interesting dynamic effects,

such as changes in compliance over the path of a trajectory and adjusting for contact forces,

are ignored.

In meso, virtual muscles are controlled by supplying the stiffness and the set-point

velocity. The idea of controlling the velocity rather than the position was inspired by Pierce

[41]. Since a zero velocity is equivalent to “no change”, the learning modules of pamet can

safely probe the operation of the virtual muscles by sending progressively larger velocity

commands. Furthermore, the motion is intrinsically smoother: a hiccup in a stream of

velocity commands has far less potential for damage than a 5.0 → −1.2 → 4.9 glitch in a

stream of position commands.

3.2 Low-level Motor Control

Cog’s arms and torso are actuated by torque-controlled electric motors. Most robotic actu-

ators, particularly in manufacturing automation, use position control: the primary control

parameter is the actuator’s position, and the motor is driven so as to track a target position

as accurately as possible. Under torque control, the primary control parameter is the output

torque of the actuator, regardless of position.

Position-controlled devices are typically very stiff. The ideal position-controlled actuator

would lock on to its set-point and produce a potentially infinite force in response to a

disturbance. Such a mechanism is perfect for, say, accurately placing parts on a circuit

board in a carefully controlled assembly line. Cog, however, needs to interact with and

explore an uncertain world full of breakable people and things. We want its actuators to

be squishy and compliant: Cog should reach out to shake a visitor’s hand without breaking

her arm.

A low-gain feedback loop in position control will yield a softer, more compliant actuator

but at the expense of sloppy positioning and still no real control of the forces it produces.

Electric motors, with high ratio gearboxes, are not very backdriveable. The output shafts

51

10V control

Host PC

torque
cell

��������������������������������
�������������������� ����������

�����������
�����
�����
�����
�����
�����

���
���
���
���
���
���

motor

D/A

A/D

MEI card

DSP

Copley
amplifier

signal
conditioner	�	�	�		�	�	�		�	�	�	

�
�

�
�

�
�

5v signal

48V drive

mV strain

Figure 3-4: Torque feedback loop controlling the torso motors. A torsional load cell in series

with each motor’s output shaft measures the torque being applied to each joint. Control of

the arm and hand motors is similar, except that the torque cell is replaced by a“series-elastic

element”, which is intentionally compliant.

do not turn freely due to friction in the motor and gearbox. A position controller, whether

sloppy or stiff, will also do nothing to reduce the drag and resistance in an actuator. Under

torque control, though, when zero torque is commanded, the motor will actually be actively

driven to counteract the frictional forces. A torque-controlled actuator can be smoothly

tuned down to a completely floppy stiffness of zero.

The complete feedback loop of a torso joint on Cog is illustrated in Figure 3-4. Torque is

measured by a torsional load cell bolted in series with the motor. The controller is a Motion

Engineering Inc. multi-axis motor control card [“MEI card”] with an embedded DSP. The

torque signal is measured by the the card, which produces a motor control voltage according

to a general PID (proportional-integral-derivative) control law. The control voltage is turned

into a high-power drive current by a Copley amplifier which feeds the motor. The torso

motors are also equipped with optical encoders and limit switches so that their positions

can be accurately measured.

The arms are driven with a slightly more elaborate mechanism called series elastic

actuators, described in detail by Williamson [49]. The torque measuring element is actually

a torsion spring equipped with strain gauges. The spring acts as a mechanical low-pass

filter which absorbs shock loads — impulses generated when the arm knocks into objects

(including the robot itself). Shock loads can strip teeth in a motor’s gearbox; the elastic

52

element makes an actuator much more robust if it is expected to knock into things a lot.

It also makes the actuator more stable in response to contact forces, i.e. touching hard

immovable objects.

The springs in the arms are quite stiff, but flexible enough that optical encoders in the

motors cannot accurately measure joint position. Instead, arm position is measured by ring

potentiometers installed at the spring output of each joint.

The MEI card is programmed to run the torque control loop at 1600 Hz. The effective

bandwidth of the series elastic actuators, however, measures about 25-30 Hz, due to com-

pliance of the spring and the cables in the drive mechanism. Four MEI cards are used in

total, to control Cog’s 22 actuators. Each card interfaces to the upper layers of meso via a

sok program aptly titled mei-glue. This program provides an inport for torque commands

and, for the torso motors, an outport for encoder position. The arm position potentiometers

are actually scanned by a separate United Electronics Inc. A/D (analog-to-digital) card,

interfaced to the system via uei-glue.

The head and eye actuators are, unfortunately, not equipped with torque sensors and

are instead driven with position control. Since the head and eyes do not make physical

contact with the environment in everyday use, this is not such a drawback. However, the

head and eyes do not have variable compliance, and they cannot be coupled to the torso or

arms via virtual muscles. In the human body, the eye muscles are independent of the rest of

the musculature and are under a more position-like mode of control. The neck is, however,

strongly coupled to the torso. Cog is unable to display such motor effects as compensatory

stiffening of the neck when the torso leans forward.

3.3 Skeletal Model

Layered on top of the low-level torque control is a skeletal model which simulates the kine-

matics of the skeleton and virtual muscles. The skeletal model essentially computes two

functions: the muscle lengths ~l(~θ) as a function of joint angles, and the joint torques ~τ(~F , ~θ)

as a function of muscle forces and joint angles.

Two skeletal models were developed in the course of this research. The first is fairly

sophisticated — incorporating a kinematic model of the robot — yet fatally flawed. The

second model is almost trivial in comparison, but quite usable. Both models support virtual

53

muscles which can span multiple joints.

In either case, the skeletal model was originally implemented as a sok-process wrapped

around functions for the lengths ~l and torques ~τ . New joint angle ~θ messages from motor

glue processes would cause ~l to be recalculated and sent up to the muscular model. Incoming

force ~F messages from the muscular model would cause ~τ to be recalculated and sent back

to the motor glue processes. Eventually these two functions were merged into the same

process as the muscular model to avoid communication latencies. The complete control

loop of the merged system runs at 500 Hz.

3.3.1 Complex Coupling

In the complex coupling model, a virtual muscle is a mechanical element anchored at two

points on different body segments of the skeleton (Figure 3-5). The muscle exerts a force

directed along the line joining the two anchor points. As the robot moves (or is moved), the

effective torques applied by the virtual muscles change according to the configuration of the

skeleton. If a real force were being exerted between the anchor points, it would produce a

torque at each joint spanned by the muscle. In the model, these torques are calculated and

the resulting values are used to command the motors at those joints. Since the same torques

appear in the body of the robot, the mechanical effect of the virtual muscle is equivalent

to that of the real muscle. This method of simulating mechanical elements is developed

much more elaborately in Pratt’s virtual model control [42], in which the multi-joint legs

of a bipedal walking robot are made to act like a simple spring between the body and the

ground.

The expression for the torque on joint j due to muscle m is, by definition,

~τjm = ~Fm × ~rj

where ~F is the force vector between two anchor points ~pA and ~pB , and ~rj is the vector

joining the pivot ~qj of joint j to either anchor (e.g. ~r = ~pA − ~qj). Likewise, the length of

the muscle is just the distance between the two anchor points:

lm = ||~pA − ~pB ||

Once ~τjm are calculated for all muscles, the total torque for joint j is

~τj =
∑

m

~τjm

54

Figure 3-5: Example of complex coupling. Virtual muscles (purple) are lines of force act-

ing between points anchored relative to different links (blue) in the skeleton. Thin red

lines indicate the coordinate frames of each link. The figure itself is a screen capture of

mesokinescope, the program created to compose skeletal models and monitor the skeleton

in real-time.

55

j~p

frame j − 1

j−1x̂

j−1ŷ

j−1ẑ

j−1~p

j−1 ~qj
frame j

Figure 3-6: Coordinate frame (j − 1) is the parent of frame j. Vectors j~p and j−1~p describe

the same point, but relative to the respective frames. j−1~qj defines the origin of frame j.

The complexity comes in calculating the actual vectors. This is explained in full detail in

Appendix A and summarized below.

Each jointed segment of the robot is a link in a kinematic chain.1 Each link defines a local

coordinate frame, with its origin at the axis of its joint (Figure 3-6). That joint is anchored

in the frame of the link’s predecessor; that is, the location of that joint is determined by a

vector in the frame of the previous link in the chain. (The base of the robot, anchored to the

ground, provides the base reference frame for the chain.) Each link is thus parameterized

by a 3-d position vector (~qj) and an additional 3 parameters (α, β, θ) which specify the

orientation of the joint axis. Each muscle is defined by two anchor points anchored to

different links, i and k, and specified by vectors, i~pA and k~pB , in the corresponding frames.

Consecutive frames are related to each other by an affine transform, j
j−1T , determined

by the six parameters which locate one link within the other. These transforms can be

cascaded to yield k
iT for any two frames along the chain. Using the appropriate k

iT , one

can transform all ~pA, ~pB, and ~q vectors into the same coordinate frame and then evaluate

the length and cross-product using common vector operations.

Only 2N − 1 transforms need to be computed for a muscle which spans N joints. If the

1Actually, a kinematic tree in the case of Cog.

56

Figure 3-7: Failure of the complex coupling model: A single virtual muscle is shown high-

lighted in yellow. Its moment arm is the perpendicular (dotted line) from the joint to the

muscle. When the joint bends, the point-to-point line of force may cross the axis of the

joint. This effectively reverses the torque. A force which was expected to extend the arm

may, depending on the joint angle, cause it to contract.

kinematic parameters are known in advance, the necessary transforms can be precomputed

up to factors of the sine and cosine of the joint angles. This is precisely how the complex

coupling model is implemented: a muscle compiler, mesoc, reads a description of the robot’s

skeleton and virtual muscles and produces C code for the functions ~l(~θ) and ~τ(~F , ~θ).

In Cog’s case, this complex coupling was ultimately unusable because it isn’t complex

enough. In the human body, muscles are anchored to bones and they act via tendons which

are constrained to slide over the joints. The moment arms of such action are determined

by the routing of the tendons over knobby bones and other connective tissue. In Cog’s

virtualized skeleton, muscles apply a force directly between two points, and the moment

arms are determined by how far the muscle travels away from the joint axis. As shown in

Figure 3-7, in a straight configuration a muscle can only apply a torque if it is anchored

away from the skeleton. However, in an angled configuration, the anchor points may touch

or cross, or the line of force may cross to the other side of the joint, reversing the torque!

This restricts the useful range of most muscles to the point where they are just not useful.

57

r

F
ra

F rb

Figure 3-8: In the simple coupling model, virtual muscles act like a cable drawn around

pulleys affixed to joints. Each pulley is described by a radius rjm (the moment arm). The

torque exerted by all muscles on a joint is τj =
∑

m Fmrjm. The length of a muscle is

lm =
∑

j rjm(θj − θ0j). Since the muscle’s force law is linear, the absolute length (set by

the offset angles θ0j) is not important.

Fixing this problem requires modelling tendons and defining channels through which

they are constrained to move. For the purposes of meso and this thesis, this seemed to be

more trouble than it was worth. There exists at least one commercial package [25] which

does create dynamic models of tendons, sliding joints, knobby bones, and muscles with

multiple anchor points. It is not clear, though, that it can compute this fast enough to be

used in a real-time controller.

3.3.2 Simple Coupling

The flawed complex coupling model was discarded in favor of a much simpler model which

retained the key feature of polyarticulate coupling. In the simple coupling model, a muscle

acts like a cable attached to a pulley driving the joint. The torque exerted by muscle m

on joint j is τjm = Fmrjm, where rjm is the “radius” of the pulley, and the total torque

on joint j is thus τj =
∑

m Fmrjm. The length or displacement of muscle m is given by

lm =
∑

j rjm(θj − θ0j). The action of this model is easy to visualize with the cable analogy

in the one- or two-joint cases (Figure 3-8); a muscle which couples three or more joints is

more analogous to a hydraulic system.

The physical geometry of the robot is not important to this model, and the kinematic

description of the skeleton is no longer needed. Yet, for a wide range of a joint’s workspace,

this model is actually a better approximation of the action of a tendon which wraps around

the joint. Furthermore, the only parameters needed by this model are the pulley radii rjm.

58

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

series
elasticity

parallel
elasticity

element
contractile

Figure 3-9: The classic Hill model of biological muscle tissue [51, 23]. All three elements

are non-linear. The contractile element accounts for the force produced due to neuronal

activation, but for a given activation this force is dependent on the velocity of contraction.

The stiffness of the series elastic element is not constant, but is proportional to the exerted

muscle force.

No muscle compiler is necessary to achieve real-time performance, so the model can be

modified at runtime. This makes development and testing much easier, too.

3.4 Muscular Model

The highest layer of meso is the muscular model, which determines the dynamics of the

virtual muscles. The job of the muscular model is to compute the output forces ~F of the

muscles as a function of their lengths ~l. The basic model is a simple damped spring:

F = −K(l − l0) − Bl′ + F0,

where l0 is the equilibrium point (set-point), K is the stiffness, B is the damping constant,

and F0 is a length-independent bias.

This differs significantly from the behavior of an isolated biological muscle. Real muscle

tissue is typically modelled as a combination of non-linear contractile and elastic elements

(Figure 3-9). Pulse trains from afferent motor neurons cause muscle fibers to twitch, and

over the bulk of the material a contraction is produced. The force is sensed by nerves

terminating in the tendons (Golgi tendon organs), and muscle elongation is measured by

nerves (spindle fibers) in the muscle itself [13]. Overall, real muscle acts as a source of

non-linear contractile force, not a spring.

However, feedback loops which connect the force and elongation sensors, spinal ganglia,

and muscle fibers do cause real muscles to exhibit a spring-like response to perturbations.

59

Motor centers in the brain drive the muscles via the spinal ganglia by modulating the pa-

rameters of those feedback loops. The model I am using is a compromise between biological

accuracy and convenience of control. It realizes the cumulative effects of muscle tissue,

spinal feedback loops, and the action of antagonistic combinations of muscles.2

The spring law is essentially the equation for a proportional-derivative (PD) position

controller. Unlike a typical PD controller, however, the stiffness K is not tuned to an optimal

value and fixed in place. K is a variable control parameter and is always set relatively low

so that the joints remain “soft” in interactions with people and objects. When a muscle

is inactive (not being driven by a higher-level process outside of meso), K drops to zero

and the muscle is effectively limp. K also plays a role in a fatigue model which further

modulates the magnitude of F (discussed in the next section). The damping constant B is

the only fixed parameter; it must be set appropriately for each muscle to keep the controller

stable.

The muscular model is implemented within a sok-process called motor/msprings, which

computes ~F from ~l for all muscles at a frequency of 500 Hz. It has control inports for ~B,

~F0, and a masked pair of ~v and ~K vectors. The equilibrium point l0 of a muscle is not set

directly; rather, it is controlled by commanding its velocity. This naturally constrains the

robot’s movements to be relatively smooth, no matter what random values other processes

may decide to send to the muscles. The ~v and ~K vectors are accompanied by a bitmask which

determines which muscles are affected by the input. A sok arbitrator is used so that multiple

processes commanding different muscles can send their messages simultaneously to the same

single control inport. The vectors are merged and processed as a single velocity/stiffness

command at every timestep. If the stream of commands to a muscle stops (i.e. the message

frequency falls below a limit of 5 Hz), then the muscle becomes inactive and its stiffness is

ramped down to zero. When the stream begins again, the stiffness ramps back up to the

commanded value.

2Biological muscles can apply contractile forces only; one could easily make the virtual muscles do this

by adding a constraint that F ≤ 0. This would consequently require twice as many virtual muscles, to make

sure that each had an antagonist pulling against it.

60

 0

 0.2

 0.4

 0.6

 0.8

 1

L1 L0 H0 H1

Figure 3-10: Joint pain response through the full range of a joint’s motion. The hard limits,

L1 and H1, are the mechanical limits set by the stops in each joint. The boundaries of the

pain regions, L0 and H0, can be independently set for each joint.

3.5 Performance Feedback Mechanisms

Two important components of meso are the mechanisms with which it provides performance

feedback to higher control centers. Joint pain is a “discomfort” signal produced when the

joints are twisted close to their mechanical limits. Muscle fatigue is expressed as both a

discomfort signal and a physical weakening produced when a muscle is overused. These

signals provide negative feedback to the learning processes described in Chapter 5.

3.5.1 Joint Pain

Joint pain provides feedback to keep the robot from driving itself against its physical limits,

which is as unhealthy for robots as it is for humans. Joint pain is produced by the mo-

tor/jlimits module, which observes the joint angles of the robot and generates a non-zero

output δ per joint when the angle is within roughly 15% of its positive or negative limit.

This output accelerates as the limit is reached:

δ =

(

θ − θL0

θL1 − θL0

)2

for θL0 < θ < θL1

where θ is the current position, θL1 is the physical limit, and θL0 is threshold of the pain-

inducing region (Figure 3-10). The joint limits are measured by simply keeping track of

the min/max observed joint angles; these are initially discovered by “exercising” the robot

(manually moving each joint to its limits), but can later be initialized from values stored in a

file. The limits decay (shrink) very slowly over time so that the jlimits module can adapt

to drift in the position sensors. This means that Cog, like its human operators, benefits

from a good stretch every now and then to exercise the full ranges of its joints.

61

3.5.2 Muscle Fatigue

Just as joint pain provides the robot with feedback on the use of its skeleton, muscle fatigue

provides feedback on the use of its muscles. A sense of fatigue gives Cog the means to

optimize its movements to reduce its overall effort. Although Cog itself has no need to

conserve energy (it doesn’t foot the bill on its 60-amp AC circuit), it is hoped that energy-

efficient motion will also be more elegant motion, i.e. more like a human and less like a

(classic) robot. Furthermore, smooth, efficient motor activity does reduce the wear and tear

on the machine.

Fatigue in biological muscles is still not very well understood. It is believed to arise from

a combination of chemical and metabolic factors in the muscle tissue, as well as changes

in the central nervous system (CNS). In the muscle, depletion of energy stores and blood

oxygen, and accumulation of lactic acid, reduces the strength of muscle fiber contractions

and slows them down. In the CNS, the motor centers themselves appear to habituate to

motor commands and tire of firing the motor neurons.

Adams [1] created a model of human energy metabolism and muscle fatigue for use in

Cog. This model simulates a circulatory system, several major organs, and the levels of

six blood chemicals (three hormones and three fuels). It allows the robot to experience a

wide range of physical conditions, such as exhaustion, fear-induced stress, or carbo-loading.

However, none of those extremes are yet needed in this project, and the attention to detail

tends to obfuscate the workings of the dynamics involved.

I have created a simple fatigue model, coded directly into the muscle model, which

provides gross dynamic properties similar to Adams’ work. As opposed to supplies of

creatine phosphate, glycogen, glucose, and fat, virtual muscles have only two abstract energy

stores: a short-term store SS and a long-term store SL. SS is used with no fatigue effects

until it is fully depleted. Subsequently, SL takes over, with consequences to strength and

comfort as it is exhausted.

The fatigue model works as follows. At each time step in the muscular model, after

calculation of the desired output force F (l) for a muscle, the required power P is computed

according to

P = α|Fv| + β|F | + γK

where v and K are the velocity and stiffness. The first term accounts for the actual mechan-

62

ical power involved (a muscle is penalized for producing or absorbing work). The second

term is a penalty for generating a static force (it takes energy just to maintain tension).

The third term is a penalty for stiffness (it takes energy to hold antagonistic pairs in mutual

tension). The three parameters α, β, and γ are tunable so that different types of muscle

can be simulated: some muscles are better at quick exertions, others at providing large

forces with little contraction. So far, however, all the virtual muscles in Cog use the same

parameters, adjusted to favor static forces over stiffness.

The effect of P on the energy stores is computed via the following algorithm, where

Pavail is available influx of power obtained from extramuscular metabolic sources, and ∆t

is the length of one time-step:

• Calculate the required energy Sreq = P∆t and the available metabolic energy Savail =

Pavail∆t.

• Deplete available source Savail by the required amount:

Sreq = Sreq − min(Sreq, Savail)

Savail = Savail − min(Sreq, Savail)

• If Sreq > 0, then deplete SS by remaining required amount.

• If Sreq > 0 still, then deplete SL by the remaining required amount.

• If Savail > 0, then replenish SS by the leftover available energy:

SS = SS + min(Savail, (SS0 − SS))

Savail = Savail − min(Savail, (SS0 − SS))

• If Savail > 0 still, then replenish SL by the leftover available energy.

The energy stores never drop below zero, nor do they exceed their maximum capacities

SS0 and SL0. The stores only get replenished if the current required power P is less than

the available extramuscular influx Pavail , and the short-term store is replenished before the

long-term store.

63

The resulting SL level, relative to its maximum SL0, determines the discomfort signal δ

and the efficiency level φ for the muscle:

δ = 1 −

(

SL

SL0

)

(3.1)

φ =

(

SL

SL0

)1/2

(3.2)

The discomfort is signalled directly to other processes via a sok outport, but the fatigue

manifests itself solely by its effect on the muscle. φ modulates the force, so that the actual

force value produced by the muscle is Fout = φF . As SL decreases and fatigue increases, the

effective muscle force and stiffness drop. Once SL = 0, the muscle is completely exhausted

and incapable of producing any force at all.

Figure 3-11 illustrates four stages of muscle exertion. When a muscle is lightly used and

P < Pavail (a), the muscle is completely unaffected. Once P > Pavail (b), the muscle begins

to draw energy from the short-term store SS , which acts as a buffer for short-term exertion.

