
Essential Coding Theory Madhu Sudan
6.896
Due: Wednesday, September 11, 2002

Problem Set 1

Instructions

References: In general, try not to run to reference material to answer questions. Try to think
about the problem to see if you can solve it without consulting any external sources. If this
fails, you may look up any reference material.

Collaboration: Collaboration is allowed, but limit yourselves to groups of size at most four.

Writeup: You must write the solutions in latex, by yourselves. Cite all references and collabora-
tors. Explain why you needed to consult any of the references, if you did consult any.

Problems

1. (Linear Algebra Review): (Need not be turned in.)

(a) Given a k × n matrix G with 0/1 entries, of rank k over Z2, generating a linear code
C = {x ·G|x}, show that there exists an n×m matrix H, (henceforth referred to as the
parity check matrix), such that C = {y|yH = 0}. What is the relationship between m,
n and k above?

By elementary linear algebra involving row operations (replacing row i by row i plus
row j), and column exchanges, we can write G as (Ik|A) where A is some k×n−k

matrix. Now the matrix H =
(
−A
In−k

)
satisfies GH = 0. Thus every vector

y = xG satisfies yH = 0. Furthermore standard linear algebra implies that the
space of vectors that satisfies yH = 0 is at most k and so this must be the space
spanned by G. The relationship between n, k,m is thus m = n− k.

(b) Give an efficient algorithm to compute such an H, given G, and vice versa.

Essentially Guassian Elimination. Writing the code is tedious.

(c) Give an explicit description of the generator matrix of a Hamming code of block length
2` − 1.

Lets permute the coordinates of the Hamming code, so that the parity check matrix
has rows of non-increasing weight (and so the last ` rows form the identity matrix).
The generator corresponding to this permutation of the coordinates has as its rows
vectors of the form 〈ei,bi〉 where for i ∈ [2` − ` − 1], the vectors ei’s are vectors
of length 2` − `− 1 with the ith vectors being 1 exactly in the ith coordinate, and
bi’s are all vectors of length ` with at least two coordinates being 1’s.

2. (Binary Hamming code & bound):
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(a) What is the rate of the Hamming code of block length 2` − 1?

By Problem 1.(a), the message length of the code is 2` − ` − 1 and so the rate is
1− `

2`−1
.

(b) Show that if C is a t-error-correcting code in {0, 1}n, then |C| ≤ 2n/Vol(n, t), where
Vol(n, t) =

∑t
i=0

(
n
i

)
.

By definition, the Hamming balls of radius t around codewords are non-intersecting
in a t-error correcting code. Since each such Hamming ball is a subset of {0, 1}n
we get that the sum of their volumes is at most 2n. Each has volume equal to
Vol(n, t) and this gives the bound.

(c) Conclude that the Hamming codes of Part (a) are optimal in their performance.

Hamming codes are 1-error correcting codes. The bound of Part (b) implies such
codes may have at most 2n/(n + 1) codewords. Part (a) shows that Hamming
codes do achieve this bound exactly when n = 2`−1. (The number of codewords is

22`−`−1 = 2n−` = 2n/2` = 2n/(n+ 1).)

3. (Extra Credit Question) For general q, give the best construction you can of a q-ary code of
minimum distance 3.

When q is a prime power, we can let Σ the alphabet be Fq a finite field of size q. We
can then pick H, the parity check matrix, to be all non-zero vectors in F`q with the first
non-zero entry being 1 (so no vector is zero and no two are scalar multiples of each
other). This gives an n× ` parity check matrix with n = (q` − 1)/(q − 1) and thus a
[n = (q`−1)/(q−1), n− `, 3]q code. This can be show to be optimal as in Problem 2.

I don’t know what happens if q is not a prime power. I’d be interested to find out!

4. (Pairwise independent spaces):

(a) Let H be the (2`− 1)× ` parity check matrix of a binary Hamming code. Show that the
collection of column vectors {HxT |x ∈ {0, 1}`} forms a pairwise independent space.