At this point, muscle performance is still unaffected. After SS = 0 (c), the long-term SL

begins to be depleted, and discomfort δ begins to rise and muscle efficiency φ begins to fall.

Eventually, SL drops to zero and the muscle abruptly exhausts itself. The muscle will no

longer produce any force until P drops below Pavail (d) and it is allowed to recuperate.

The relative recovery times for SS and SL are proportional to their maximum capacities.

SL0 is set to 100 times SS0, and Pavail set so that full recovery takes approximately 15

minutes. SL0 is set roughly so that if the elbow is extended to 90 degrees via a single

muscle, that muscle will exhaust itself after two minutes. This limit was chosen because,

beyond that, the elbow motors tend to overheat and fail.

64

b

 0

 5000

F produced
F required

 0

 0.5

 1
discomfort
efficiency

 0

 20

 40

 60
Sl

Ss(x10)

a c d

 0
 2
 4
 6
 8

 0 20 40 60 80 100 120 140 160

P required

Figure 3-11: An example of the effects of virtual fatigue on a virtual muscle. The graphs

show 160 seconds of discomfort δ and efficiency φ, short-term SS and long-term SL stores,

the required force F and the actual force produced, and the required power P . (a) Under

light exertion, the required power P is less than the modelled influx Pavail from metabolic

processes, and the muscle is unaffected. (b) When P > Pavail, the short-term store SS

begins to be depleted, still with no effect on muscle performance. (c) Once SS is used

up, then the long-term store SL begins to be depleted, resulting in a decrease in muscle

efficiency and an increase in discomfort. At this point, the force produced by the muscle

begins to diverge from the force required of it. Eventually, SL is exhausted, and the muscle

can no longer produce any force. (d) Once the muscle is allowed to relax and P < Pavail

again, it begins to recuperate. The short-term store is replenished first, followed by the

long-term store.

65

66

Chapter 4

Touch and Vision

In addition to the torso and two arms, Cog has a hand (on its right arm) and a head. These

two body parts provide new senses for the robot. The hand is outfitted with tactile sensors

that give a coarse sense of touch. The head has eyes formed of two cameras each, the basis

of a primitive vision system (by human standards). I am deeply indebted to my colleagues

Giorgio Metta and Paul Fitzpatrick, who developed the head controller and much of the

vision system.

This chapter describes the hand and the vision system as it is used in this project.

4.1 The Hand and Touch

Cog has a single, right hand1 (Figure 4-1); its mechanism was sketched out by committee,

but was fully designed by Aaron Edsinger, a fellow graduate student, and fabricated by

Aaron and myself. The hand has three digits — thumb, finger, and “paddle” — actuated

by only two motors. The thumb and finger are linked mechanically and move together to

produce a pinching action.

Weight was a critical factor in the hand design, since the hand is mounted at the very

end of the arm. The best way to reduce weight was to reduce the number of motors. This

three-digit design was chosen as the minimal arrangement which could produce a grasping

motion as well as a distinctly identifiable pointing gesture. Pointing is a key communicative

gesture, and was desired for a parallel project [45].

Like the arms and torso, the hand is driven by series elastic actuators and is torque-

1The left hand exists as a box of parts; it has never been put together.

67

Figure 4-1: Cog’s right hand, shown mounted on the right arm. It comprises three digits

— finger, thumb, and paddle — but is actuated by only two torque-controlled motors. The

thumb and finger are driven simultaneously by a single motor.

controlled. It also has absolute position feedback via small potentiometers installed at the

actuator output. Driving the actuators to combinations of their position limits yields four

primary gestures: pointing, grasping, pinching, and reaching (Figure 4-2).

Tactile Sense

The hand is equipped with tactile sensors to provide the robot with a sense of touch. The

sensors are small force-sensitive resistor (FSR) pads which, as the name suggests, respond to

a change in pressure by a change in resistance (Figure 4-3). The pads are covered with a thin

layer of high-density foam, which both protects them and makes their mechanical response

more uniform over a wider physical area. The foam also helps the hand grip objects.

Twenty-two pads are installed altogether (Figure 4-4). They are wired, however, to yield

six tactile signals, one for each inner and outer surface of each digit. Six tactile signals are

hardly enough to perform any dextrous manipulation, but they are plenty for the robot to

tell if it is bumping against an object or holding something large in its hand. In this project,

the tactile sense is primarily used as a reinforcement signal for learning behaviors.

The analog signals from the tactile sensors are digitized by the same A/D hardware

used for the joint angle sensors and made available to the system via the glue/uei module

68

Figure 4-2: The four primary gestures of the hand: a) reaching, b) grasping, c) pinching,

and d) pointing.

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

S
en

so
r

R
es

is
ta

nc
e

(o
hm

s)

Force (grams)

(a) Resistance vs Force for raw sensor.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200 400 600 800 1000

S
en

so
r

O
ut

pu
t (

vo
lts

)

Force (grams)

(b) Voltage vs Force for combined pad and

interface circuit.

Figure 4-3: Response curves of the tactile sensors. The interface circuit is tuned so that

the sensors produce the sharpest response in the region of low forces which are experienced

when the robot touches objects and people.

69

Figure 4-4: Detail of the FSR sensors installed on the hand, shown before the layer of

protective foam was applied. The commercially-produced sensors consist of conductive

thin-film electrodes affixed to a conductive rubber substrate. Compressing the substrate

increases the density of conductive particles and thus lowers the resistivity.

(Section 3.2). The signals are sampled at 50 Hz. The final form of the signal is a value

ranging from 0 to 1, normalized and clipped between adaptive minimum and maximum

values. The maximum value is simply taken as the maximum observed filtered signal. The

minimum value tracks the filtered signal value with a one-second time constant on rising

transitions and no delay on falling. This allows the filter to compensate for drift in the

zero-offset of the sensors. Furthermore, it makes the tactile sense habituate to stimuli over

a short time period.

4.2 The Head and Vision

The vision software on Cog, which controls both the head and cameras, was designed by

Giorgio Metta and Paul Fitzpatrick [19] and based on earlier work by Brian Scasselatti

[44]. This section gives a brief explanation of the significant features of that system and

describes how it is put to use in my own work. Figure 4-5 summarizes the entire system;

each subsection is described below.

70

motion color skin face

MEI card

tracker disparity

motor controlmotors

cameras

attention

Figure 4-5: Outline of the vision system. Black boxes indicate processes; blue boxes indicate

separate processor nodes. Analog video is fed to a framegrabber on each processor which

needs it. Most processes only need the right wide-angle view. The disparity (stereopsis)

module uses both left and right cameras.

4.2.1 Motor System

Cog’s head has a total of seven degrees-of-freedom. Three belong to the eyes, which have

independent pan control and a single tilt actuator. The remaining four belong to the head

itself: pan, tilt, roll, and a “forward lean” axis (Figure 4-6). The axes are actuated by

position-controlled motors, using optical encoders for accurate position feedback. Some

axes (e.g. head roll and tilt) are differentially driven; they are controlled by the combined

action of two motors. The head is also equipped with an InterSense electronic gyroscope

which measures inclination (tilt with respect to gravity) and angular velocity.

Like the arm and torso, the head motors are driven by Copley amplifiers and an MEI

motion control card; however, the MEI card operates in a position-feedback mode. The

lowest level of motor control is via command of velocities for each of the seven joints. The

actuators have no torque sensors, so torque feedback is impossible, and control of the head

cannot be fully integrated into meso. In other words, there can be no virtual muscles which

couple the neck with the torso or arms. However, since the arms and torso are also controlled

via velocities (of virtual muscles), similar high-level controllers could be used to drive all

71

Figure 4-6: Cog’s head, viewed from three angles. The eyes have three degrees of freedom:

shared tilt and individual pan. The head/neck has four degrees of freedom: pan, tilt, roll,

and a“lean”. The head motors are position-controlled, using optical encoders to measure the

position of each joint. An electronic gyroscope, measuring inclination and angular velocity,

is mounted on the head, between and just behind the eyes.

72

three. The head has, of course, no tunable stiffness parameters (~K); it is under accurate

position-control and is always very stiff.

The head has two default motor reflexes: fixating both eyes on the same target (vergence,

discussed in the next section), and keeping the eyes centered within their range of motion.

When the gaze (with respect to a central point-of-view) is not centered with respect to the

head, the head turns while simultaneously counter-rotating the eyes. If the eyes are focused

on some target in the robot’s periphery, the head will, after a short delay, begin turning in

the same direction. The eyes rotate in the opposite direction, so that gaze remains fixed on

the target. Once the head is pointing at the target, and the eyes are centered with respect

to the head, movement stops.

The gaze direction is stabilized by a combination of feed-forward control (using the

pre-computed kinematics of the head) and gyroscopic feedback. Thus, the gaze angle is

maintained even if the head is moved externally, by motion of the torso. This is essentially

an implementation of the human vestibular ocular reflex (VOR) [39].

Although the head motor system can be directly controlled by commanding velocities

for all seven joints, typically only the eye velocities are specified. The centering reflex

then moves the rest of the head in a smooth natural-looking manner as it responds to the

movement of the eyes.

4.2.2 Image Processing

Cog has two eyes, and each eye has two color NTSC cameras. One camera has a wide-angle

(120◦) lens to provide full peripheral vision. The other has a narrow-angle (15◦) lens to

provide a higher resolution in the center of the field of view, much like the human eye’s

fovea. The four cameras are genlocked together (synchronized to a common timebase).

The video streams are digitized by Imagenation PXC-1000 PCI framegrabbers. Multiple

processors in separate computing nodes work on the same stream simultaneously (perform-

ing different operations). Each such node has its own framegrabber(s); the analog camera

signals are multiplexed via distribution amplifiers to each node as required. This is far more

efficient (vis-à-vis network bandwidth) than digitizing each camera stream once and piping

the video around in digital form. Those nodes which do need to exchange processed streams

have direct point-to-point full duplex 100base-T ethernet links.

Video streams are captured in 8-bit per channel R′G′B′ encoding, typically sampled at

73

a resolution of 128×128 non-square pixels. Streams are non-interlaced; one field is simply

discarded. Much of the image processing is also performed using a log-polar representation

[17]. This is a lossy transform which reduces bandwidth by reducing the image resolution at

the periphery of the frame while maintaining resolution at the center. A 16 kB rectilinear

frame (128×128) requires only 8 kB in log-polar form, a factor of two reduction in framesize

(and thus, processor cycles) for an image with little loss of utility. With these optimizations,

most of the image processing on Cog is able to run at the full frame rate of 30 frames per

second.

4.2.3 Vergence

The vergence system mentioned earlier computes the visual disparity (measured in pixels)

between the left and right wide camera images. Using the known kinematics of the eyes and

head, the pixel disparity is transformed into a corrective velocity for the left eye and sent

to the motor control system. Cog is thus a right-eye dominant robot; the left eye attempts

to follow what the right eye is focused on. The disparity measure and the differential pan

angle of the two eyes together provide the robot with a measure of the depth (distance) of

the target.

The vergence control loop runs below full framerate, at 20 frames per second.

4.2.4 Saliency and Attention

The vision system focuses on one target at a time, and this target is chosen by an attentional

mechanism. Several filters run in parallel over the video stream of the right wide-angle

camera, appraising each frame for certain salient features. The attention system weighs

the opinions of these filters and decides on the image coordinates of the region yielding the

greatest total saliency. These coordinates are updated and sent to the tracking system at

frame rate. When the tracker decides to switch to a new target, it uses the last coordinates

it received.

The attention mechanism currently uses three filters. Two come from the original Fitz-

patrick/Metta vision system: for every video frame, each filter generates a list of up to five

bounding boxes which describe the image regions it considers most salient. The third filter,

a motion detector, was designed by me; instead of bounding boxes, it outputs a list of up

to five bounding circles (center coordinates and radius). Figures 4-7 and 4-8 illustrate the

74

Figure 4-7: Saliency and attention processing while looking at a walking person. One frame

each from the three saliency filters (vividness, skin tone, and motion) and the attention

system is shown. The vividness filter picks out parts of the blue floor. The skin tone filter

picks out the person’s arm and hair, a door, and the couch. The motion detector highlights

picks out two targets on the person’s body. The regions chosen by the filters are weighted

together by the attention mechanism, which favors the motion detector.

output of the filters and the attention mechanism in two different visual scenarios.

The first filter distinguishes vivid colors; it describes regions with high chroma content.

This makes Cog sensitive to the brightly colored toys which we researchers often wave in

its face. The second filter is a skin tone detector. Regardless of race, skin tones generally

fit the constraint (for R’, G’, and B’ values ranging from 0 to 255):

1.05G′ < R′ < 2.0G′

0.9B′ < R′ < 2.0B′

20 < R′ < 250

The “skin-tonedness” of pixels satisfying that constraint is estimated via the formula [6]:

S = 2.5(0.000968R′2 + 0.217R′ − 0.000501G′2 − 0.364G′ − 0.00287B ′2 + 0.906B′ − 50.1),

which is clipped to the range [0, 255]. (Pixels which do not fit the R ′G′B′ constraint are

assigned zero.) A region-growing algorithm is run over the image of S pixels to yield

bounding boxes around skin-toned portions of the frame. This filter makes Cog’s eyes

sensitive to people, particularly their heads and hands. Unfortunately it also makes Cog

sensitive to wooden doors and furniture and cream-colored walls.

The third filter is a simple motion detector based on inter-frame image differencing. Each

new frame is subtracted from the previous one, and then the difference image is thresholded,

dilated, and tagged using an 8-connected region-growing algorithm. The orientation of each

75

Figure 4-8: Saliency and attention processing while looking at the moving arm. One frame

each from the three saliency filters (vividness, skin tone, and motion) and the attention

system is shown. The vividness filter picks out a portion of the blue floor and the red fabric

on the robot. The skin tone filter also picks out the fabric, and part of the robot arm.

The motion detector highlights a circular region containing the robot’s hand. The regions

chosen by the filters are weighted together by the attention mechanism, which favors the

motion detector.

region is calculated, along with the extent along the major and minor axes; this provides

a description of each region by a rotated bounding box. A salient disc for each region is

chosen by picking the center point halfway between the centroid and the maximum extent

of the major axis, in the direction closest to the upper left-hand corner of the screen, with

radius equal to the minor axis. This choice of position tends to pick out both the heads or

upper bodies of people moving around the scene as well as the hand of the right arm when

it moves into the field of view. Note that the motion detection algorithm is useless when

the eyes are moving. Fortunately, the tracking system is implemented in such a way that

the eyes and head are stationary for a few moments before a new target is acquired. The

motion detector is gated so that if it registers too much motion (e.g. a significant fraction

of the scene), it decides that the camera has moved and suppresses its output.

The attention system maintains a 128×128 saliency map; each value in this map repre-

sents the saliency of the corresponding pixel in the video stream. With each new frame, the

system multiplies the current map by a decay factor δ. It then adds the weighted bounding

boxes or discs from each filter to the map. That is to say, if location (x, y) is contained

within a bounding box returned by a filter, and the weight assigned to that filter is w,

then w(1 − δ) is added to the value at location (x, y) in the saliency map. δ determines

the persistence of saliency over time. After the saliency map is updated, the location with

76

the highest saliency is determined, and these coordinates are output as the new center of

attention.

4.2.5 Tracking

A separate tracking module is used to consistently follow a visual target as it moves around

in the field of vision. The tracker receives the initial target coordinates from the attention

system. It then records a small 6x6 image patch centered around those coordinates, and

this becomes the target. Within each succeeding video frame, the tracker searches for the

target patch and outputs its new location.

The tracker anticipates the new location based on the last location and knowledge of

the motion of the head and eyes. Starting at that initial position, it searches around in a

10×10 region using straightforward correlation until it finds the best match. The tracker

then records the matching region as the new target patch. If the tracker cannot find a good

enough match, it decides that the target has been lost, and it then grabs a new target as

directed by the attention system. The robot never becomes hopelessly fixated on one target

because the tracker is not that good; in an active, moving world, a new target will usually

“get its attention” every few seconds or so.

The tracker sends the retinotopic coordinates of the target to the eye motor control

system, which then moves the eyes to try to center the gaze on the target. Thus, the eyes

will follow the target, and since the head control attempts to keep the eyes centered in their

range of motion, the head will follow as well.

4.2.6 Vision System as a Black Box

Much of the vision system is built with an interprocess communications protocol called

YARP,2 which is not particularly compatible with the ports and connections created by

sok. So, the vision system is (for this project) interfaced to the rest of pamet via bridge

modules which speak both YARP and sok. This creates an opaque interface which hides all

the vision modules and their interconnections.

The vision system internally uses several coordinate frames: joint angle, retinotopic,

and gaze angle in the “world” coordinate frame. The sok interface uses the world coordi-

nates exclusively. Everything visual is expressed in terms of 2-d gaze angle relative to the

2YARP was designed by Paul Fitzpatrick.

77

coordinate frame of the shoulders, i.e. the mounting point of the base of the head.

A sok module named eye/tracker provides an interface to the tracker. Its single outport

streams the position of the target, expressed as gaze angle and distance. The gaze angle is

computed in world coordinates from the eye/head joint angles and the target’s retinotopic

position. The retinotopic-to-gaze transform is increasingly inaccurate as the target moves

off-center, but since the tracking system is always trying to re-center the target, this is not

a problem in practice. The target distance is estimated from the differential angle of the

eyes, which is actively controlled by the disparity feedback loop.

A module named eye/saliency provides an interface to the visual filters of the attention

system. It has one outport for each filter and simply forwards the bounding box lists which

each produces, after converting the retinotopic coordinates into gaze angles. As mentioned

above, this transform is not completely accurate, but it is good enough to give a rough

estimate of salient areas — which is all the filters provide anyway.

Finally, a module named eye/features provides a feature vector describing the target

region being tracked by the attention tracker. This vector has six parameters: red, green,

blue, vividness, skin-tone, and motion — each ranging from 0 to 1. The values are computed

using similar algorithms as the saliency filters but are averaged over a 16×16 region of pixels

centered over the tracker target.

78

Chapter 5

pamet

pamet is the system in Cog which does the “thinking” (as much as you can call it that).

It is a collection of modules (sok-processes) which look for patterns in data flow, generate

movements, respond to reward and punishment, discover useful actions, and recognize and

respond to sensory stimuli. The modules are roughly divided into those which do something,

those which make models of what is being done, and those which generate instances of the

other two. The classes of modules are distinguished primarily by the types of inputs and

outputs they have.

pamet is a dynamic system: modules are created and destroyed as time goes on. In

general, the creation of a module indicates a hypothesis that there is something to observe

or to do which is potentially useful. The same module may later be destroyed (reclaimed

by the Great Bit Bucket) due to disuse; this indicates that the hypothesis has proven false.

pamet is also a distributed system: all modules run as separate processes on a network

of processors. This system could have been implemented as a giant monolithic time-stepped

process — in Matlab (or, preferably, Octave) no less. In many ways, that would have been

substantially simpler to build and debug. It would probably even work for simulation.

However, two of the challenges of this project were to create a system which runs a real,

physical robot, and to create a system which can scale up to many, many more modules. In

this distributed implementation, the learning and analysis modules can use cycles on isolated

processors without interfering with the real-time behavior of the action modules. As the

system develops and more modules are created and more processing cycles and memory are

required, additional processors can be added to the robot as it is running — the processing

79

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

s

θ

Figure 5-1: A toy robot. It is just a finger with a single actuator and a single tactile sensor.

Its position is fully determined by the single value θ; the sensor yields a single value s.

hardware and operating system were chosen such that this is possible. The system is far

from perfect, though, and a number of snags and bottlenecks exist which would need to be

resolved before “infinite scalability” is possible. However, adhering to these goals has made

the resulting system much more real than it would have been otherwise.

5.1 A Toy Example: The Finger Robot

To get a feel for how pamet is organized, let’s look at a toy implementation. Suppose that

Cog is a very simple robot with only one working actuator: a finger, which has a full one-

dimensional repertoire of expression, from curled-up to pointing (Figure 5-1). This finger

has tactile sensors on it, and the robot’s primitive emotional system is hard-coded to signal

pleasure in response to any tactile stimulus. Movement of the finger is controlled under

meso by a single velocity-controlled virtual muscle, and the configuration of the finger is

defined by a single angular position (also available from meso).

5.1.1 Learning to Move

The lowest level of pamet’s control of the robot will be two mover modules, hard-coded

by us, the roboticists. A mover module is very simple; it does nothing until it receives

a positive scalar activation signal from some other process. While it is thus activated, it

sends a fixed stiffness vector and a scaled velocity vector to meso. Thus, a mover module

makes the robot move by driving a subset of the muscles with some profile of velocities.

Our toy finger robot will have two movers: one for curling the finger, and one for extending

80

B
modellermodeller

modeller modeller

meso tactile

emotion

extend

curl

meso tactile

emotion

extend

curl

model

model

controller

A

θ s

R

θ s

R
A

A θ′

Figure 5-2: The robot has two movers, one for curling and one for extension. (A) Each is

observed by mover modellers, to see what effect, if any, they have on θ and s. (B) Two

models relating the movers to θ are learned, and a controller for the velocity θ ′ is created.

it (Figure 5-2(A)).

The movers are not actually completely subservient to external activation; they also

have internal random activation. At random times, a mover will activate itself for a random

duration and with a random activation level. The rate of random activation is initialized

to some maximum value when the mover is created. As the mover is activated more and

more by external sources, this rate of internal activation decreases.

The robot’s first order of business is to discover what these two movers do. The robot

has two state parameters, the tactile sensor value and the finger position value, which are

assumed to be independent. pamet’s proto-mover-modeller will spawn four mover-modeller

modules, one for each combination of state parameter and mover.

Each mover-modeller analyzes the interaction of its assigned state parameter and mover

module. It observes and records data from both and then tries to fit a linear model of the

state parameter’s velocity as a function of the mover’s activation. Essentially, it tries to

determine if the mover has a direct causal effect on the state parameter. In our toy robot,

we would expect such an effect to exist between the movers and the finger position, but not

between the movers and the tactile signal.

If no model can be fit after some length of time, the mover-modeller simply gives up

and exits gracefully. If the mover-modeller does discover a model, it records it in pamet’s

model registry.

Another module, the proto-controller, monitors the registry for mover models. It scans

the registry and groups together all mover models which affect the same state parameter. It

then spawns a controller module, which loads the models and connects itself to the relevant

81

B

meso tactile

emotion

action
modeller

meso tactile

emotion

actor

A

θ s

R

θ′

θ s

R

θ′ A

Figure 5-3: (A) An action modeller is generated to find rewarding configurations of θ. (B)

After training, an actor module is created. When activated, it drives θ to a prototypical

value θ0 via the controller.

movers (Figure 5-2(B)).

The controller module is an open-loop velocity controller for the given state parameter.

When it receives a velocity command on its inport, it activates the mover which will most

closely generate such a velocity in the state parameter. The existence of a controller module

for a state parameter means that it has become a controllable parameter.

Once we turn on our toy robot, it will begin wiggling its finger, due to the random

activation of its movers. The mover-modellers will observe this and create models relating

the finger position to the mover activation. Finally, a single controller will be spawned,

which can drive finger velocity by activating movers. The finger position has become a

controllable parameter, and the robot has effectively learned how to move its finger.

5.1.2 Learning What to Do

At this point, the robot is just occasionally wiggling its finger back and forth. We want

it to learn a trick: “point the finger straight out when touched”. The first thing the robot

needs to learn is “point the finger straight out”.

When the finger controller module is created, pamet’s proto-action-modeller will spawn

an action-modeller which will observe the controllable parameter (finger position) and the

robot’s emotional state. It will try to create an action model which correlates the finger

position with positive changes in emotional state (Figure 5-3(A)).

Squeezing the finger will cause a tactile sensation which is hard-coded as a pleasurable

response. So, we sit with the robot, and whenever it randomly happens to point its finger

straight, we reward it by squeezing the finger. The action-modeller will observe this and

create a model which essentially says that reward is expected when the finger is pointing

82

B

meso tactile

emotion

actor

trigger

meso tactile

emotion

actor

trigger
modeller

A

θ s

R

θ′ A

θ s

R

θ′ A

A

Figure 5-4: (A) A trigger modeller is created to discover rewarding conditions (values of

s) in which to activate the action. (B) After training, a trigger module is created, which

activates the action when the sensor value s is close enough to a prototype s0.

straight.

The action-modeller will register this model and then spawn an actor module (Figure 5-

3(B)). The actor has an activation inport, an inport to monitor its controlled parameter,

and a velocity outport connected to the controller. Like a mover, an actor is silent until

it receives an activation signal. Once activated, it drives the controllable parameter to its

most rewarding value (as encoded in the action model) and tries to hold it there as long as

the activation persists. An actor also has an internal random activation rate, which decays

over the life of the actor.

So, after a session of rewarding our robot when it randomly straightens and points its

finger, it will create an actor module which, at random, explicitly points its finger. The

robot has learned that pointing is a good thing to do.

5.1.3 Learning When to Do It

The robot now knows that pointing its finger can be a good thing to do, but it doesn’t know

when to do it. The next thing the robot needs to learn is an appropriate trigger for which

pointing is the appropriate response.

When the pointing actor is created, pamet’s proto-trigger-modeller will spawn one or

more trigger-modellers (Figure 5-4(A)). Each of these will observe different state parameters

and will try to correlate them with both the robot’s emotional state and the activation of

the pointing actor. The different state parameters can be sensor values, motor values, or

even the activation levels of other modules in the system.

Suppose we want to train the robot to point when it gets a tap on the finger. When the

83

robot starts pointing, we tap its finger, and then we give it a big squeeze as a reward. The

trigger-modeller assigned to monitor the tactile sensor will develop a trigger model which

shows that a tap to the finger, in conjunction with activation of the pointing actor, will

reliably precede a positive reward. The modeller will register this model and then spawn a

trigger module which uses it (Figure 5-4(B)).

The model essentially says that when a certain state context is satisfied (e.g. tactile

sensor registers a tap) and an action is performed, then a reward is imminent. The job of

the trigger is to put this model to work. The trigger monitors the tactile sensor, and when

a tap occurs, it will activate the pointing actor. Thus, we have successfully trained our toy

robot to point its finger when we tap it.

5.2 Names and Data Types

All of the modules which make up pamet are implemented as sok-processes; data is passed

between these modules via messages sent along connections between inports and outports.

Data streams typically fall into one of three categories: state parameters, activation values,

and velocity drive values.

State parameters (~s) are continuous streams of fixed-size vectors, such as the 17-dof

vector of joint angles on the robot. Such data are samples of the state of some continuous

process on the robot. Data is sent at a fixed frequency which is a compromise between

temporal resolution and data rates. Most velocity-controlled motor data flows at 50 Hz;

the motor control of meso operates at 500Hz; vision data (e.g. visual feature vector) is

frame-rate limited to 30 Hz.

Activation values (A) are intermittent streams of scalar samples which activate a re-

ceiving process. When “off”, no data is transmitted. When “on”, messages are sent at a

fixed rate (typically 50 Hz). The receiving process remains active as long as a continuous

stream of data comes in. Although the values of the data itself are generally ignored by the

receiver, it usually reflects the probability behind the decision to produce the activation.

Some state parameters (e.g. joint angles) can be actively controlled. Each such param-

eter will have an associated inport somewhere in the system for a drive value consisting of

a velocity vector (~v). The state parameter will be driven with the commanded velocity as

long as a continuous stream of commands is received on the port.

84

pamet is a dynamic system; ideally, all of these various parameters are discovered, con-

nected, and modelled automatically. This is accomplished primarily by conventions for

naming the ports. Regardless of the sok-process names, all outports which export a state

parameter have names of the form STATE.abc, where the “abc” is an optional label for any

human observers. Likewise, activation inports are labeled ACT.abc. Modules which have an

activation input usually have an activation output as well, which broadcasts the activation

state of the module to observers; these are named AOUT.abc. Velocity drive inports are

named VEL.abc.

The various modules themselves also have canonical names. Dynamically-generated

modules have names of the form _ABC/0xNNNNNNNN, where _ABC is a prefix determined by the

type of module and the suffix is the hexadecimal hash value of an automatically-generated

string which describes what the module does. These hash values are not particularly human-

readable, but they are at least consistent. Modules created in successive runs or experiments,

but which serve the same function, will keep the same name.1

Models and other metadata are stored in flat-file databases on the filesystem. Such

data is only necessary for the development of the system (creating new models and modules

and connecting them), not for real-time functioning at any particular stage of development.

Both the filesystem and various support daemons (such as the sok locator) can go down,

but Cog will continue to function. It won’t be able to get any smarter, but it won’t get any

dumber, either.

5.3 A Menagerie of Modules and Models

pamet as a framework has a cyclic nature. In general, for every module that generates

activity, there is a model of that activity, and in turn a module that creates and updates

that model. And for every model, there is another module which uses it to create a new

activity. Each model acts as an abstraction barrier, taking a nebulous set of data and

statistics and packaging it into a discrete, tangible entity.

As illustrated in Table 5.1, there are 5 basic classes of activity modules: movers, con-

trollers, actors, triggers, and transformers. Each one has a notion of “activation”; these

1After a while, you look at the list of running processes and just know that _PCMod/0x2F788AD2 is the

position-constant action modeller observing the right arm joint angle vector. It’s a bit like “reading the

Matrix”.

85

Module Subclass Inputs Outputs Instance Modeller

mover meso A _MV/ _MvMOD/

controller ~v A _CTRL/

actor position-constant A, ~s ~v _PCA/ _PCMod/

position-parameter A, ~s1, ~s2 “ _PPA/ _PPMod/

velocity-constant A, ~s “ _VCA/ _VCMod/

trigger position ~s A _PTG/ _PTMod/

activation-delay A1, A2 A _ATG/ _ATMod/

transformer ~s1, ~v2 ~s2, ~v1, A _XFM/ _XFMMod/

Table 5.1: Classes of modules implemented in pamet; most classes include a modeller module

for creating models, and an instance module for using the models. Each class is distinguished

by the type of data it consumes and produces. A is an activation signal; ~s is a state

parameter vector; ~v is the velocity of a state parameter.

modules sit quietly until input from another module (or random input from within) causes

them to wake up and perform a stereotyped function. Associated with these are a variety of

models: mover, position-constant action, position-parameter action, velocity-constant ac-

tion, position trigger, delay trigger, etc. Each type of model has a modeller module which

creates and manages instances of the model.

This set of classes has developed as the minimal set necessary for the robot to learn

the complete task of “pointing at some visible target”. Originally, I began this project

envisioning a complete, self-contained, “universal” set of modules and models which could

be endlessly combined and connected to enable the robot to learn anything that a human

could. In retrospect, that universal set might be extremely large. The module/model

learning cycle works because each class encompasses a very focused and specific type of

knowledge.

The rest of this chapter describes the various instance/activity modules. Most modules

are associated with some type of model; these models are discussed in Chapter 6.

86

5.3.1 Movers

A mover module is, in the simplest terms, a module that causes something to move when

it is activated. It has a single scalar input which determines the rate or intensity of the

movement. In particular, meso movers are the basic interface between pamet and the

virtual muscles provided by meso. When inactive (not receiving an activation input), meso

movers do nothing. When active, they send a hard-coded vector of velocities and stiffness

values to meso to activate a certain combination of virtual muscles. For example, the

_MV/hand/right-grasp mover will make the fingers of the right hand contract (without

affecting any other actuators).

Movers have internal random activation, which causes them to turn on spontaneously.

This is roughly a Poisson process, set by a baseline average activation rate. This base rate

will decrease over time as more and more explicit external activation is received. The idea is

that the mover starts out firing spontaneously to facilitate an exploratory phase of activity.

As the behavior and effects of the mover are modelled and other modules begin to explicitly

use the mover to produce actions, then the spontaneous firing is inhibited.

The meso mover modules are essentially a well-justified hack. They were created as a

way to bootstrap the learning process, to get the robot to simply move before it has learned

any reasons to move. The complete set is hand-crafted to reflect a repertoire of basic two-

or three-actuator motion combinations. They are further described in Section 7.1.

When the robot is first turned on (i.e. early on in a run of Cog’s “development cycle”),

mover modellers are spawned by a proto-mover-modeller module. Each mover modeller

attempts to find a reliable relationship between a particular mover’s activation level and

some state vector, e.g. the joint angles of the robot. For each such relationship found, a

mover model is created. These models are used to create controllers, described next.

5.3.2 Controllers

A controller is a module which multiplexes a group of movers together to control the velocity

of a state parameter. That parameter then becomes a controllable parameter. Controllers

are created dynamically depending on the available mover models. Recall that each mover

model characterizes a mover as influencing a particular state parameter (e.g. a subset

of the robot’s joint angles). The set of all mover models is partitioned into groups such

87

.

model

model

model

mover

mover

mover

controller

..

A1

A2

Ak

~v

Figure 5-5: A controller module, which receives a velocity command ~v at its inport. Using

the mover models it has loaded, the controller decides which of the connected mover modules

to activate, via drive outports Ai.

that models within the same group have overlapping influence (intersecting subsets), and

models in separate groups are independent. For each group, a controller is created, to which

those models are assigned. Each controller registers itself as capable of controlling a state

parameter which is the union of all parameters influenced by its group of movers.

The basic structure of a controller is shown in Figure 5-5. It has single velocity command

input ~v, and one drive output Ai for each mover under its command. A controller is an

activatable module; it sits quietly until it receives a stream of velocity commands. It then

activates the single mover m which best matches ~v according to the criterion

m = arg max(
~v · ~vm

‖~vm‖
)

where ~vm is the state velocity produced by mover m (given by the mover model). The

activation sent to m is simply:

Am =
‖~vm‖

~v · ~vm
.

The other drive outports remain silent. (Although, when an outport is going to become

silent, the last value sent is a 0.0; this is just to aid in diagnosing the system.)

Note that many modules can connect to a controller’s ~v command inport. To resolve

the possible contention due to multiple modules trying to command different velocities

simultaneously, this inport is equipped with a GrabArbitrator. When the ~v port receives a

message and becomes active, the source process of that message receives control. All other

message sources are ignored until the controlling source stops transmitting (i..e. fails to

send another message within a timeout period of ˜60 ms).

88

5.3.3 Actors

Each instantiated controller module gives pamet a knob to twist. Actors are the modules

which do the twisting, and action models describe what twisting they do. An action model

is essentially a description of a discrete, primitive action. Two types of action models have

been implemented for pamet:

• position-constant action: Drive a controllable parameter to a particular constant

value.

• position-parameter action: Drive a controllable parameter to match a varying input

parameter.

Other varieties are envisioned (e.g. “velocity-constant” and “velocity-parameter”); however

these are the only two implemented so far.

The impetus for having action models is to simplify learning by distinguishing “what to

do” from “when to do it”. An action model defines a very simple small behavior and makes

it tangible. Action models can be used as building blocks for more complex actions. Action

models can be compared with one another.

Action models are created by action modeller modules, which are themselves generated

by a proto-action-modeller. In general, for each type of action, there is one action modeller

assigned to each controllable parameter in the system. When new controllable parameters

arise (via the birth of a new controller), then new action modellers are spawned as well. An

action modeller analyzes the controllable parameter, looking for a correlation with a reward

signal. If it discovers a reliable correlation over some short time period (minutes), it creates

a model, and spawns an actor module for that model. Thereafter, it continues to monitor

the model and may refine it. One action modeller may create and manage multiple models,

since there may be multiple actions involving a single controllable parameter.

An actor module (Figure 5-6) instantiates its action model: it carries out the action

described by the model. Actors are quiet until they are activated by input to the activation

inport A. As long as they are kept activated, they will continue trying to achieve whatever

action they perform, sending a drive signal out to some controller. Actor modules also have

internal random activation. When first created, an actor will activate itself spontaneously.

This allows the robot to manifest whatever behavior it has just learned so that the behavior

may be linked to a stimulus (via a trigger, Section 5.3.4).

89

model

actor
controller

model

actor
controller

B

~s = ~s0

A~v

~s ~s = ~s0

A~v

~s

~s0A

Figure 5-6: Two types of actor modules. (A) The position-constant actor has a model

which specifies a prototype goal position ~s0 for a state parameter ~s. When activated via

messages to inport A, the actor sends velocity commands ~v to a controller, to drive ~s to the

goal. (B) The position-parameter actor has similar behavior, except that the goal position

~s0 is read from another state parameter instead of being a constant.

The rate of the random activation drops off over time, and eventually an actor will

only activate in response to an explicit external signal. If, after some length of time, an

actor has not received any external activation, then the actor exits and its action model is

discarded. One can consider an action model to be a hypothesis of sorts, claiming that a

particular controller activity leads to utile, rewarding behavior. If it turns out that nothing

ever triggers that action, then pamet decides that the hypothesis is false and the action is

“forgotten”.

Action models can also evolve over time. When a new action model is first devised by a

modeller, it is compared to all the pre-existing models which the modeller is managing. If

the new model is similar enough to an old model, then the old model is refined by blending

in the new model. No new actor is spawned (and the new model is never registered), but

the actor corresponding to the old model is notified of the update. This mechanism allows

actions to be continually shaped by a trainer over time.

The action models themselves are explored in Section 6.2.

5.3.4 Triggers

An actor is able to make the robot do some simple thing, but it does not know when to

do it. By itself, an actor acts at random. A trigger module bridges the gap between cause

and effect by explicitly activating an actor in response to a stimulus. For each trigger, the

stimulus is described by a trigger model, and these models are themselves created by trigger

modellers.

90

model

trigger
actor

model

trigger
actor

A0

~s ∼ ~s0?

A

A ~s

τ, Amin

B

A

Figure 5-7: Two trigger modules. (A) The position trigger outputs an activation signal

A when the input state parameter ~s is close enough to a prototype ~s0. (B) The proposed

activation-delay trigger is activated at some time delay τ after an input activation A > Amin.

Trigger models link state to action: they describe a context, and an action (literally an

actor module) which should be activated when the context is satisfied. Classes of models

are distinguished by what type of context they describe. One type of model has been

implemented in pamet, the position trigger, in which the triggering context is tied to the

value of a state parameter (Figure 5-7): the trigger is activated when the parameter is close

to some prototypical value. Another useful model envisioned is an activation-delay trigger,

which triggers an action after a delay in response to another activation signal in the system.

This would allow actions to be chained together into sequences.

Trigger modellers are created by proto-trigger-modeller modules. Whenever a new ac-

tor appears in sok space, the prototype module creates a new modeller for every possible

stimulus for that actor. Each modeller has inports for monitoring a state vector ~s (the

potential stimulus), the activation level A of the actor, and a reward signal R. The basic

operation of the modeller is to look for a correlation between the action, the state vector,

and the reward; the modeller is trying to determine if the action is consistently rewarded

when associated with some stimulus. How this happens is explained in Section 6.3.

Note that the trigger modeller has no idea what the actor is actually doing. The modeller

only sees whether or not the actor is activated. The internal random activation of the actor

insures that it will be occasionally active, at least at the outset.

If the modeller does discover a reliable correlation between action, stimulus, and reward,

then it will register a trigger model and spawn a trigger module. The trigger connects itself

to the stimulus’ state vector and the actor’s activation inport. The trigger will activate the

actor whenever (and for as long as) the trigger’s context is satisfied. The modeller continues

to monitor the action, stimulus, and reward, and may later refine the model, modifying the

91

context.

The activation output of the trigger does more than just activate an actor. The value

of that output is the probability that the its context is satisfied by the current state vector

~s(t). This probability is a useful parameter in its own right: it is an evaluation of some state

which is deemed relevant to the robot. A trigger’s activation output is thus considered a

state parameter which may be used as input to other triggers. (The actor itself does not

pay attention to the value, just to whether or not any message is being sent at all.)

Like an actor, a trigger is best considered to be a hypothesis that a particular stimulus

should trigger an action. However, there is currently no mechanism for deciding if the

hypothesis is no longer true and retiring a trigger. This issue will be further discussed in

Section 6.3.

5.3.5 Transformers

Suppose that two state parameters, ~x and ~y, describe the same process, but with different

coordinate systems. They are two different views of the same phenomenon. Then, there

should be a coordinate transformation ~f which maps ~x onto ~y. The basis of a transform

model is to learn such a transformation between two state variables, if it exists. A trans-

former module can then use that model to provide new state variables, classification, and

control.

The motivating example behind the transform model is the task of looking at the hand.

With respect to Cog’s shoulders, the position of its hand is determined by the state param-

eter ~θ, the vector of the six joint angles in the arm. Recall from Chapter 4 that the target of

the vision system is given as ~γ = (θ, φ, d), the pan, tilt, and distance in a shoulder-centered

global-coordinate frame. If the eyes are focused on the hand, then ~γ also tells us the position

of the hand, simply in a different coordinate system.

Of course, the hand position can also be described by ~r = (x, y, z), the 3-d cartesian

coordinates. This could be considered the most fundamental description, since it specifies

where the hand is in “real space”, and the ~γ and ~θ descriptions can be derived from ~r and

knowledge of the head and arm kinematics. However, real space ~r isn’t of any immediate

consequence to the robot, whereas ~γ and ~θ are. ~θ is required for any motor activity which

involves moving the hand around, and ~γ is needed for any sensory activity which involves

looking at something.

92

model

transformer
controller actor

actor

~y ~y = f(~x)

~̇yx~̇x

~x ~yx

Axy ~s

~v

A

Figure 5-8: General form of a transformer module. The module contains a model which

describes how the view of a process in one parameter space (x̂ space) maps into another (ŷ

space). The transform of the input ~x is continuously estimated and output as ~yx = f(~x).

The input ~y is used with ~x to continuously assess the probability Axy that the two inputs

are indeed tracking the same process. Since the model can perform the inverse transform

on ~y velocities, the module can also act as a controller. When it receives a velocity drive

signal at input ~̇yx, it transforms that into a drive signal ~̇x which it forwards to the controller

for ~x.

Whenever Cog is looking at its own hand, ~θ and ~γ relay the same information: the

position of the hand. The two vectors are related by a function f : ~θ 7→ ~γ which maps

from one coordinate system to the other. This function is the key to using the hand in

conjunction with the eyes together.

This f turns out to be a very useful function: it can tell Cog three different things.

First, given some random arm configuration ~θ, f(~θ) will tell Cog where to direct its gaze

in order to look at the hand (if, for instance, Cog forgets what it is holding). Second, if

Cog is intently looking at some object with gaze angle ~γ, then f−1(~γ) will tell Cog where

to move its arm in order to reach out and touch the object. Finally, if Cog’s current arm

position and gaze angle satisfy the relationship ~γ = f(~θ), then Cog knows that the target

it is looking at is its hand.

Figure 5-8 illustrates a generic transformer module. It has inports for the current val-

ues of two state parameters ~x and ~y. To act as a transform, it has an outport for the

computed/predicted state vector ~yx = f(~x). As a classifier, it has an outport Axy for the

probability that ~x and ~y are observing the same process (e.g. the position of the hand).

Finally, as a controller, it has a velocity inport ~̇yx and outport ~̇x. If ~x is a controllable pa-

rameter, then the latter port is connected to the ~̇x controller. ~̇yx will then act as a controller

for ~x, in terms of its transform ~yx.

93

The details of how transform models are trained and used are discussed in Section 6.4.

5.4 Other Modules and Facilities

The dynamic modules discussed in the previous sections operate by connecting to parame-

ters provided by a static foundation of hard-wired modules. meso and the visual and tactile

senses comprise the bulk of that base layer. Two other static subsystems which have been

alluded to but not yet described are the age mechanism and the emotional system.

5.4.1 Age

Most processes in pamet are time-dependent, but the dependency operates at two different

scales. Control processes operate at the millisecond level. Developmental processes operate

over minutes and hours, perhaps even days. Two different timebases are used in pamet to

accommodate this.

The short-term timebase is the CPU clock, which is utilized for all real-time tasks. This

includes sending activation signals and command streams, and sampling data — events

which occur at frequent regular intervals. A precise timebase is necessary, for example, for

accurately calculating velocities from state data: any jitter in the timebase adds noise to the

measurement. All such code is implemented using the real-time timer facilities built into

the QNX operating system, which provide microsecond resolution (as long as a processor

is not overloaded). There is no synchronization between processes at these timescales, even

on the same processor; each process essentially has its own local clock.

The long-term timebase is provided by a module called age. This is a sok-process with

an outport which, once per second, broadcasts the “age” of the robot in days. This provides

the system with a common global timebase for coordinating developmental events. These

events themselves fall into two categories: absolute and relative.

Absolute events are keyed to the absolute age. Many prototype modules, such as the

proto-controller, stay in hibernation until a certain developmental age is reached. These

modules cannot function successfully until other structures in the system, such as the mover

models, have stabilized, so this allows them to be hard-coded to wait for an appropriate

length of time. Relative events are just keyed to a change in the age, usually relative

to whenever a module was created. The decay of random activation and the expiration

94

tactile

emo/happy

fatigue

pain
emo/sad

meso

s

R

s

R

Figure 5-9: The basic emotional system employed by pamet consists of two modules, one

for positive rewards and one for negative. Each acts as a leaky integrator which sums its

input messages and produces an output which reflects the rate of reward input. The only

source of positive reward is the tactile sense (any touch is good touch). Negative reward is

derived from joint limit pain and muscle fatigue discomfort.

of unused actors fall into this category. The “clock starts ticking” whenever an actor is

created; the actor is given a deadline in robot minutes to prove itself useful, after which it

is destroyed.

The age module has a few controls attached to it: time intervals can be added or

subtracted from the age at the click of a button, and the aging rate (robot seconds vs.

real-time seconds) can be varied from the default of 1.0. This freedom eases debugging of

and experimentation with developmental events, and was the primary reason for decoupling

the robot age from the local CPU clocks.

5.4.2 Emotion

The reward signals involved in training actors and triggers are provided by an extremely

simple emotional system. The job of this system is merely to act as a clearinghouse for

reinforcement in the robot. The emotional system is composed of two modules, emo/happy

and emo/sad, which process positive and negative signals, respectively. Both modules have

the same basic structure (Figure 5-9), and differ only in how their inports and outports are

routed. Each module acts like a leaky integrator. The output R is a running sum of each

input message s which is received, but R also decays by a factor of λ at each time step.

The output value reflects the total rate of the input, averaged over a period of roughly the

length of the time constant. The modules run at 40 Hz; λ is typically set to yield a time

constant of two seconds, which equates to a fairly short “attention span” for reward.

95

The sources of raw reward are the primal motivators for the system, the hard-wired

measures of what is good and bad to the robot. The sole source of positive reward is the

tactile sense: when the robot’s hand touches something or receives a squeeze, that increases

its happy state. Negative reward is derived from meso’s joint-limit pain and muscle fatigue

discomfort. Cog’s sad state will increase if someone literally twists its arm behind its back.

Although it is satisfactory for the tasks implemented so far, this emotional model acts

as little more than a global variable. pamet will eventually need a mechanism for expecting

and accounting for reward (i.e. credit assignment). As more and more modules such as

actors and triggers inhabit the system, each will expect reward for its own niche of state-

space, and those niches will begin to overlap. Without a careful accounting for the reward,

it may become impossible to tell if the reward is meant for an existing model or if it is

marking a new experience. This system also needs more primal motivators — such as

simple facial expression or vocal prosody recognition, or even more abstract sources, such

as senses of satisfaction and frustration (positive and negative reward sources) for models

whose predictions are fulfilled or unfulfilled. An emotional system with states tied to gestural

reflexes, such as the one found in Kismet [7], would give much needed natural feedback to

people who interact with the system.

96

Chapter 6

Models and Modellers

This chapter details the implementation of the models and modellers introduced in the

previous chapter. Recall that every module in pamet which produces some activity does so

in accordance with some kind of model, generated dynamically by a modeller module. A

modeller may update one of its models over time. It may also discard a model and destroy

any other modules which were using it.

Most of the models are, ultimately, binary classifiers. Given a particular set of input

signals, they attempt to sort samples into one of two classes — e.g. “rewarded” vs. “un-

rewarded”, or “correlated” vs. “noise”. The models differ in how the distributions of each

class are modeled and which features of the distributions are put to use. In these terms,

the primary job of a modeller is to decide if a reliable classifier exists for the data it sees,

i.e. if there are two classes.

This chapter discusses the models and modellers in fairly generic terms. Many modellers

have tunable parameters. The tuning of the parameters, and the successes and failures of

the models, are explored along with the behaviors that this system produced, in Chapter 7.

6.1 Mover Models

A mover module is expected to produce a velocity in a state parameter ~s in proportion to

the module’s activation input A. By definition, then, a mover model is a linear model of

the velocity ~̇s as function of A which takes the simple form

~̇s = A~m.

97

A mover may not affect all of the components of a state vector, so the model also includes

a mask which specifies which axes of ~s are relevant.

Mover models are learned by mover modellers. For any given pairing of state ~s and

mover activation A, a modeller needs to determine which axes of ~s are affected, if any, and

what constants are involved. It does this by linear regression.

The modeller collects (~si, Ai) sample pairs over a number of episodes of mover activity.

A mover only transmits activation data when it is active, so there is no (~s,A) data when

the mover is inactive. The ~s samples are preprocessed episode-by-episode: each time-series

is low-pass filtered, and sample-to-sample differencing is used to determine the velocity ~v.

A block of samples at the beginning and end of each episode — the tails of the filtering

step — are discarded. Finally, the (~vi, Ai) pairs from all episodes are batched together and

subjected to linear regression.

For each axis k, mk is estimated by

mk =

∑

i vkiAi
∑

i A
2
i

.

The correlation coefficients Rk, and their maximum, are also computed:

Rk =
(
∑

i vkiai)
2

(
∑

i v
2
ki)(

∑

i a2
i)

, Rmax = max(Rk).

A model is only created if Rmax is greater than a threshold Rthr. If not, then the modeller

decides that no component of the state vector is reliably linearly affected by the mover. If

the threshold test does pass, then the axes for which Rk > λRmax are chosen as the relevant

axes (and the appropriate bits in the mask are set).

The result of this analysis is a model consisting of a vector ~m and a bit mask over the

components of ~m. ~m is an estimate of the velocity of ~s induced by the mover when it

receives a unit activation A = 1.0.

6.2 Action Models

As discussed in Section 5.3.3, the purpose of an actor is to twist a knob. An actor relies

on an action model to tell it which knob to twist and how to twist it. Two types of action

models have been implemented: position-constant and position-parameter.

98

modellercontroller modellercontroller

~sg

R

~s

R

~sc

A B

Figure 6-1: Two types of action modellers. (A) The position-constant modeller tries to

determine which prototypical values of a controllable state parameter ~s are associated with

reward R. (B) The position-parameter modeller tries to determine if reward occurs when

controllable state parameter ~sc is equal to or tracking a goal state parameter ~sg.

Position-Constant Action

The gist of a position-constant action is “drive the controllable parameter to a specific con-

stant value”. The job of the action modeller is to discover constant positions that correspond

to useful goals. The position-constant action model is essentially a binary classifier, which

decides when a state parameter is rewarded (useful) or non-rewarded.

Figure 6-1(A) illustrates a position-constant modeller. It has two inputs: the (control-

lable) state parameter ~s and a reward signal R. The modeller tries to correlate the reward

signal with the state vector data stream to discover values that are consistently rewarded.

It records pairs of samples (~s,R) and analyzes the data in short batches (corresponding to

around two minutes of real time). The first step of this analysis is to condition the reward

levels by detrending, smoothing, differentiating, and then thresholding. This produces a

series of pulses, where the onset of each pulse corresponds to a “reward event” — a mo-

ment when the robot was rewarded. Each state vector sample ~s is then classified as “T”

(rewarded) or “F” (not rewarded) according to the criterion of whether or not it falls into a

fixed window of time preceding each reward event.

A basic assumption made here is that the reward immediately follows the desired action.

The state vector values immediately preceding the reward are the ones which elicit it.

Figure 6-2 illustrates part of a dataset from learning a simple “point-the-finger” action.

The next step is to decide if there is actually anything to be modelled. It may be the

case that the reward R which the modeller sees is meant for some action involving some

other state variable. If the distribution of T samples is significantly different from the

distribution of F samples, then we conclude that the T samples are indeed being rewarded.

99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500

raw reward
state parameter
reward windows

Figure 6-2: An example of position-constant-action data analysis. The raw reward is

smoothed and thresholded to decide on a precise moment when reward occurred so that

reward windows preceding the reward can be constructed. The distribution of state pa-

rameter samples occurring during reward windows (“rewarded”) will be compared to the

distribution of all the rest (“unrewarded”).

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Rewarded
Background

Figure 6-3: Comparison of CDF’s to discover active axes. The rewarded and unrewarded

sample distributions from the sample dataset are significantly different, both to the eye and

by a measure of absolute area.

If the T sample and F sample distributions are essentially the same, then we conclude that

the reward is not, in fact, correlated with our state vector (not during this training session,

at least), and we toss out the data and start over again.

The distributions are compared by measuring the absolute area α between their cumu-

lative distribution functions (CDF) P (si|T) and P (si|F), where

α =

∫

|P (si|T) − P (si|F)| dsi

normalized over the range of si. If α > λ = 0.1, the T and F distributions are determined

to be significantly different (Figure 6-3). This test is similar to the Kolmogorov-Smirnov

(K-S) test [20], which measures

D = max |P (si|T) − P (si|F)|,

but the K-S test is less sensitive to differences in variance.

Both tests are only applicable to 1-D distributions, thus this test is applied to each

component of the state vector independently. This is necessary anyway, since not every

component of ~s is necessarily germane to the action. For example, if the state vector is

the complete vector of joint angles of the robot, perhaps only the position of the elbow is

being rewarded. The results of each test are combined to form the active mask for the state

vector; each axis which demonstrates a difference between T and F distributions has its

101

mask bit set. If no bits are set in the mask, then none of the state vector is correlated with

the reward data and no model is created.

If at least one axis can claim rewarded samples, then a position-constant action model

is created, consisting itself of models of the T and F distributions. These models are simply

multivariate Gaussians. Each model is just the mean and variance of the set of active

(masked) components of the class’s state vector samples. Assuming the distributions are

actually near-Gaussian, the T mean is the state vector with the maximum-likelihood for

receiving reward.

Whenever a new model is created, it is compared to all existing models (for the same

~s). If the new model is similar to an existing model, then the same action is probably being

rewarded and reinforced again, and the old model should be refined instead of duplicated.

Models are compared by their p(~s|T) distributions. If the means are within 1.5 standard

deviations (taken from the variances), then they are considered similar. In that case the

models are merged by averaging their parameters (the means and variances), and the old

model is updated with the new values. If the new model is not similar to any existing ones,

then it is registered and a new actor is spawned.1

Position-Parameter Action

The gist of a position-parameter action is“drive the controllable parameter to match another

state value”. The modeller for such an action (Figure 6-1(B)) has two state inputs instead

of one: the controllable parameter ~sc and the target parameter ~sg.

The entire discussion of position-constant models applies equally to position-parameter

models, except that the controllable state ~s is replaced by the difference ~e = ~sc−~sg. Whereas

the position-constant model contains the reward-relative distributions p(~s|T) and p(~s|F),

the position-parameter model consists of p(~e|T) and p(~e|F). The modeller records batches

of samples (~sc, ~sg, R), which are processed into streams of (~e,R). The same distribution

comparison algorithms are applied to determine if there is a significant difference between

rewarded and non-rewarded ~e values.

The model is sensitive to the condition that ~sc tracks ~sg with a constant offset. If that

offset is zero, then ~sc is exactly following ~sg, but that is not a critical condition for the basic

1If the new model is similar to two old ones, only the closest one is currently merged. There is no

mechanism for condensing existing models.

102

modelleractor

vision

A

A ~s

R

Figure 6-4: A position-trigger modeller tries to find an association between a state parameter

~s, an actor’s activation A, and reward R. The goal is to determine a region of the space of ~s

(a context) which leads to the actor being activated (triggering the execution of an action).

behavior. When the model is instantiated by an activated actor, the actor continuously

drives ~sc to the goal position (~sg + ~̂e), where ~̂e is the mean encoded in p(~e|T).

6.3 Trigger Models

A trigger module activates an action in response to some stimulus, and that stimulus is

defined by a trigger model. Only one type of model (and thus one type of stimulus) has

been implemented so far, and that is the position-trigger model.

Trigger modellers are created by proto-trigger-modeller modules. Whenever a new actor

appears in sok space, the prototype module creates a new modeller for every possible stim-

ulus for that actor. Each modeller has inports for monitoring a state vector ~s (the potential

stimulus), the activation level A of the actor, and a reward signal R. Figure 6-4 illustrates

an example of a trigger modeller observing an actor and a vector of visual features. The

basic operation of the modeller is to look for a correlation between the action, the state

vector, and the reward; the modeller is trying to determine if the action, when associated

with some stimulus, is consistently rewarded.

Position-Trigger Model

Position-trigger models are sensitive to state parameters, which can be either sensory or

motor parameters (or anything in between). They can define a context related to a sensory

stimulus, such as “looking at a red object” (i.e. high ’redness’ reported by the visual fea-

tures module). Or, the context can refer to a particular motor configuration, such as “an

outstretched arm”.

The position-trigger model can be viewed as a binary classifier where the two classes are

stimulus and non-stimulus. As with the action models, it’s convenient to label the classes

103

“T” and “F” respectively. It is convenient to think of the non-stimulus distribution as the

“background” distribution.

Each class is modelled by a distribution p(~s|C). The context represented by the model

is considered satisfied when the input state ~s is classified as stimulus. The criterion for this

is:

log

(

P (T |~s)

P (F |~s)

)

= log

(

p(~s|T)P (T)

p(~s|F)P (F)

)

> λ

where λ is a threshold typically set to zero.

Within this basic framework, the distributions p(~s|C) could be modelled in any number

of ways. Following the frugal example set by action models, here they are modelled as

unimodal, multivariate Gaussian distributions. This is sufficient to capture the concept of

a stimulus consisting of a single prototypical parameter value.

Position-Trigger Modeller

The modeller operates by collecting and analyzing batches of sample triplets (~s,A,R), where

~s is a state parameter vector, A is the activation status of an actor, and R is a reward signal.

The basic operation loop is:

1. Collect and preprocess a batch of data.

2. Try to extract a position-trigger model from the data.

3. If no useful model is discovered, goto 1 and try again.

4. Compare the new model to existing models. If the new model is similar to an existing

one, refine the existing one; goto 1.

5. Register the new model; spawn a trigger; goto 1.

The data is first preprocessed by low-pass filtering ~s and filtering R to produce a series of

pulses signifying reward events. Figure 6-5 gives an example of raw and preprocessed data.

The next step in creating a model is to classify the ~s samples as T (stimulus) or F

(background). The basic assumption is that a trainer is going to reward the robot when it

performs an action in response to a stimulus. Thus, the stimulus should be represented by

those samples which occurred in conjunction with both the action and the reward. However,

104

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000

raw Reward
action activation

Skin
R

reward events

Figure 6-5: A sample of a position-trigger training data set. The two components of state

parameter ~s are target features from the vision system (skin tone and redness). A is the

activation of a “reaching” actor; R is the reward signal (derived from tactile reinforcement).

The R signal is processed to yield discrete reward events.

105

it is possible that the recorded rewards pertain to something else; perhaps the action which

is being rewarded is not the action which the modeller is observing. Likewise, it is possible

that the actual stimulus involves only a few of the components of the state parameter, or a

different state parameter altogether. The modeller will need to be able to distinguish these

cases.

What does it mean for a particular sample ~s to occur “in conjunction” with an action

and reward? The onset or endpoint of the action will not necessarily coincide with the

reward, and certainly the single state sample that is recorded simultaneously with either

of these events is of little statistical value. What we really want is the window of samples

which encompasses the stimulus. This will give us a sample set over which we can estimate

a distribution. A couple of different ways of determining such windows were implemented.

Action-Onset Basis

The first technique makes the following assumptions about the training process: One, the

stimulus will be presented near the beginning of the action, and the action will probably

take some length of time to complete (e.g. to move the arm to some position). Two, the

reward will be delivered near the end of the action. The stimulus windows determined under

these assumptions are action-onset based.

We find likely windows in two steps. The intervals during which the action is activated

are the primary timebase. Let us sequentially label each such active interval as a0, a1, ..ai, ..,

and the onset and ending times of those intervals by ti0 and ti1, respectively.

First, over the entire dataset, we find the action windows, the samples which are to be

associated with initiating the action. This is the set Sa of samples which fall in a window

of length τa which begins at offset τ0a before an action onset. (The length and offset are

tunable parameters.) In other words:

Sa = {~s(t) | (ti0 + τa0) < t < (ti0 + τa0 + τa), for some ai}

The action windows for our example data set are illustrated in Figure 6-6.

Next, we find the reward windows Sr, the samples to be associated with receiving reward.

This is a bit more complicated. First, we need to decide whether or not each reward is

associated with an action. For a reward to be associated with an action, it should closely

follow the action. So, we use the criterion that a reward event occurring at time t is

106

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000 2500 3000 3500 4000

reward events
Action Windows

Actions
Reward Windows

Figure 6-6: Action and reward windows for the example dataset. The action windows are

1s in duration and follow the onset by 2s. The reward windows apply only to those actions

which have a reward which occurs within 2s of completion.

associated with action ai if

(ti1 + τr0) < t < (ti1 + τr0 + τr)

where τr0 and τr define the offset and length of the interval of association. A reward event is

associated with the closest action which satisfies that criterion, and if no action satisfies the

criterion, the reward event is considered a spurious event. If a reward event is associated

with an action, then we say that action has been rewarded. We also calculate tavg, the

mean delay from action onset to reward.

The reward windows Sr are going to be all the ~s samples which fit the action window

criterion, whether there was an action or not. Concisely,

Sr =











{~s(t) | (ti0 + τa0) < t < (ti0 + τa0 + τa), for some rewarded ai

{~s(t) | (tr − tavg + τa0) < t < (tr − tavg + τa0 + τa), for spurious events at tr

The first term is all reward-worthy samples, for actions which received reward. The second

term is an estimate of reward-worthy samples for rewards which had no corresponding

action. The intersection Sa ∩ Sr is the set of all samples ~s which occurred in conjunction

with both an action and a reward.

If Sr∩Sa is non-empty, then at least one invocation of the action appears to be coincident

with a reward. It is possible, however, that the reward was intended for different action or

a different state parameter, or both. If the distribution of Sr is the same as that of ¬Sr,

then the context for the trigger does not involve ~s because the rewarded samples look the

same as the unrewarded samples. Likewise, if the distribution of Sr ∩ Sa is the same as

¬(Sr ∩ Sa), then the trigger does not pertain to the given action.

107

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Rewarded
Background

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rewarded
Background

Figure 6-7: Cumulative distribution functions (CDF’s) of the stimulus samples (Sr∩Sa) and

background samples ¬(Sr ∩ Sa), as classified by the reward windows in Figure 6-6. CDF’s

are computed independently for each component of the sample vector, and the absolute

area is measured. The difference is significant for the second component but not the first.

Hence, only the second component would be used in the stimulus.

The two sets of distributions are compared using the same CDF measure used for the

action models (Section 6.2). As before, the comparison of distributions is performed inde-

pendently on each component of ~s in order to decide which ones, if any, are actually part

of the stimulus. Figure 6-7 illustrates the CDF’s for the sample data set.

Sliding Windows Note that this algorithm depends on a few important parameters: the

lengths and lags of the windows used for actions and for reward association. These numbers

must reflect the interaction between the trainer and the robot. The reward association

window (τr0, τr) is fairly forgiving. A typical working value is (0, 2). That is, any reward

occurring within the two seconds immediately following an action is considered a reward

for that action. The action window (τa0, τa) is more critical. The offset describes when

the stimulus is expected to happen with respect to the action and will vary depending on

the nature of each. The ideal offset also depends on the reaction time of the trainer: the

trainer will be applying the stimulus when the robot spontaneously performs the action,

to make the robot associate the two. The length of the window is crucial as well. Ideally,

it would match the length of the stimulus so as to yield the most accurate statistics. If

too long, non-stimulus background samples will get mixed into the model. If too short, the

window may provide poor statistics or even completely miss the stimulus, depending on

how precisely the offset is known.

In practice, a fixed-length action window τa of one second seems to work. However, the

108

lag τa0 needs to be tuned. The solution is to compare the CDF’s of Sr and Sa computed

using several different lag values, effectively sliding the action windows around until the

optimal value is discovered. (The optimum is the the value which produces the largest

above-threshold difference measure, summed over all axes.) The lag is varied in increments

of one-half the window length, over a range of typically one to three seconds.

Distributions After all this busywork to calculate an appropriate ST = (SR ∩ SA) and

SF = ¬(SR ∩SA), the rest of the model is simple: just calculate the means and variances of

each set to yield unimodal Gaussian models p(~s|T) and p(~s|F). The a priori probabilities

of each class are

P (T) =
|ST |

N
, P (F) =

|SF |

N

where N is the total number of samples in the data set. Note that the preceding discussion

is independent of how the distributions of ST and its complement are modelled. The only

assumption is that the distributions are separable, and this arises when the distributions

are compared.

The Gaussian model is used because it is very, very simple and gets the job done. It

expresses the concept of a single prototype parameter value (the mean) which is the ideal

stimulus. This makes the instantiation of the model by a trigger module straightforward.

Again, as with action models, once a new model is created from a batch of samples, the

trigger modeller compares it with any other models which it has already created. It may

be the case that the robot is still (or again) being trained to do the same thing as in an

earlier session. If so, instead of registering a duplicate new model, the older model should

be refined.

Two models are compared by examining the means of their stimulus distributions. If

the means are within 1.5 standard deviations of each other (derived from the mean of the

variances), then the models are considered to represent the same stimulus. The new model

is merged into the old model by averaging the means and variances together. Then the

trigger assigned to the old model is notified that its model has been updated.

Position Trigger

The position-trigger module introduced in Section 5.3.4 instantiates the model. A trigger

has an inport for the stimulus state parameter and an outport connected to an actor’s

109

activation input. When the stimulus input matches the stimulus in its model (and as long

as it does), the trigger activates the actor, which in turn causes the robot to perform some

action.

As mentioned earlier, the stimulus context is satisfied for an input ~s when

ρ = log

(

P (T |~s)

P (F |~s)

)

= log

(

p(~s|T)P (T)

p(~s|F)P (F)

)

> λ

The activation level output by the trigger is P (T |~s); the message is only sent when ρ > λ.

This value does not directly affect the actor — as long as the actor receives a message, it

activates — however, it may also be used as state parameter, to trigger other actions.

Note that the trigger criterion depends on a comparison of the distribution p(~s|T) for the

desired stimulus signal with the distribution p(~s|F) of the non-stimulus, or “background”,

signal. How these two relate changes the region of the parameter space which constitutes

the stimulus (Figure 6-8). Since the two distributions are modelled as Gaussians, each

class will be a single connected region in the space, and the decision boundary will be a

(hyper)conic section.

The trigger module updates the background distribution over time. The p(~s|F) distri-

bution created by the modeller reflects the statistics of the state parameter when the model

was trained. However, this is not necessarily a stationary process. As the robot moves

about, and as the robot begins doing new or different things, the background distribution

will probably change. (Imagine the visual impact of different tour groups coming to visit

the robot, with each group wearing a different color t-shirt so that its members don’t get

lost.) The trigger uses p(~s|F) supplied by the trigger-modeller as a seed when it starts up,

but modifies it over time as it takes in new state parameter samples.

The trigger updates the background distribution by averaging in each new sample,

weighted to yield a half-life of 300 seconds. Thus, the background distribution eventu-

ally reflects the mean and variance of the entire signal (over the last 10 minutes or so).

This seems statistically inappropriate, since it conflates the stimulus and non-stimulus sam-

ples, but it works just fine. The rationale is that stimulus events should generally be rare

(P (T) � P (F)), so including the stimulus samples in the calculation of the background

should not significantly affect it. If for some reason the stimulus becomes so very frequent

that the background distribution begins to look like the stimulus, then the trigger criterion

will become more difficult to satisfy. In effect, the trigger will habituate to the stimulus,

110

µF

σ2

T < σ2

F σ2

T < σ2

F

σ2

T > σ2

F

σ2

T = σ2

F

µT

Figure 6-8: Possible partitions of a 2-D parameter space by a Gaussian binary classifier.

The shaded region corresponds to the “stimulus”. The shape of the decision boundary is a

conic section determined by the variances σs
T and σ2

F of each class. The “stimulus” may be

confined to a closed region, or it may be everything but a closed region.

111

and this is actually a desirable behavior.

6.4 Transform Models

A transform model describes a situation in which two state parameters are different views of

the same underlying process. As discussed in the previous chapter, the motivating example

is the case when the eyes are tracking the hand. Since the gaze angle of the vision system

is locked onto the position of the hand, the gaze angles and the arm’s joint angles become

causally related, and in particular that relation is a coordinate transformation. Of course,

the eyes are not always fixated on the hand. The transform model must not only learn the

transformation function; it must also be able to discern when it is applicable.

Generic Transform Model

A transform model in pamet is another type of binary classifier. It is defined on a pair

of state parameters ~x and ~y by a pair of distributions over the two classes, p(~x, ~y|T) and

p(~x, ~y|F). The first distribution is the tracking distribution; it describes the statistics of

(~x, ~y) when the two parameters describe the same phenomenon — e.g. when the eyes are

targeting the hand. The second distribution is the background distribution, which describes

the other case — e.g. when the eyes are looking at anything but the hand.

For the non-tracking, background case, it is assumed that ~x and ~y are independent.

Then,

p(~x, ~y|F) = p(~x|F)p(~y|F)

and those two component distributions are simply modelled as multivariate Gaussians.

For the tracking case, ~x and ~y are decidedly dependent (that is the whole point of this

exercise), and that dependency is described by a transform function f . Let’s assume a

Gaussian noise source in the measurement of ~y; then when ~y is tracking ~x,

~y = f(~x) + ε

and

p(~y|~x, T) = g(f(~x), σ2
ε),

where g(µ, σ2) is a Gaussian distribution with mean µ and variance σ2, and σ2
ε is the variance

112

of the noise source. This gives us

p(~x, ~y|T) = g(f(~x), σ2
ε)p(~x|T)

as the tracking distribution.

The transform function f needs to be learned. This is a problem of function approxi-

mation, and there are no good general answers. Two techniques were used in this thesis.

The first is a non-parametric memory-based technique with a smoothness constraint. The

second is a semi-parametric model for a true coordinate transformation. The former is

quicker (trivial) to train than the latter, but the latter is significantly faster than the former

for producing estimates. These models are discussed further in Appendix B.

Transform Model as Predictor, Classifier, and Controller

A transform model can serve three different purposes. Most trivially, it can serve as a

predictor of the “y-space position” of ~x, by evaluating the transform function, ~yx = f(~x).

In the eye-arm case, this function predicts “where the eyes need to look, in order to look at

the hand”, given the current joint angles of the arm. The model could also do the converse,

predicting “where the arm needs to move, so that the eyes focus on it”, given the current

gaze angle. This would also be useful, but not so trivial, since it requires solving ~y = f(~x)

for ~x, when f is not necessarily invertible. Fortunately, the structure of pamet obviates a

direct need for this.

The second use of a transform model is as a classifier, to estimate the probability γ that

process ~y is tracking process ~x. In practical terms, it can answer the question “Are the eyes

looking at the arm?” This estimate is a direct result of the distributions in the model:

γ = P (T |~x, ~y) =
p(~x, ~y|T)P (T)

p(~x, ~y|T)P (T) + p(~x, ~y|F)P (F)

The third use is as a controller. Recall that in pamet, a controller (Section 5.3.2) is a

module that can drive a particular state parameter according to an input velocity. If ~x is

a controllable state parameter, then a transform model can specify how to drive ~x, given a

velocity ~̇yx expressed in the “y-space”. For example, this would allow the arms to be moved

around in the gaze space of the robot, i.e. the robot could move the hand to whatever it

happened to be looking at. This is possible because a controller only needs to convert a

velocity from one space to the another, and that amounts to solving the linear equation

113

~̇yx = F (~x0) · ~̇x

for ~̇x where F (~x0) is the Jacobian of f evaluated at the current position of the system ~x0.

Even if f is not invertible (and thus F is not an invertible matrix), this can be solved using

singular value decomposition (SVD) [43, 47]. The particular solution provided by SVD

minimizes the norm ‖~̇x‖. In general, that is precisely the solution we want: it is the solution

which achieves the goal velocity with minimal extraneous movement.

This controller method is essentially the same process as using the Newton-Raphson

method to iteratively solve ~y = f(~x) for ~x, by step-by-step moving ~x along the gradient

which minimizes (~y− f(~x)). Instead of just repeating the calculation until it converges to a

solution for ~x, however, the ~x state is physically changed at every step (e.g. the robot arm

actually moves a bit). This method will fail as a controller in the same ways it can fail as a

root solver. The fact that ~x is physically manifested can be helpful, though. For example,

slew limits and the natural wobbliness of the arm help keep it from zooming off to infinity

or getting caught in a cycle.

Transform Modeller

Transform models are created by a transform modeller module, which, as one might expect

by now, is itself spawned by a proto-transform-modeller. One transform modeller is created

for every pair of state parameters. Like all other modeller modules, the basic order of

operations of the transform modeller is the following:

1. Collect a set of (~x, ~y) samples.

2. If a model already exists, update the model using the new data.

3. If no model already exists, analyze the data to try to create a valid transform model.

4. If a new model is created, register it and spawn a transformer to put it to work.

If each (~x, ~y) sample were already tagged as “tracking” or “background”, the analysis would

be trivial. We could just calculate the mean and variance of the background samples to

produce the background distribution p(~x, ~y|F). Then we could train an approximator f̂

on the tracking samples (straightforward supervised learning), and use its performance to

114

estimate σ2
ε , yielding p(~x, ~y|T). Unfortunately, the samples are not conveniently tagged.

The transform model, acting as a classifier, could do this tagging for us, but we don’t have

a transform model yet!

A way to wriggle out of this conundrum is to use the Expectation-Maximization (EM)

algorithm, applied to classifying the samples as tagged or background. The basic idea is to

iterate between these two steps:

1. For each sample si = (~xi, ~yi), use the current model to estimate the probability γi

that si is a tracking sample (versus a background sample). γi is also known as the

responsibility coefficient.

2. Update the model. Recompute the tracking and background distributions, weighting

each sample’s contribution to each distribution by γi and (1 − γi) respectively.

EM is guaranteed to converge to something, but it’s not guaranteed to converge to the

answer we’re looking for. The main question here is how well the tracking samples can be

resolved from the background noise of all the rest. The answer to that question rests in the

nature of the approximator used to learn f̂ .

Unfortunately, of the two approximators which were implemented, neither worked well

enough in the sample task (learning the transform between arm joint angles and hand

visual position) to yield an accurate “tracking” versus “background” classifier. With the

available data sources, this algorithm could not be made to converge properly. However,

the semi-parametric approximator was far more robust in the face of training data which

contained many junk, non-tracking samples. Since its form is more constrained than the

non-parametric model (whose only constraint is smoothness), it did a better job of locking

on to samples that actually had a coordinate-transform relationship. These efforts are

further described in Section 7.4.

Refinement

The preceding discussion was mostly concerned with bootstrapping: discovering a brand

new model within a set of data. If a decent model already exists, refining it via the addition

of new data is a much simpler process. We simply run one iteration of the EM algorithm:

1. Using the current model, compute the responsibility coefficients γi for each sample.

(If we expect a useful temporal continuity constraint, {γi} can be filtered over time.)

115

2. Iteratively update the transform function f and the background distribution, weight-

ing each new sample with by its γi.

If the transform function uses an online update rule, this sequence can be applied online

as well, as each sample is recorded. After a modeller has created its transform model, it

continues to collect data and to refine the model.

116

Chapter 7

Learning Simple Behaviors

This chapter documents how the system learns a progression of simple behaviors through

a combination of robotic self-exploration and human training. The first behavior is just

controlled movement, developing controllers for the fingers and arm. This allows the robot

to be taught specific hand and arm gestures. The gestures can then be conditioned to follow

tactile or visual stimuli. The trainer can refine a gesture over time, keeping it linked to the

same stimulus. Once the arm is moving around in the visual workspace, the robot will

develop a controller for actively moving in that workspace. The robot can then be taught

to reach to where it is looking. Finally, that reaching can be triggered by a particular visual

cue.

Figure 7-1 shows a schematic diagram of the system when it is first started up. Only

pamet modules are enumerated. Since the motor, vision, and tactile subsystems are static,

they are shown as monolithic boxes. The contents of those boxes have already been described

in Figures 3-1 and 4-5.

7.1 Moving via Movers

The motor primitives, which link pamet to the virtual muscles, are the mover modules

(Section 5.3.1). Each mover is hard-coded to command a subset of virtual muscles with a

particular velocity vector, which is scaled by the activation level of the mover. The system

has two independent sets of movers, one for the right arm and one for the hand, listed

in Table 7.1. The movers are hand-crafted to reflect a repertoire of basic two- or three-

actuator motion combinations. They fully cover the joint velocity space, just as a complete

117

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

E+

Sb+E−

Sb+E+

Sa+E−

Sa+E+

Sa+

Sb+Sc−

Sb+Sc+

Sc+

proto−controller

proto−action−modellerproto−mover−modeller

happy
sad

emotion
[Ch. 5]

touch sense

tactile
[Ch. 4]

vision

attention,
tracking,

head control

[Ch. 4]

proto−trigger−modeller

proto−transform−modeller

pinch

point

virtual muscles, joint limits, fatigue

meso [Ch. 3]

Wa+Wb+

Wb+

Wa+

E+Wa+

Figure 7-1: Schematic of the initial state of the system. Aside from the static structures

of the motor and sensory systems, sok space is populated by only mover modules and the

various proto-modellers.

118

Right Arm Movers

name ShA ShB ShC El WrA WrB

Sb+Sc- 0.0 2.0 -2.0 0.0 0.0 0.0

Sb+Sc+ 0.0 2.0 2.0 0.0 0.0 0.0

Sc+ 0.0 0.0 3.0 0.0 0.0 0.0

Sa+E+ 3.0 0.0 0.0 2.0 0.0 0.0

Sa+E- 3.0 0.0 0.0 -2.0 0.0 0.0

Sa+ 2.0 0.0 0.0 0.0 0.0 0.0

Sb+E+ 0.0 2.0 0.0 3.0 0.0 0.0

Sb+E- 0.0 2.0 0.0 -3.0 0.0 0.0

E+ 0.0 0.0 0.0 3.0 0.0 0.0

E+Wa+ 0.0 0.0 0.0 3.0 2.0 0.0

Wa+ 0.0 0.0 0.0 0.0 2.0 0.0

Wb+ 0.0 0.0 0.0 0.0 0.0 2.0

Wa+Wb+ 0.0 0.0 0.0 0.0 2.0 2.0

Right Hand Movers

name Thumb Paddle

pinch -1.0 1.0

point -1.0 -1.0

Table 7.1: The complete set of mover modules which connect pamet to meso. For a given

mover (row), each coefficient specifies the velocity of the given muscle (column) when the

mover has unit activation. Most movers drive two muscles.

collection of single-joint vectors would. However, when the robot is not executing learned

actions (such as in the early stages of its development, when it has none), all its movement is

derived from random activation of single movers. (Mutual inhibition connections allow only

one mover to be active at a time.) Movers which encode multi-joint motor combinations

produce more life-like motion than those which only move a single joint.

When the system starts up, random activation of the mover modules causes the robot’s

arm and hand to begin moving, exploring the workspace. Mover modellers are automatically

created for each mover, to determine which state parameters the movers are driving. The

movers directly control muscle velocity, and via the action of the muscles this affects the

joint velocity. The system has no a priori knowledge of this connection and must discover

it.

Each mover modeller records and analyzes series of (~s,A) samples, where ~s is a state

parameter and A is the activation of the associated mover. Figure 7-2 shows a sample

119

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0 200 400 600 800 1000

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000

Figure 7-2: Elbow and thumb joint angles θ (top) and mover activation A (bottom) versus

time, recorded by the modeller for the elbow mover (E+).

dataset of elbow and thumb joint angles and elbow mover activation over a period of 200

seconds of activity. The data was collected over a larger period of real-time; only the

intervals in which the elbow mover was activated are recorded, because the mover has no

activation A to record when it is inactive.

The modeller filters and differentiates each episode of mover activity to yield the joint

velocity over time (Figure 7-3). It then tries to fit a linear model of ~θ as a function of A

(Figure 7-4). The fit is performed by linear regression independently on each component

of ~θ. Not every component is necessarily affected by every mover. A mover controlling

finger muscles, for example, shouldn’t have any impact on the joint angles of the shoulder.

The correlation coefficient R2 of each fit is used to decide whether or not a component is

being controlled by the mover. The velocity of a joint which is not controlled by the mover

should show less correlation with the activation value than joints which are controlled. The

disparity is enhanced because typically other movers are randomly moving the uncontrolled

joint.

For any joint to be considered affected by a mover, its R2 must surpass 0.4. Further-

more, if the maximum coefficient over all the joints is R2
max, then R2

j must be greater than

120

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 100 200 300 400 500 600 700 800

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800

Figure 7-3: Elbow and thumb joint velocities θ̇ (top) and mover activation A (bottom) versus

time for the elbow mover modeller. Velocities are estimated by smoothing and differencing

the joint angle data.

(0.2)R2
max for joint j to be considered. This local threshold allows the decision of choosing

one joint over another to be relative to the quality of the given data.

Problems

The coefficient vector ~m learned by a mover model is an estimate of the joint velocities pro-

duced by unit activation of a mover. The mover itself commands a set of muscle velocities.

For a mover which only commands single-joint muscles, we can predict what the ideal ~m∗

should be, since the virtual muscle is specified by the single ratio between its length and

the joint angle.

It turns out that the learned ~m always underestimates ~m∗ (i.e. is biased towards zero).

Three effects contribute to this error:

1. Joint limits: When a joint reaches its mechanical limit, its velocity is clipped to zero,

no matter what the mover is commanding.

2. Inertia: When the muscle starts moving and pulling on the joint, there is a lag before

the joint begins to move. Likewise, there is a lag (and oscillation) when the muscle

121

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Thumb
Elbow

Thumb Fit
Elbow Fit

Figure 7-4: The linear fit of θ̇ versus A by the elbow mover modeller, shown for the elbow

and thumb joints. The correlation coefficients for each joint are: elbow R2 = 0.817, thumb

R2 = 0.081. The elbow is sufficiently correlated with the mover activation, but the thumb

is not — just as one would hope for an “elbow mover”.

122

decelerates; but deceleration occurs after the mover has become inactivated. Thus,

only the acceleration lag is recorded in training data.

3. Gravity: Virtual muscles are spring-like. When a joint is in a configuration which

opposes gravity, the equilibrium point of the muscle is stretched out farther than the

actual joint position. Large changes in the equilibrium point are required to produce

small changes in the joint angle. Thus, a large muscle velocity is needed to achieve

the same joint velocity.

The first problem could be mitigated by filtering out samples which are recorded when the

joint is at its limits, since the limits are known to the motor system (and used, for example,

in the calculation of the pain response). This would, however, complicate the issue of using

mover modellers to model other linear phenomena in addition to virtual muscle activation

— how would knowledge of such“extenuating circumstances” be discovered in general? The

second problem could be partially resolved by eliminating more data from the beginning

of each episode; the problem of discovering how much is necessary is still a problem. The

third issue, the gravity effect, actually demonstrates a strength of the adaptive paradigm:

the real system does not completely match the theoretical operation, and the learned model

reflects that. However, the model is not sophisticated enough to account for the fact that

this effect varies over the workspace.

7.2 The Toy Finger Robot, Realized

After the mover models have been created and registered, pamet’s proto-controller module

can group them together and spawn controller modules for each independent subset. With

the given movers, two controllers are created: one for the hand and one for the right arm.

The controllers know how to control joint velocities by activating the appropriate mover

modules.

Once those controllers are created, the hand and arm joint velocities become controllable

state parameters, and the proto-action-modeller spawns action-modellers to learn useful

configurations for each. Those configurations become encapsulated within action models.

In the spirit of the toy robot example of Section 5.1, we can now train the robot to point

its finger. Due to random mover activation, the hand moves through its range of gestures,

123

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

raw Reward
raw Thumb
raw Paddle

reward windows

Figure 7-5: Recorded hand joint positions ~θ, raw reward R, and resulting reward windows,

as a function of time (50 samples per second), while training the robot to point its finger.

occasionally pointing. The robot receives positive feedback from repeated squeezes to the

hand. Thus, by lovingly squeezing when the finger is pointing, we can tell the robot that

“pointing is good”.

Figure 7-5 shows data collected by an action-modeller while the robot was being trained.

The modeller collects samples (~θ,R) of joint angle and reward and then analyzes them in

two minute intervals. The one-second time windows preceding the rewards (illustrated as

magenta pulses in the figure) are taken as the samples which correspond to the reward joint

configuration. By comparing the distributions of rewarded and unrewarded samples, the

modeller decides if the reward is actually correlated with the recorded joint angles. If not,

then the robot was probably rewarded for activity in some other part of the system, so the

training set is discarded. Figure 7-6 shows the cumulative distribution functions (CDF’s)

of rewarded vs. unrewarded samples for thumb and paddle joints in the example data. In

this case, both axes are considered relevant.

If there are any relevant axes, then an action model is created. This model is a Gaussian

model of the distribution of rewarded joint angles (Figure 7-7). The mean is taken as the

prototype hand position — the goal position of the action. The variance is used in deciding

124

 0

 0.2

 0.4

 0.6

 0.8

 1

-3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7 -2.6

Rewarded
Background

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Rewarded
Background

Figure 7-6: Comparison of CDF’s for rewarded versus unrewarded samples, for the thumb

and paddle joints, while training the robot to point its finger. The distribution of rewarded

samples differs significantly from the distribution of unrewarded samples for both joints.

if the action is equivalent to any new actions learned later on.

Once the action model is registered, an actor module is spawned. This changes the

behavior of the hand. Previously, the fingers and paddle just moved around with random

velocities. Now, in addition to that, the hand moves to a specific pointing configuration

quite regularly, once every 10 seconds on average. This is due to the random activation of

the actor module.

At this point, the training cycle repeats itself. The action modeller makes more obser-

vations, and tries to learn new actions; if successful, it spawns new actors. Figure 7-7 also

includes the mean and variance of a second model corresponding to a “grasp” action. Once

this model is learned, the robot’s hand begins to alternate between pointing, grasping, and

random motion in between.

Pointing On Cue

The new pointing and grasping actions occur regularly, yet still randomly. However, when

the actor modules for these actions are spawned, the proto-trigger-modeller also spawns

trigger-modeller modules for each, which try to learn appropriate contexts in which to

activate the actors. In the toy-robot scenario, these trigger-modellers are only sensitive to

one sensory source, the vector of tactile sensor readings.

The trigger-modellers capture time-series of samples of (~s,A,R) triplets, where ~s is the

tactile vector (the state of the potential stimulus), A is the activation level of an actor,

and R is the reward signal. Figure 7-8 illustrates such a dataset from the trigger-modeller

125

-3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4
 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

Figure 7-7: Pointing and grasping action models. The crosshairs indicate the prototype

joint positions for each action (blue = pointing, red = grasping). The ellipses indicate the

rewarded vs. unrewarded decision boundaries determined during training.

assigned to the pointing action. The goal of the modeller is to discover what values of the

sensor vector, if any, are consistently associated with both the action and a reward.

The reward signal is filtered to determine discrete instants at which reward was received.

Relative to the reward events, reward windows are constructed (Figure 7-9) which demarcate

the set SR of sensor samples which might be associated with the reward. Relative to the

episodes of action activation, action windows are constructed which indicate the set SA of

sensor samples that might be associated with cues for the action. The intersection, SR ∩SA

is the set of samples which should be associated with both the action and the reward.

To decide if the sensor samples SR ∩ SA are actually relevant to cueing the action and

receiving reward, the distribution of those samples is compared component-by-component

with the distribution of the rest of the samples (the “background”). Figure 7-10 shows

the cumulative distribution functions (CDF) of stimulus vs. background samples for two

of the tactile sensors, the outer-finger and the outer-thumb. The thumb sensor shows no

significant difference between stimulus and background sets; it is dismissed as irrelevant.

The finger sensor does show a significant difference and becomes the only component used

126

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

raw Reward
action activation

outer thumb
outer finger

reward events

Figure 7-8: Data acquired while training the robot to point its finger in response to touch

on the outside of the finger. Pointing actor activation A, raw reward R, and tactile sense

for the outer-finger and outer-thumb sensors are shown. The vertical green lines mark the

discrete reward events detected after filtering R.

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

reward events
Action Windows

Actions
Reward Windows

Figure 7-9: Reward and action windows for the pointing-trigger training session. Not every

instance of the action was rewarded; however, every reward event appears to be associated

with the action.

in the stimulus model of the trigger. If none of the sensors had been relevant, the modeller

would have decided that there was no interesting training data, thrown it away, and started

over from scratch.

Now that it knows that the outer-finger sensor is indeed correlated with action and

reward, the modeller models the stimulus (SR ∩ SA) and background ¬(SR ∩ SA) sets as

Gaussian distributions. This model is saved in the registry and a trigger module is spawned.

The trigger module continuously monitors the outer-finger tactile sensor and calculates

the probability p(T |~s) that it corresponds to a previously-rewarded stimulus. When that

probability breaches a threshold (0.5), then the trigger will activate the pointing action.

Figure 7-11 illustrates the stimulus and background distributions learned for this task, and

the resulting stimulus probability function. Pointing will be triggered whenever the outer-

finger sensor values exceeds ∼0.38. From the background distribution, we can see that that

sensor is usually not squeezed and thus the background mean (and the variance) is low.

Figure 7-12 illustrates the state of sok space after all this learning has taken place. New

to the scene are actors for pointing and grasping (connected to the hand controller), the

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Rewarded
Background

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rewarded
Background

Figure 7-10: CDF comparisons for two components of the tactile sense vector. Each graph

compares the “stimulus” samples (those occurring in conjunction with both reward and

action) to the “background” samples. The left graph, for the outer thumb sensor, shows

no significant difference in distribution. The right graph, for the outer finger sensor, does

display a significant difference. Only the outer-finger sensor will be used in detecting the

stimulus.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

Figure 7-11: The stimulus model learned for triggering the pointing action. The green and

red curves show the stimulus and background distributions, respectively, of the outer-finger

tactile sensor. The red line indicates the stimulus mean or prototype. The blue curve is

p(T |~s), the probability of a sensor value resulting in a stimulus, and the blue line is the

resulting decision boundary. Sensor values greater than ∼ 0.38 will trigger the pointing

action; values beneath that will not.

129

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Sb+E+

Sa+E−

Sa+E+

Sa+

Sb+Sc−

Sb+Sc+

Sc+

controller

proto−controller

actor

action−modeller

actor

trigger−modeller

trigger

trigger−modeller

action−modeller

controller

proto−action−modellerproto−mover−modeller

happy
sad

emotion
[Ch. 5]

touch sense

tactile
[Ch. 4]

vision

attention,
tracking,

head control

[Ch. 4]

proto−trigger−modeller

proto−transform−modeller

pinch

point

virtual muscles, joint limits, fatigue

meso [Ch. 3]

Wa+Wb+

Wb+

Wa+

E+Wa+

E+

Sb+E−

Figure 7-12: State of the system after learning how to move and being taught to point in

response to touch.

pointing trigger, and a variety of modellers. As the robot ages (via its developmental age),

the random activation of the actors will decrease, until eventually they will only be activated

by triggers. The grasping actor does not yet have a trigger. If it does not acquire a trigger

within a short time (∼30 minutes), then it will be purged from the system, along with any

trigger-modellers associated with it. Of course, in the future, the robot could always be

taught a new grasping action.

7.3 “It’s a red ball! It’s a green tube!”

The same mechanisms which enable Cog to learn hand gestures also apply to learning static

arm postures. When a controller for the arm joint angles appears in sok space, a position-

constant action modeller is also spawned for the arm. By rewarding Cog (squeezing its hand)

when the arm is in some configuration, it will learn that moving to that configuration is a

worthwhile activity and will create an actor that randomly repeats that motion, again and

again. This uses all the same algorithms and types of modules as with the finger-pointing

in the previous section, only the connections are different and the dimensionality is higher.

130

In the finger-pointing, the hand initially moves completely randomly, due to random

activation of the hand mover modules. This causes the hand to explore its state space, and

gives the trainer an opportunity to reward it when it comes across useful configurations. It

turns out that for learning arm postures, the random activation of the arm movers tends

to make training more difficult. The state space of the arm is much larger than that of

the hand, and the random movement explores it quite slowly. Instead of waiting hours for

the arm to spontaneously “do the right thing”, it is far easier for the trainer to just grab

and move the arm to the desired position and then reward the robot. The action-modeller

doesn’t care how the arm got there. If the arm decides to move itself at the same time,

though, it will compete with the trainer. Thus, it is beneficial to have the random activation

rate of the arm movers decrease after the arm controller has been created.

Figure 7-13 shows three arm postures taught using this technique: outward, forward,

and across. The figure illustrates the prototype goal positions of the respective action

models. Once the robot has been taught a few postures, it begins moving among them (due

to random activation of the actors). If some postures are located at the periphery of the

useful workspace of the arm, then the actors will actually do a better job of exploring the

workspace than the randomly-activated movers do.

Triggering

The next step is to train the robot to move in response to a stimulus. In this case, a

visual stimulus is used. The vision system outputs a 6-element feature vector describing

the target image of the tracking system. This vector is identified as a state parameter to

pamet (by its hard-coded name), and every actor is assigned a trigger-modeller that tries to

find rewarding visual stimuli in terms of this vector. Figure 7-14 shows data acquired while

training the robot to reach outward in response to seeing a red ball. The corresponding

reward and action windows for that session are shown in Figure 7-15.

The training paradigm is to wait for the robot to execute the action, and then simul-

taneously present the stimulus and give it a reward (hand-squeeze). In other words, the

windows for determining the stimulus are based on the instant of the reward. In the initial

implementation, these windows were based on the onset of the action. This corresponds

to a training paradigm of presenting the cue to the robot when it begins the action, and

rewarding it when the action is complete.

131

Figure 7-13: Prototype postures of three position-constant actions for the arm: “outward”,

“forward”, and “across”. The robot was taught by repeatedly moving its arm to a desired

position and rewarding it. Once one posture was acquired (and the robot began moving

there spontaneously), the next one was taught.

132

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

raw Reward
action activation

Vivid
Skin

R
G
B

reward events

Figure 7-14: Data acquired while training the robot to reach outward in response to seeing a

red ball. Actor activation A, raw reward R, and all components of the visual target feature

vector ~s are shown. The vertical green lines mark the discrete reward events detected after

filtering R.

133

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

reward events
Action Windows

Actions
Reward Windows

Figure 7-15: The reward and action windows for training the robot to reach outward in

response to seeing a red ball. Note that only a couple of instances of the action were

rewarded; presumably, the red ball was not presented to the robot during those other

instances.

134

The onset-based method seems like the most sensible and appropriate. However, a

couple of features of the robot conspire to make it extremely difficult to use in practice.

First of all, due to the wobbliness in the robot’s arm movements, it is difficult at the

onset of an arm movement to predict where that arm movement is going to end up. Some

movements are indistinguishable at the onset in any case: if the arm is in the “outward”

posture, movements to the “forward” and “across” postures are identical until they stop.

Second, the vision system is always tracking something, but it has no deeper concept of

a target than a small image patch, and the feature vector is just the moment-to-moment

description of that patch. Until a red-ball is stuck in Cog’s face, the last thing it tends to

focus on is the trainer’s head, when the trainer moves close enough to reward the robot. If

the trigger-modeller is searching in time for a consistent feature vector following the action

onset, more often than not it will just decide that the best stimulus was due to the trainer’s

head, not the ball that appeared next.

All-in-all, it was just too cumbersome for the trainer to keep out of Cog’s sight, figure

out what action was starting, get the vision system to attend to the desired target, and

then finally reach over to squeeze that hand after the action was complete. It was much

easier to constrain the timing of the desired stimulus to accompany the reward, and have

both occur in some window near the completion of the action.

For the red-ball training session described above, Figure 7-16 shows comparisons of

the stimulus and background distributions for the red, green, and blue components of the

visual feature samples. All three are deemed relevant to determining the stimulus (the

sight of the red-ball). From the CDF’s, one sees that the background distributions were

fairly uniform (precisely uniform would translate into a straight diagonal line), whereas the

stimulus components were much more sharply defined. This assessment is borne out in the

decision-boundary of the red-ball trigger, shown in the R′G′B′ subspace only in Figure 7-17.

Feature vectors falling within the boundary of the ellipsoid will trigger the “outward” arm

action.

A second trigger was also trained in this experiment, this time to activate the “forward”

action in response to seeing a bright green tube (another one of the toys in Cog’s toybox).

The R′G′B′ decision boundary for that trigger is shown in Figure 7-18, and as one would

expect, the ellipsoid is shifted toward a high green value.

It is worthwhile to take a peek at what the “outward” trigger-modeller was doing in the

135

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rewarded
Background

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rewarded
Background

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rewarded
Background

Figure 7-16: Comparison of stimulus and background CDF’s for the red, green, and blue

components of the visual feature vector. All three components (and skin-tone and vividness

as well) are deemed relevant.

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

red

green

blue

bluered

green

Figure 7-17: The stimulus decision boundary of the red-ball trigger, shown projected into the

R′G′B′ subspace of the feature vector (and evaluated at the prototype mean of the skin-tone

and vividness components). When the feature vector falls within the ellipsoid, the trigger

will activate the outward-reach action. The crosshairs mark the prototype stimulus vector

in the trigger model.

136

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

red

green

blue

bluered

green

Figure 7-18: The stimulus decision boundary of the green-tube trigger, shown projected

into the R′G′B′ subspace of the feature vector (and evaluated at the prototype mean of the

skin-tone and vividness components). When the feature vector falls within the ellipsoid, the

trigger will activate the outward-reach action. The crosshairs mark the prototype stimulus

vector in the trigger model.

137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

raw Reward
action activation

Vivid
Skin

R
G
B

reward events

Figure 7-19: Data acquired by the outward-reach trigger modeller while another ac-

tion/trigger combination was being trained. Several reward events occur, but none of them

is close enough to the endpoint of the (single) activity period of the outward-reach actor.

This dataset was discarded by the modeller.

meantime. Figure 7-19 shows the dataset captured by the “outward” modeller while the

“forward” trigger-modeller was learning about the green tube. Several reward events were

registered, but none of them was near enough to the endpoints of the active action intervals

(of which there is only one) to be considered coincident with the action. Since the“outward”

action was never rewarded in this dataset, the dataset was discarded.

Shaping

Recall that action-modellers continue to manage the actions they have created. Instead of

spawning a new model in response to new training data, an action-modeller may choose to

refine an existing action. This allows a trainer to shape and modify an action over time.

Figure 7-20 shows the result of such a shaping activity. The lowest posture shown is the

original “forward” posture discussed previously. Over a ten minute period, every time the

robot moved to that posture, the trainer grabbed the arm and stretched it a little bit higher

(i.e. “encouraged” it), and rewarded the robot. Since the new posture was similar enough

138

Figure 7-20: Learned arm postures (and any other actions) can be modified over time. The

“forward” arm action is shaped into a “forward and up” posture by tugging the arm a bit

higher and rewarding it every time it moves to that position. The associated action-modeller

will adjust the prototype posture in the model (in several stages) instead of creating a brand

new model.

to the original, the modeller associated with that action simply adjusted the action model.

Over that time period, the prototype posture was modified four times, culminating in the

highest posture shown in the figure.

Since only the action model was modified in this exercise, and the actor and its connec-

tions were unchanged, the previously-learned trigger still applies. In response to seeing the

green tube, the robot will now move its arm to the new, higher “forward” posture.

7.4 Reaching Out

A fourth type of modeller, the transform modeller, opens the door to a whole new class of

behaviors. As discussed in Sections 5.3.5 and 6.4, if two state parameters have a functional

relationship, a transform modeller can learn this relationship; the resulting transform model

and transformer module can act as a predictor, classifier, and controller.

My original intent was to apply this notion to the specific case of a kinematic coordinate

139

transformation function, in particular, the transformation between two representations of

the position of the right hand: as joint angles ~θ of the arm, and as the gaze angles ~Γ of

the hand when it is a visual target. If such a transform model is acquired, then it could be

used to perform two important operations. One, it could add an element of visual state,

determining whether or not the eyes are looking at the head at any particular instant. Two,

it could be used to control the position of the hand in space of gaze angles, i.e. head-centered

world coordinate space. This would lead directly to a reaching behavior. If the eyes are

focused on a target at some gaze angle ~Γ0, reaching to that target amounts to moving the

hand so that its gaze angle ~Γ is equal to ~Γ0. Once the transform-moderated controller were

in place, this action could be implemented by a position-parameter action model.

Much like the mover models, the appropriate transform model should be learned auto-

matically by a modeller observing the data streams of arm joint angles and visual target

positions. In practice, a number of factors prevented this. The kinematic model built into

the vision system, used to calculate the gaze angle of a visual target from its retinotopic

position and the head/eye joint angles, was not accurate enough and in particular did not

account for parallax errors. Just locating the hand was a noisy operation. The motion

detection filter was tuned so that the tracker would fixate on some part of the hand, but it

could be anywhere on the hand, and sometimes on the wrist or arm, too. The visual size

of the hand varies with its distance; when the hand is close, there is a lot of variance in the

recorded hand position. Finally, the random arm movement produced by random mover

activation tended to be out to the side of the robot (the bulk of the arm’s workspace), not

out in front. Thus, it was rare for the eyes to ever actually see the hand!

In order to experiment with the learning techniques and make some assessment of how

the transform models work, a set of data was recorded in a contrived scenario. Instead of

allowing the head and eyes to track targets, the head and eyes were fixated, and only the raw

retinotopic coordinates ~x of the target were considered. This eliminated any errors due to the

vision system’s kinematic model of the head. An eye-hand-arm transform modeller was set

to recording (~θ, ~x) samples while the arm was manually moved around within the visual field.

The saliency filters, attention module, and tracker otherwise operated normally, sometimes

locking on to and following the hand or arm, other times focusing on other random visual

stimuli. Only the four most significant joint angles (shoulder and elbow joints) were used.

As the samples were recorded, a human observer manually labelled them as “tracking the

140

hand” (γ = 1) or “background noise” (γ = 0). The result of this manual labor was ten

datasets of 5000 (~θ, ~x, γ) samples apiece, of which 65% were labelled as “tracking”.

Comparing Two Models

Two different types of models were trained to estimate ~x = f(~θ) (Appendix B). The first

is a generic non-parametric, memory-based model with a smoothness constraint — each

estimate is essentially a locally-weighted average of the samples in the training set. The

second model is a more constrained “semi-parametric” model consisting of terms which are

the sines and cosines of the joint angles. This model is capable of exactly representing

a kinematic coordinate transformation, however it has many more parameters than are

necessary for a compact model of the kinematics. The performance of each model is assessed

using 10-fold cross-validation; models are trained on combinations of nine out of the ten

data sets, and tested on the tenth.

With optimal smoothing parameters and learning rates, and training exclusively on the

good samples hand-labeled as “tracking”, the RMS (root-mean-square) prediction error of

the memory-based model is 21.3±2.7 pixels; for the parametric model, it is 19.9±2.5 pixels.

Both models appear to do pretty much the same job, and it’s not very good: the full range

of the retinotopic data is [0, 127] and the standard deviation of the training data is 36.3

pixels.

Figure 7-21 shows how the RMS-error performance of each model degrades as it is

exposed to “background noise”. In these trials, a percentage of the training ~x samples

are replaced with spurious synthetic data, tailored to act like the acquisition of random

visual targets. The models are still tested with unadulterated data. As one expects, the

performance of both models degrades to essentially random when the training data is 100%

noise.

In this test, the parametric model performs consistently better, but not significantly

better. However, the two models are not equal. Figure 7-22 shows the correlation of the

test set ~x with the models’ estimates. Here it is apparent that the parametric model does

a much better job of locking on to the ~x data which is actually functionally related to ~θ,

even as it is flooded by more and more spurious data. In the presence of 80% junk data, the

correlation of the parametric model’s estimate with the measured signal only drops to 0.64

(from 0.82), whereas the memory-based model drops to 0.19 (from 0.79). This corresponds

141

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

R
M

S
 e

st
im

at
io

n
er

ro
r

(p
ix

el
s)

Spurious Data (percent)

memory-based
parametric

Figure 7-21: Training performance degradation of transform models in the face of noisy data.

The graph shows the RMS-error of a memory-based and a parametric model of ~x = f(~θ).

The ~x training data is corrupted with a percentage of synthetic spurious samples which are

not correlated with ~θ. Both models perform similarly. As the percentage increases to 100%,

their performance drops to no better than random, as expected.

142

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
or

re
la

tio
n

Spurious Data (percent)

memory-based
parametric

Figure 7-22: Ability of transform models to lock on to signal in the face of noisy data.

The graph shows the performance of a memory-based and a parametric model of ~x = f(~θ),

as measured by the correlation of the ~x estimate with a test set. The ~x training data is

corrupted with a percentage of synthetic spurious samples which are not correlated with ~θ.

The parametric model maintains better correlation than the memory-based model in the

presence of much more junk data; it appears to “lock on” better to the underlying signal.

to the situation where the eyes are only tracking the hand 20% of the time, which is hardly

unreasonable. If the hand-tracking data were itself better (more precise localization of the

hand), then the RMS-error performance of the parametric model would certainly improve,

and this ability to lock on to the kinematics might allow it to discover and model the eye-arm

correlation completely automatically.

This is also an argument for populating pamet with very specific models tuned to specific

classes of phenomena. A true parametric model of the arm kinematics, with no more free

parameters than necessary, would presumably lock on to the good training data in the face

of an even higher percentage of background noise.

143

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

Sb+E+

Sa+E−

Sa+E+

Sa+

Sb+Sc−

Sb+Sc+

Sc+

controller

proto−controller

actor

action−modeller

actor

trigger−modeller

trigger−modeller

trigger

trigger−modeller

trigger−modeller

trigger

trigger−modeller

trigger

trigger−modeller

actor

trigger−modeller

trigger−modeller

trigger

action−modeller

actor

trigger−modeller

trigger−modeller

actor

controller

proto−action−modellerproto−mover−modeller

transform−modeller

transformer

transform−modeller

happy
sad

emotion
[Ch. 5]

touch sense

tactile
[Ch. 4]

vision

attention,
tracking,

head control

[Ch. 4]

proto−trigger−modeller

proto−transform−modeller

pinch

point

virtual muscles, joint limits, fatigue

meso [Ch. 3]

Wa+Wb+

Wb+

Wa+

E+Wa+

E+

Sb+E−

Figure 7-23: Schematic of the system after the robot has learned to point its finger, learned

to move its arm to various postures in response to visual stimuli, and learned how to move

its hand in the visual field.

7.5 The Final Picture

Figure 7-23 shows a schematic of the system after all this learning and training has taken

place. In contrast to Figure 7-1, the system has acquired quite a bit of new, explicit structure

linking the sensory systems to the motor systems via learned behaviors.

144

Chapter 8

Looking Back, and Forward Again

This dissertation describes a system which enables a humanoid robot, Cog, to be taught

simple behaviors by a human trainer. The system begins with little explicit structure beyond

basic sensory and motor systems grounded in the robot’s hardware. However, it does have

rules for creating structure. By exploring and interacting with the world, it builds a small

hierarchy of knowledge on top of the initial foundation.

In many ways, this work seeks to be a synthesis of two projects described in the intro-

duction: Drescher’s schema mechanism [16] and Metta’s Babybot [36]. Starting with raw

sensory and motor primitives, the schema mechanism’s simulated robot could explore its

grid-world and learn progressively more abstract relationships about that world. However,

the binary grid-world is too simple and perfect; the mechanism developed for it cannot be

directly applied to a robot which exists in the real world. Babybot, on the other hand,

is a real robot, which learns to look at and reach out to real objects. However, Babybot

is prewired to learn precisely this task and the component faculties which lead up to it.

Without enough sensory stimulation, Babybot may fail to learn this task, but no amount

of training will ever make it learn to do anything else. The qualitative structure of what

Babybot can and cannot do is predetermined by the connections of the very specific models

which are coded into it. My own work is an experiment in combining the dynamic properties

of the schema mechanism with the real-world constraints of Babybot.

145

8.1 Creating Structure: What pamet Can and Cannot Do

With its pamet, Cog can learn some simple motor behaviors triggered by simple sensory

cues. It can move its hand and arm to static postures, and it can almost move its arm

to where it is looking. The triggers can be tactile — touch to a part of the hand — or

visual — gazing at something of a particular color. Some learning is automatic, such as

the acquisition of mover models to describe the motor system. Actions and triggers, on the

other hand, are trained by a human teacher who rewards the robot for doing the right thing.

Both the actions and triggers can be slowly refined over time, modifying the response or

the stimulus while maintaining the causal connection between them.

Although the words “action”, “state”, and “reward” evoke reinforcement learning [28],

in this system the words are used with a different emphasis. The classic reinforcement

learning scenario involves sets of discrete states and actions; the problem is to decide on a

policy for which actions to take in each state in order to maximize a reward (which might

only be received once, at the end of a journey through the state space). In contrast, the

learning in actors and triggers is really directed at a precursory problem: determining what

the actions and states should be. An action model, instantiated by an actor, defines a

discrete action in terms of a class of manipulations of a controllable system parameter. A

position-trigger model defines a discrete state in terms of a fuzzy region of some portion

of a continuous parameter space. In this context, the reward signal is not really used as

the long-term optimization criterion. The positive reward signal is better thought of as a

perceptual cue, with certain learning mechanisms hard-wired to correlate that specific cue

with other perceptual data. Once an action or trigger is learned and well-established, the

robot should not expect to continue to receive direct reward for further instances of that

action or trigger. A child shouldn’t expect a gumdrop every time she wipes her nose, but

she should keep wiping her nose!

In pamet, triggering stimuli are modelled as unimodal Gaussians, but the system can

acquire a multimodal stimulus as long as the training can be decomposed by presenting

one mode at a time. The system will then learn a separate model for each component

of the complete distribution. What the system can’t do is acquire a stimulus which is a

conjunction of two different sensory modalities (i.e. tactile and visual, two separate state

parameters). This could be implemented, though, by outfitting each trigger-modeller with

146

an arbitrary number of inports ~si and letting them be treated as one big stimulus vector ~s.

When a trigger model is created, a decision is made as to which components of the

stimulus vector are relevant. If the model is later refined, the distributions of those compo-

nents are updated, but the choice of components is never changed. A new model with even

one more or one less component than an old model is considered completely different and

would never be used to refine the old model. This behavior could possibly be changed by

keeping and comparing the relevance statistics (the difference between stimulus and back-

ground CDF’s, Section 6.3); if a component of the old model was just under the relevance

threshold, and is just over it in the new model, the two models could be considered similar.

This same limitation (and possible solution) applies to action models as well.

Any one action or trigger modeller can only learn one thing at a time. For example, if an

arm action modeller sees reward for two different postures during the same training session,

it will either conflate the two (and learn the average posture), or ignore them (and discard

the data). This also means that the robot cannot be taught independent arm and hand

postures simultaneously. Two action modellers are involved (one for the hand, one for the

arm), but both see the same reward signal, and if the reward is mixed between modellers,

they will be confused. On the other hand, it is possible to simultaneously train two trigger

stimuli, as long as the trigger modellers are assigned to different actors. The learning is tied

to the execution of the actions; as long as the actors are activated at different times, they

will remove the ambiguity in the reward signal.

The transform modellers will not be able to learn an eye-hand-arm transformation with-

out a more elaborate vision system or, perhaps, a more constrained coordinate transform

model. However, once working automatically, the same mechanism would apply to both

right and left arms. If transform models connecting joint angles to eye-gaze angles were

learned for both, then the positions of the right and left hands would share a common

representation. This would immediately allow for coordination of their motion. A simple

implementation of “hand-clapping” could be “adjust the joint angles of each arm such that

the hands move to the same location in eye-gaze space”. Such a behavior does not actually

require any visual input. Once the common representation was established via interaction

with the vision system, the eyes could just as well be disconnected.

147

8.2 Unsatisfying Structure: Hacks

In a project involving machine learning, the inevitable research compromise between “prin-

ciples” and “finishing” means that structures creep in as crutches which help to get the job

done. One hopes that these crutches will be discarded in further revisions of a project, so

it helps to point out where they are.

Meso Movers

The meso mover modules were implemented as a simple way to parameterize motion and

to get the robot moving when first powered up. However, they are too simple and are only

usable if a number of features and complexities of the motor system are ignored.

First, the movers activate virtual muscles with fixed, hard-coded stiffness values. If these

movers are the only link between pamet and meso, then there is no way to modulate muscle

stiffness throughout movements. All the arguments for implementing controllable stiffness

(task-specific tuning, increased efficiency) are moot if the controls are never adjusted!

Second, the action of a mover is implicitly linear. Mover models assume a linear relation

between mover activation and an affected state parameter, i.e. joint angle. Even without the

measurement problems described in Section 7.1, such a relationship will only hold for meso

movers if all the virtual muscles involved are single-joint muscles, in which the muscle length

set-point translates into an equilibrium point in joint angle. For multi-joint muscles, the

length set-point defines an equilibrium surface in joint space, which cannot be represented

by the simple mover model. Again, if multi-joint muscles are never going to be activated

by movers, then all the work that went into implementing them is for naught.

Third, the split of movers into “arm” and “hand” groups is rather artificial. Recall that

there are two hand movers and thirteen arm movers. Members of each group have mutual

inhibition interconnections so that only one member of each group is ever active at a time.

Most movers affect more than one muscle, but no muscle is driven by movers from different

groups. If the torso and the left arm were brought on-line, presumably each would have its

own group of movers as well. The result of such a division is that independent controller

modules develop, one corresponding to each group of movers, and this partitions the joint

angle space into more manageable chunks, e.g. hand joints, right arm joints, torso joints,

etc.

148

What is needed is a representation which can capture the locality constraints of the

muscles and joints without making hard divisions. The fingers and the wrist are close

together, kinematically, and thus will often need to be used in synchrony. Imagine pushing

a button: the whole arm needs to be positioned in roughly the right place, but then the

finger and maybe the wrist handle the details of the action. Likewise, shoulder joints and

torso joints affect each other: when lifting an object, changes in the torques produced by

the shoulder also need to be accounted for by counterbalancing forces in Cog’s hips (or, for

a person, her back). However, torque changes in the wrist which are small enough to not

affect the shoulder probably won’t affect the torso either.

In terms of pamet, I imagine that such a representation would lead to action-modellers

which observe and model overlapping subsets of the joint angles of the robot: one looking

for utile postures of hand only, one for hand and wrist, one for wrist and upper arm, etc.

Finally: the meso movers don’t even do a very good job of making the robot move

randomly, especially with respect to the arm. Since the movers drive the muscles with

random velocities, the resulting motion amounts to a random walk in joint space. At any

one moment, at least one of the arm joints tends to be driven against its mechanical limits;

it stays that way until all thirteen movers happen to become deactivated and the arm is

allowed to relax. A secondary issue is that much of the actual workspace of the arm is

out to the side of the robot, out of the range of the vision system. A better scheme for

random movement would bias the motion to the front of the robot, the region where most

interaction with objects and people will occur.

Actor Timing

Actors are little position-controllers: when activated, they produce a stream of appropriate

velocity commands to drive a state parameter to a goal value. They are full of hard-coded

constants which should eventually be removed or parameterized. For instance, the overall

speed at which the parameter is moved is regulated by an arbitrary constant which has been

tuned to result in reasonable hand and arm motions. This constant will not necessarily work

for any other actuators or parameters. Also, this constant should not be constant — at some

point, the robot should be able to decide how fast or slow a movement (or other parameter

adjustment) needs to be.

When an actor is activated, it remains activated until the target parameter is within

149

some threshold distance to the goal value, or until a timeout occurs. The threshold distance

is currently an arbitrary constant which could be reasonably parameterized based on the

variance of the goal prototype in the action model. Likewise, the timeout is an arbitrary

constant of a few seconds duration. Since an actor doggedly pursues its goal, even when

initially activated for only an instant, the timeout is necessary to allow it to give up on

unobtainable goals (e.g. if the arm is physically restrained, it will not be able to move to

the “forward” posture). The timeout could be eliminated if goal pursuit were pushed back

into the triggers or some intermediary module, which would then be in charge of keeping

the actor activated as long as necessary.

Another set of time constants in actors control the random activation rates and expira-

tion of the actor. They have been hand-tuned to make training the robot, in the scenarios

presented in Chapter 7, a reasonably snappy experience. It is not clear how these con-

stants should change as the system scales since the random activation rate, the number

of competing actors, and the trade-off between exploration and exploitation are all tied

together.

Vision Black Box

As it stands, the vision system (Section 4.2) is a black box sensory system, providing only

outputs describing where it is looking and what it is looking at. It operates in a purely

reflexive manner, semi-randomly picking targets to gaze at in accordance with the hard-

coded saliency filters. This box needs to be opened up so that the gaze can be controlled

by learned behaviors.

Although head-eye coordination has been made adaptive in previous work on Cog [32], in

this vision system, head-eye coordination is computed using the measured kinematics of the

head. It would be worthwhile to try reimplementing the tracking system using transformer

modules which learn the transform between retinotopic and head motor coordinates.

The saliency filters and attention system should be exposed to pamet. This means that

the weighting of the filters could be changed to suit the task at hand. Also, the output of

the filters themselves would be available to the behavioral system, giving it the potential to

determine better criteria for choosing what to look at.

Finally, the motion detection filter was tweaked specifically to make Cog’s right hand

a salient feature to the vision system. When something moves in the field of view, the

150

motion detector reports saliency near the end of the moving region which is closest to the

top-left corner of the screen. If the moving object is the right arm, coming into view from

the bottom-right, this targets the hand. Fortunately, this same heuristic also picks out the

heads of people walking around the room, which is another appropriate target for Cog’s

vision system. In future work, these biases should at least be balanced so that, for example,

the left hand is as salient as the right.

Hard-wired Tactile Reward

The tactile sense is hard-wired into the emotional system to produce positive reward when

the hand is squeezed. In principle, this is a reasonable idea: pamet needs sources of innate

primitive and negative reward which ground-out the behavioral decisions it makes. However,

since this is currently the only source of positive reward, it makes the hand seem like a bit

of a “magic training button”.

This innate tactile reward percept needs to be refined, perhaps to more distinctly favor

gentle, “soothing” hand squeezes over abrupt, sharp tactile sensations. Overall, the system

needs more sources of innate reward, tied to other sensory modalities, such as detection of

smiles and vocal encouragement (“Good robot, Cog!”).

8.3 New Structure: Future Work

pamet is by no means finished. There are several features on the drawing board which

should be implemented in the next cycle of development of this project.

Negative Reward, Inhibition, and Un-learning

Although meso provides two innate sources of negative reward (joint pain and muscle fa-

tigue), and the emotional system’s emo/sadmodule turns those into a global negative reward

signal, that signal is not yet used anywhere by pamet. The positive reward signal is a cue to

tell the robot when it is doing something it should be doing; likewise, the negative reward

signal should be a cue that the robot is doing something that it should not be doing.

pamet needs modules for learning and instantiating models of inhibition. One manifes-

tation could be a model which specifies regions of a parameter space to be avoided. The

model could be used to send an inhibition signal to, say, a mover module which was driving

151

the arm to its joint limits. As another example, a subsystem which gives the robot upright

posture could be implemented as a cascade of two types of inhibition. First, reaction to the

joint pain signal causes the robot to avoid driving its hip joints to their limits, so the robot

will not rest in a slumped over position. Second, maintaining any torso position besides

fully upright and balanced requires a lot of force, and thus induces muscle fatigue. Reaction

to the fatigue signal would favor movements which keep the torso upright.

A connection from an inhibitory model could also augment a trigger; the inhibition

model would specify an overriding condition I under which a stimulus S should be ignored.

This is different from just learning a model of a stimulus S ∩¬I in two ways. First, it may

be easier to learn in two separate steps, first S and then I; the inhibiting context I might

not even arise until much later in the robot’s development. Second, the two contexts S

and I may each be independent in their own right. The state represented by S might be

valuable and used by other modules, even if one particular action should be inhibited. A

common state represented by I might lead to inhibition of, say, three triggers, so it makes

sense to learn it once in one place instead of modifying three other contexts simultaneously.

A further use of inhibition is un-learning : instead of repeatedly inhibiting a learned

action or trigger, it may be better to just forget it. Already in pamet, an action model expires

if the actor instantiating it is never explicitly activated; if no other module ever requires the

action, then it is considered a mistake and is removed from the system. However, there is

no mechanism for forgetting a trigger: once the robot learns to raise its arm in response to

seeing the “green tube”, it will always try to do that. If an action or trigger is consistently

inhibited, however, it should probably just be removed from the system.

Feedback Channels in sok Connections

If two actors — connected to the same controller module — are activated simultaneously,

only one will have any effect. Arbitration logic in the controller’s drive inport will allow

messages from the first active incoming connection to pass through; the drive signal from

the second activated actor will be discarded (until the first actor is done). In the current

implementation, these messages are discarded silently : the second actor will not be told

that it is being ignored. The problem here is that this actor will continue to tell the rest

of the system that it is active. A trigger-modeller observing the activity of the actor may

then falsely associate some stimulus with it, even though the ignored actor is not having

152

any effect on the behavior of the robot.

A solution to this problem is to implement a feedback channel in sok connections, such

that the sending process is informed when its messages are being rejected or when the

receiver is under some type of inhibition. The snag in implementing such a solution is

that a sok outport supports multiple outbound connections. If an outport is distributing a

message stream to six different receivers, and only one of them rejects it, should the process

be told that it is being ignored by the system or not?

Activation-Delay Triggers

In addition to the position-triggers already implemented in pamet, an activation-delay-

trigger was suggested earlier. The stimulus for such a trigger is the activation signal from

(or to) another module. The trigger fires after some delay following the stimulus activation.

This delay is a learned parameter in the trigger model. Such a trigger would allow the

system to learn sequences of actions. One trigger would fire, activating the first action and

the second trigger. After a delay, the second trigger would fire, activating the second action,

and so on.

Attention, for Learning

Learning in pamet is currently an anarchic process: each and every modeller is always

observing its inputs, watching for correlations and trying to find something to learn. The

modellers do not directly interfere with each other; however, it is possible for one modeller

to latch onto some spurious correlation while the true target of a trainer’s intentions is

simultaneously being learned by another modeller. This leads to behavioral noise due to

extra actions, etc., that get created and end up hanging around in the system. This is not

much of a problem when the system is small, with few state parameters which are mostly

orthogonal to each other. But as the system grows in size and complexity, there will be

many more modellers and parameters and the problem will get much worse.

What the system needs is an attention mechanism which allows learning to be focused

on a particular region of the behavioral space. If a trainer is teaching the robot to shake

hands, it should be able to concentrate on the arm movement and the presentation of the

trainer’s hand, while ignoring the color of his hat. This could perhaps be implemented as

a distributed inhibition — modellers would compete with each other for the privilege of

153

learning, somehow based on how relevant their models are to the current activity in the

system.

Online Learning

All of the modellers have been implemented using batched training: they record a large

set of samples and then analyze the whole set at once to look for useful models. This is

convenient from the researcher’s point of view; because each batch of data is independent,

it is easy to simulate and analyze the modelling off-line on recorded datasets. From the

behavioral viewpoint, though, it is a nuisance. In trigger training, for example, there is

a five minute window in which a trigger modeller is silently collecting data, followed by

30 or so seconds of analysis. If the trainer happens to engage the robot in the second

half of a recording cycle, that cycle may not end up with enough significant data overall.

Two minutes of training could be discarded just because the trainer was out of phase with

the robot. If the learning used online algorithms without these arbitrary, invisible batch

boundaries, training would be a more fluid and efficient process.

The action and trigger models cannot be trained with strictly online algorithms, since

some historical analysis is necessary, e.g. the “reward windows”which precede action events.

But, the modellers already record five minutes of samples at a time. This data could instead

be kept in a rolling buffer. There would be a constant latency in model updates but no

acquired samples would ever be wasted.

Revisiting Previous Projects

The best sources of brand-new directions for this work are the previous projects done on

Cog. Much of the previous work explores particular faculties or subsystems which are

important components in a humanoid robot. The trick would be to reimplement earlier

work such that it stays true to the transparent, distributed design philosophy of pamet.

Work such as Scassellati’s theory-of-body [45] would translate into new classes of models.

Breazeal’s work [7] could be transplanted as a much more significant emotional system,

accompanied by innate social gestures. Fitzpatrick’s project [18] would lead to models for

“objects” and interactions with objects, as well as more robust visual primitives. Trying to

up-end any one of these projects and integrate it into pamet’s framework would require a lot

of conceptual reorganization, probably worthy of another dissertation for another graduate

154

student.

8.4 Unintended Structure

In this kind of project, we try to devise simple systems which can cope with a complex world.

However, the interaction between the world and the system is sometimes more complex than

we imagine. Even when something “works”, it is not necessarily working the way we think

it does. I present here one small cautionary tale.

As long as there is a bit of activity in the room, Cog’s vision system keeps the robot

looking around fairly randomly and uniformly. To the casual observer, the robot appears

to be naturally looking at different things in the room. What is not obvious, however, even

to the people who designed the system, is that this behavior requires that the floor is blue.

One night while working on the robot, the color-content saliency filter froze and stopped

producing output. Since the code I was working on at the time only needed motion detection,

I didn’t bother to restart the color-content filter. Soon, however, the robot’s gaze was fixated

on the ceiling. It turns out that the color-content filter is necessary for the “natural around-

the-room” gaze behavior of the robot, because it allows the blue floor in the room to exert a

downward influence which counteracts an overall upward influence from the ceiling (exerted

via the skin-tone filter). If Cog were pushed into a room without primary-color linoleum

flooring, it would stare at the ceiling all the time.

The moral of this little story is that the real world sometimes has even more structure

than one hopes for. Dependencies on such structure will inevitably creep into any design.

The process of developing a system is often more organic than the system itself. It takes on

a life of its own, and life has a way of exploiting all the structure it can find.

8.5 Round, Flat Structure: Flapjacks

I began this dissertation with the admission of my own pet dream for Cog: to create a robot

which I could teach to make pancakes. Cooking pancakes is a relatively simple procedure by

human standards, something I learned to do myself when I was only a few years old (with

adult supervision, of course). However, learning this task from another person requires a

lot of background knowledge and the ability to handle some fairly abstract concepts.

Let’s break down the “make pancakes” task into bite-sized pieces:

155

1. Turn on the electric griddle; let it warm up.

2. Pour batter from pitcher onto the griddle.

3. Wait until first side is cooked.

4. Flip.

5. Wait until second side is cooked.

6. Serve.

Conceptually, the two simplest steps may be “4. Flip”and“6. Serve”, although they are also

the most mechanically complicated. The basic operation is “lift a discrete object and turn

it over”. To learn this by watching a human, the robot would need some ability to imitate

third-person body movements. It would also need an understanding of object manipulation

and the ability to distinguish the “pancake” from other objects, so that it could understand

the actual goals of the arm movements and hone its performance accordingly.

Step 2, “Pour batter”, is mechanically simpler than flipping a pancake. However, now

the robot has to deal with a fluid, flowing freely under the influence of gravity. The speed

of that flow is related to how the pitcher is being held and the amount of fluid remaining

in the pitcher. The goal of this operation is to create a fluid disk of a certain size on the

griddle. The robot will have to know how fluid flow relates to growth.

Steps 3 and 5 are both waiting, but for vague visual criteria rather than a concrete

duration. Usually, in pancake parlance, the first side is done “when bubbles stop forming

and rising to the top”. To evaluate this, the robot needs a vision system capable of seeing

and gauging the density of air bubbles in the batter, and the saliency of these bubbles has to

be pointed out to the robot. Furthermore, the existence or even the density of the bubbles

is not the important feature, but rather the rate of change of the density. It is almost

impossible to imagine indicating such an abstract concept to the robot without some form

of language, be it vocal or gestural. And for this, the robot will need to have already

acquired that concept of rate of change via prior experience.

Finally, there is an implicit seventh step, “Repeat”, in which the robot closes its training

loop and makes a new pancake, tuning its technique and improving on the last one. How will

the robot assess its performance? The human chef judges her skills by eating the pancake.

156

The important qualities of pancake are its taste and texture, as experienced by the mouth.

The visual appearance is secondary, important mostly as a predictive indicator of the taste.

Other people eating and judging the pancake will report on it in terms of taste and texture,

possibly connecting back to cooking technique: “too crispy” or “undercooked”. As the chef

cooks more pancakes, she makes connections between changes in technique and changes

in aspects of the taste, thus learning how to adjust her cooking style to achieve different

results. The poor robot, however, does not eat its own pancakes! Even if the robot is

given a differential performance report from human tasters — “better”, “ok”, “too dark” —

and even if it tries to connect this to the visual appearance, the most important “state”

of the pancake is completely hidden from its perception. This puts the robot at a great

disadvantage in its training as pancake chef.

As this pancake task illustrates, the greatest difficulties in creating a human-level ma-

chine intelligence appear to arise from the mundane, the sheer volume of the interrelated

everyday experiences which comprise our understanding of the world. Our ability to per-

form a single narrow task depends on an enormous breadth of “simple” knowledge. Human

interaction and communication is based on shared experiences which are so very common

that we rarely take notice of them. For a machine to seamlessly interact with and learn from

humans, it needs to be able to participate in these pervasive but all-too-easily overlooked

experiences.

157

158

Appendix A

Details of the Complex Coupling

Model

The lower level of meso (Section 3.3) is a skeletal model, which handles the kinematics of

the musculature simulation. The purpose of the skeletal model is to calculate two functions:

~l(~θ), the vector of lengths of the virtual muscles, and ~τ(~θ, ~F), the vector of joint torques. The

inputs to the skeletal model are ~θ, the skeletal configuration expressed as a vector of joint

angles, and ~F , the vector of muscle forces provided by the muscular model (Section 3.4).

Of the two different skeletal models implemented on Cog, the “complex coupling”version

treats virtual muscles as lines of force in space, connecting points anchored to different parts

of the robot. To calculate the two functions, this model requires a kinematic description

of the mechanical linkages in the real robot and a list of the anchor points of the virtual

muscles.

Coordinate Frames and Transforms

The robot can be described as a tree of segments, or links, connected by revolute joints.

Each link has an associated coordinate frame, and a kinematic description of the robot

amounts to specifying how these coordinate frames relate to each other.

A frame is aligned such that the ẑ axis matches the joint axis, and usually the x̂ axis

is parallel to the major axis of the associated limb segment (Figure A-1). A point in space

which is described by a vector ~p in the j th frame is labeled j~p. The origin of the jth frame

is defined by a vector j−1~qj in its parent frame j − 1. (Note that j~qj = 0. It’s the origin,

159

j~p

frame j − 1

j−1x̂

j−1ŷ

j−1ẑ

j−1~p

j−1~qj
frame j

Figure A-1: Coordinate frame (j − 1) is the parent of frame j. Vectors j~p and j−1~p describe

a point relative to the respective frames. j−1~qj defines the origin of frame j.

after all, for that frame.)

The transform i
jT changes the reference frame of a point from j to i. That is, i~p = i

jT
j~p.

For any two frames i < j connected by a kinematic chain,

i
jT = i

i+1T
i+1
i+2T · · · j−1

jT .

i
jT is actually a rotation and a translation,

i
jT

j~p = i
jR

j~p + i~qj, (A.1)

where i~qj is the position of the jth origin relative to the ith frame; i
jR is expressed as a 3×3

matrix, which depends on the parameterization used to specify the relative orientation.

Linkage and Muscle Description

The canonical Denavit-Hartenberg form allows each frame to be very compactly described

by four parameters [15]. However, this form does not allow for the description of branching

chains, i.e. a ground-rooted torso with two arms connected to it (and potentially a head, as

well). I have chosen a more general description with six parameters: x, y, z (all constant)

to position a joint in its parent frame, α, β (both constant) to set the joint’s orientation,

160

frame j − 1

j−1~qj

j~pB
j−1 ẑ

j−1ŷ

frame j

j−1~pA

j−1x̂

x

y

z

βα

Figure A-2: The skeleton is described as a tree of connected links. The origin of a link

is specified by (x, y, z) position relative to the parent link. The orientation is specified by

relative rotations β (around ŷ) and α (around x̂′).

and θ (variable) to indicate the joint angle (Figure A-2). An implicit seventh parameter in

this description is the identity of the upstream parent frame in which a joint is rooted.

A parameterization is mostly a matter of convenience; all it needs to do is to provide

the transformation j−1
jT which describes how a child frame relates to its parent. Under the

specified parameterization, the transformation is given by:

j−1
jR =













cβ cθ + sβ sα sθ −cβ sθ + sβ sα cθ −sβ cα

cα sθ cα cθ sα

sβ cθ − cβ sα sθ −sβ sθ − cβ sα cθ cβ cα













(A.2)

j−1~qj = (x, y, z)T (A.3)

where cβ = cos β, sβ = sinβ, etc. Note that since j−1
jR is a rotation (an orthogonal matrix),

j
j−1R = (j−1

jR)−1 = (j−1
jR)T .

Thus the “push-back” transformation (sending a vector into the parent frame) is trivially

invertible into the “push-forward” transformation.

161

Once the skeleton is described as a collection of frames, virtual muscles have a simple

description. They are just lines defined by their two endpoints, j~pA and k~pB. Each endpoint

(A or B) is specified by a position vector anchored in a particular link’s coordinate frame

(j or k), corresponding to the parts of the robot to which the muscle is attached.

Calculation of Muscle Length

Muscle length lAB is simply the cartesian distance between a muscle’s two anchor points,

j~pA and k~pB. To calculate the distance, however, we must first transform the endpoint

vectors into the same reference frame:

k~pA = k
jT

j~pA

Although the anchor vectors are constants (in their respective frames), the transformation

is a function of the skeleton/joint configuration. Hence, the length becomes a function of

the joint angles ~θ.

Calculation of Joint Torque

Given the magnitudes of the forces to be applied by each virtual muscle, the skeletal model

must also calculate the resulting equivalent torque to be applied by the motor controllers.

A torque ~τ can be calculated as the cross-product of a force vector ~F with a moment arm

~r . For a virtual muscle anchored at i~pA and k~pB and spanning joint j (where i < j ≤ k),

the force vector lies on the line connecting the anchor points, and the moment arm is any

vector from joint origin j~qj to any point on that line. We can simply choose anchor k~pB as

that point.

Given the force magnitude F :

~F = F
~pB − ~pA

‖~pb − ~pA‖
=

F

lAB
(~pB − ~pA)

~r = ~pB − ~qj

~τj = ~F × ~r =
F

lAB
(~pB − ~pA) × (~pB − ~qj)

Again, all vectors must be transformed into a common reference frame. We choose the j th

reference frame, which is what we need to get the torque experienced by the joint. Recall

162

that j~qj = 0:

j~τj = j ~F × j~r

=
F

lAB
(j~pA × j~pB).

Only the ẑ component is needed (the x̂ and ŷ components become strains in the joint

bearings):

τjz =

(

F

lAB

)

(jpAx
jpBy −

jpAy
jpBx).

This calculation is performed for every joint j (i < j ≤ k) spanned by the virtual muscle.

Each virtual muscle m contributes a vector of torques ~τm to the robot (one compo-

nent per joint, where most are zero) to yield ~τ(~θ, ~F), the skeletal torque of the virtual

musculature.

163

164

Appendix B

Two Transform Models

Two function approximation techniques were applied to the transform model discussed

in Section 6.4. The first is a non-parametric, memory-based approach; the second is a

semi-parametric approach designed to capture a coordinate transformation. The memory-

based approach is generic and trivial to train, but estimation is compute-intensive. The

semi-parametric approach requires more tuning, but provides faster estimates and exact

derivatives.

B.1 Non-parametric: Memory-based Model

Given a corpus of N training samples (~xi, ~yi), an estimate ~̂y for f(~x) is calculated via

~̂y =

∑

i γi~yi
∑

i γi
, γi = e

−

(

‖~x−~xi‖
2

σ2

)

The estimate is a locally-weighted average of the training samples. The variance σ2 sets the

size of the averaging neighborhood. This imposes a smoothness constraint on the function

f().

This estimator only provides good estimates in regions of the input space with sufficient

sample density. Thus, it requires a quantity of training data exponential in the number of

input dimensions. Because the estimator must iterate through all the samples, this slows

down the computation.

Many variations on the basic algorithm address these issues. The computational load can

be lightened by taking advantage of the fact that relatively distant samples contribute almost

nothing to an estimate. At the expense of accuracy, nearby samples can be identified quickly

165

using approximate-nearest-neighbor techniques [26]. The need for high sample density can

be reduced by techniques such as locally weighted regression [46] which impose additional

constraints on the data.

B.2 Semi-Parametric: Loose Coordinate Transform Model

Suppose the transform we wish to learn is the particular case of finding the cartesian coor-

dinate position of the endpoint of a multi-joint limb. Let’s call the cartesian position ~x and

the vector of joint angles ~θ. We want to learn f such that ~x = f(~θ).

The mathematics involved has already been overviewed in Appendix A. In the language

used there, we are trying to determine

~x = 0~p = 0
jT (~θ)j~p

where j~p is the position of the endpoint of the limb in the coordinate frame of the last

segment in the limb and 0
jT is the composite transform which pushes back a vector from the

jth frame to the base frame of the robot (or whatever frame we want the cartesian position

in). Given that the limb segments themselves are rigid, j~p is a constant, but 0
jT is a function

of ~θ. In fact, 0
jT (~θ)j~p is just the f(~θ) which we are looking for.

How shall we model this? 0
jT is the composition of all the link-to-link transforms,

0
jT = 0

1T
1
2T · · · j−1

jT ,

and each of those one-step transforms is given by Equations A.1, A.2 and A.3. To create a

“tight” parametric model, we could multiply these matrices together to get the explicit form

for 0
jT (~θ)j~p. This model will have six parameters per joint — the (α, β, θ0) and i−1~qi which

define each link’s coordinate frame — plus three parameters for j~p. Thus, the number of

parameters is linear in the number of joints. A four-joint arm will require 27 parameters.

Now, if we are feeling a bit lazy (and after eight chapters of thesis, who isn’t?), we

aren’t going to want to do all that long-hand matrix multiplication. And we certainly

aren’t going to want to evaluate all the derivatives needed to come up with training rules

for each parameter. But at the expense of an exponential number of parameters, we can

take a shortcut.

Note that each i−1
iT depends only on θi, and that dependency shows up as additive

terms containing either sin θi or cos θi. If we had overcome our laziness, the final expression

166

for each component of ~x would be a sum of terms of the form ωZ0Z1...Zj . Each Zi is either

sin θi, cos θi, or 1 (in case θi does not appear in that term), and ω accounts for all other

parameters (α’s, β’s, etc.). We can write this as

~x =
3n

−1
∑

i=0

~ωiZi(~θ), (B.1)

where Zi(~θ) = zi(1)(θ1) · · · zi(n)(θn) and i(j) is the jth digit of i expressed in base-3, and

z0(θ) = 1

z1(θ) = cos θ

z2(θ) = sin θ

Equation B.1 gives us a “loose” parametric model for a coordinate transformation. It’s

loose because it has many more parameters than are absolutely necessary — for n joints, it

requires 3n+1 parameters instead of 6n+3. There are a lot of interdependencies among the

~ωi. All the same, this model is capable of exactly representing the target function ~x = f(~θ).

Since the model is linear in ~ωi, a gradient-descent update rule is trivial to compute:

∆~ωi = −λ(∆~x)Zi(~θ)

Exact derivatives can also be computed (necessary for a transformer module to act as a

controller) by replacing the appropriate zi(j)(θj) quantities with żi(j)(θj).

167

168

Bibliography

[1] Bryan P. Adams. Meso: A virtual musculature for humanoid motor control. Master’s

thesis, Massachusetts Institute of Technology, Cambridge, MA, September 2000.

[2] A. Billard, K. Dautenhahn, and G. Hayes. Experiments on human-robot communica-

tion with robots: an imitative learning and communicating dollrobot. Technical Report

CPM-98-38, Centre for Policy Modelling, 1998.

[3] Aude Billard and Gillian Hayes. DRAMA, a connectionist architecture for control and

learning in autonomous robots. Adaptive Behavior, 7(1):35–63, 1999.

[4] Emilio Bizzi, Simon F. Gistzer, Eric Loeb, Ferdinando A. Mussa-Ivaldi, and Philippe

Saltiel. Modular organization of motor behavior in the frog’s spinal cord. TINS,

18(10):442–446, 1995.

[5] Bruce Blumberg, Marc Downie, Yuri Ivanov, et al. Integrated learning for interac-

tive synthetic characters. In Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques, volume 29, New York, NY, 2002. International

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH-2002),

ACM Press.

[6] C. Breazeal, A. Edsinger, P. Fitzpatrick, B. Scassellati, and P. Varchavskaia. Social

constraints on animate vision. IEEE Intelligent Systems, 15(4):32–37, 2000.

[7] Cynthia L. Breazeal. Social Machines: Expressive Social Exchange Between Humans

and Robots. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, May

2000.

[8] R. Brooks and L. A. Stein. Building brains for bodies. Autonomous Robots, 1:1:7–25,

1994.

169

[9] Rodney Brooks. L. IS Robotics Internal Technical Report, 1996.

[10] Rodney Brooks, Johanna Bryson, Matthew Marjanović, Lynn Stein, and Mike Wessler.

Humanoid software manual. MIT AI Lab internal document, 1996.

[11] Rodney A. Brooks. The behavior language user’s guide. A.I. Technical Report 1227,

Massachusetts Institute of Technology AI Lab, Cambridge, MA, April 1990.

[12] Rodney A. Brooks, Cynthia Ferrell, Robert Irie, Charles C. Kemp, Matthew Mar-

janovic, Brian Scassellati, and Matthew Williamson. Alternative essences of intelli-

gence. In Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI-98). AAAI Press, 1998.

[13] Thomas J. Carew. Spinal cord I: Muscles and muscle receptors. In E. R. Kandel

and J. H. Schwartz, editors, Principles of Neural Science, chapter 25, pages 284–292.

Edward Arnold, London, second edition, 1981.

[14] George J. Carrette. SIOD: Scheme in one defun. http://www.cs.indiana.edu/scheme-

repository/imp/siod.html, July 1996.

[15] John J. Craig. Introduction to Robotics. Addison-Wesley, Reading, MA, 1986.

[16] Gary L. Drescher. Made-Up Minds: A Constructivist Approach to Artificial Intelli-

gence. MIT Press, Cambridge, MA, 1991.

[17] F. Ferrari, J. Nielsen, P. Questa, and G. Sandini. Space variant imaging. Sensor

Review, 15(2):18–20, 1995.

[18] Paul Fitzpatrick. From First Contact to Close Encounters: A Developmentally Deep

Perceptual System for a Humanoid Robot. PhD thesis, Massachusetts Institute of

Technology, Department of Electrical Engineering Computer Science, 2003.

[19] Paul Fitzpatrick and Giorgio Metta. Towards manipulation-driven vision. In

IEEE/RSI International Conference on Intelligent Robots and Systems (IROS), Lau-

sanne, Switzerland, 2002.

[20] Jean Dickinson Gibbons. Nonparametric Statistical Inference, chapter 7. Marcel

Dekker, New York, NY, second edition, 1985.

170

[21] Stan Gielen. Muscle activation patterns and joint-angle coordination in multijoint

movements. In Alain Berthoz, editor, Multisensory Control of Movement, chapter 19,

pages 293–313. Oxford University Press, 1993.

[22] Simon F. Giszter, Ferdinando A. Mussa-Ivaldi, and Emilio Bizzi. Convergent force fields

organized in the frog’s spinal cord. Journal of Neuroscience, 13(2):467–491, 1993.

[23] A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proceedings

of the Royal Society of London, 126:136–195, 1938.

[24] Neville Hogan. The mechanics of multi-joint posture and movement control. Biological

Cybernetics, 52:315–331, 1985.

[25] MusculoGraphics Inc. SIMM Software Suite. Chicago, IL.

http://www.musculographics.com/.

[26] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on

Theory of Computing, pages 604–613, 1998.

[27] Mark Johnson. The Body in the Mind. University of Chicago Press, 1987.

[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237–285, 1996.

[29] J. A. Scott Kelso. Concepts and issues in human motor behavior. In J. A. Scott

Kelso, editor, Human Motor Behavior: An Introduction, chapter 2. Lawrence Erlbaum

Associates, Hillsdale, New Jersey, 1982.

[30] George Lakoff and Mark Johnson. Metaphors We Live By. The University of Chicago

Press, Chicago, IL, 1980.

[31] Matthew Marjanović. sok user’s manual. MIT Humanoid Robotics Group, Cambridge,

MA, November 2002.

[32] Matthew Marjanović, Brian Scassellati, and Matthew Williamson. Self-taught visually-

guided pointing for a humanoid robot. In Pattie Maes, Maja J Matarić, et al., edi-

tors, From animals to animats 4, pages 35–44, North Falmouth, MA, September 1996.

171

Fourth International Conference on Simulation of Adaptive Behavior (SAB96), MIT

Press, Cambridge, MA.

[33] Matthew J. Marjanović. Learning functional maps between sensorimotor systems on a

humanoid robot. Master’s thesis, Massachusetts Institute of Technology, Cambridge,

MA, 1995.

[34] Maja J. Matarić, Victor B. Zordan, and Matthew M. Williamson. Making complex

articulated agents dance. Autonomous Agents and Multi-Agent Systems, 2(1), July

1999.

[35] Thomas A. McMahon. Muscles, Reflexes, and Locomotion. Princeton University Press,

1984.

[36] Giorgio Metta. Babyrobot, A Study on Sensori-motor Development. PhD thesis, Uni-

versity of Genoa, Italy, 1999.

[37] Ferdinando A. Mussa-Ivaldi, Simon F. Giszter, and Emilio Bizzi. Linear combinations

of primitives in vertebrate motor control. Proceedings of the National Academy of

Sciences, 91:7534–7538, August 1994.

[38] Object Management Group. C Language Mapping, formal/99-07-35 edition, June 1999.

http://www.omg.org/technology/documents/formal/c language mapping.html.

[39] F. Panerai and Giulio Sandini. Oculo-motor stabilization reflexes: Integration of iner-

tial and visual information. Neural Networks, 11, 1998.

[40] Jean Piaget. The Origins of Intelligence in Children. Norton, New York, NY, 1952.

[41] David Pierce and Benjamin Kuipers. Map learning with uninterpreted sensors and

effectors. Artificial Intelligence Journal, 92:169–229, 1997.

[42] J. Pratt. Virtual model control of a biped walking robot. M.Eng. thesis, department

of electrical engineering and computer science, Massachusetts Institute of Technology,

Cambridge, MA, 1995.

[43] William H. Press et al. Numerical Recipies in C, chapter 2. Cambridge University

Press, Cambridge, 1992.

172

[44] Brian Scassellati. A binocular, foveated, active vision system. MIT AI Memo 1628,

MIT Artificial Intelligence Lab, Cambridge, MA, March 1998.

[45] Brian Michael Scassellati. Foundations for a Theory of Mind for a Humanoid Robot.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, May 2001.

[46] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar. Real-time robot learn-

ing with locally weighted statistical learning. In International Conference on Robotics

and Automation, San Francisco, April 2000.

[47] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley,

MA, second edition, 1998.

[48] Matthew Williamson. Robot Arm Control Exploiting Natural Dynamics. PhD the-

sis, Massachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, Cambridge, MA, 1999.

[49] Matthew M. Williamson. Series elastic actuators. A.I. Technical Report 1524, Mas-

sachusetts Institute of Technology AI Lab, Cambridge, MA, January 1995.

[50] Matthew M. Williamson. Postural primitives: interactive behavior for a humanoid

robot arm. In Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior (SAB-96). Society of Adaptive Behavior, 1996.

[51] Jack M. Winters and Lawrence Stark. Estimated mechanical properties of synergistic

muscles involved in movements of a variety of human joints. Journal of Biomechanics,

21(12):1027–1041, 1988.

[52] Song-Yee Yoon, Robert C. Burke, Bruce Blumberg, and Gerald E. Schneider. Interac-

tive training for synthetic characters. In AAAI/IAAI, pages 249–254, 2000.

173