This is a special case of a more general result. If C is a code of minimum distance
d, then any d− 1 rows of its parity check matrix H are linearly independent. This
implies that the projection of HxT to any d − 1 coordinates is random when x is
random. (This is worked out in greater detail below, where M is supposed to be
the d − 1 rows of H that we are focussing on.) Thus the set of vectors {HxT |x}
forms a (d− 1)-wise independent space. Using the fact that Hamming codes have
d = 3, gives us the pairwise independent case.
Claim: If M is a (d− 1)× ` matrix over Fq of rank d− 1, then MxT is random
if x is chosen randomly from F

`
q.

Proof: Write M as (A|B) where A is a square matrix of full rank. Write x
correspondingly as 〈x1x2〉. Now consider the probability that MxT = a for a fixed
a ∈ Fd−1

q . This is equivalent to the condition that x1 = A−1(a − Bx2) which

happens with probability exactly q−(d−1).

(b) (Extra Credit Question) Show that any pairwise independent space on n bits must
contain at least n+ 1 points.
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Sketch: (We’ll see rigorous proofs that follow the outline below, later in the course.
Right now, you should at least scan the proof to get the gist of it.)
Let’s write bits as +1 or −1. So the n bit vectors in the sample space now become
vectors in {+1,−1}n. Say we have m such vectors v1, . . . ,vm. Consider the
m × n matrix M with the vectors vi’s as its rows. Let c1, . . . , cn be its columns.
Augment the cj ’s with the vector c0 which is a 1 in every entry. From the one-wise
independence of the vectors we have that c0 is orthogonal to the remaining cj ’s,
when viewed as vectors over the reals. From the pairwise independence we now have
that cj ’s are pairwise orthogonal too. Thus we have n+1 vectors in m-dimensional
real space, which are pairwise orthogonal. Standard linear algebra implies these are
the number of dimensions is at least the number of vectors, i.e., m ≥ n+ 1.

5. A Directed Cut (DiCut) in a directed graph G = (V,E) is an ordered partition (S, S) of V .
The size of the DiCut is the number of edges (u, v) ∈ E with u ∈ S and v ∈ S.

(a) Show that every graph has a DiCut of size at least |E|/4.

Pick a random partition (S, S) of G, i.e., each vertex u ∈ V decides independently
with probability half whether it wants to be in S or S. The probability that a given
edge is in the DiCut is 1

4 . Thus, by linearity of expectations, the expected number

of edges in this random cut is |E|4 . In particular there exists a cut with |E|4 edges.

(b) Give a deterministic polynomial time algorithm to find such a DiCut in a given graph.

(There are two natural solutions to this problem - one that involves pairwise independence
and one that doesn’t. Guess which one I want.)

Let Xu denote the bit corresponding to choice of vertex u. The analysis in Part (a)
continues to work if the choices Xu are pairwise independent. Since we know (by
Problem 4.(a) and the properties of the Hamming code) that pairwise independent
spaces of vectors exist in {0, 1}n with n + 1 sample points, we can pick such a space
and we know for one vector of choices 〈Xu〉u in this space, the choices give a cut with
value at least the expectation, i.e. with at least |E|/4 edges in the DiCut.

6. The Hat Problem:

(a) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if its
vertex set is {0, 1}n and if u → v is an edge in G, then u and v differ in at most
one coordinate. Let K(G) be the number of vertices of G with in-degree at least one,
and out-degree zero. Show that the probability of winning the hat problem equals the
maximum, over directed subgraphs G of the n-dimensional hypercube, of K(G)/2n.

Assume w.l.o.g. that we only consider graphs which do not contain both the edge
pairs u → v and v → u, since this graph does not have a larger K(G) than the
graph in which both these edges are deleted.
We can now draw a 1-1 correspondence between strategies for guessing and sub-
graphs of the hypercube (provided the subgraph does not contain edges of the form
u → v and v → u). The vertices correspond to the assignment of the hats, and
the unordered pair of vertices {v, u} where v and u differ in only the ith coordinate
corresponds to the view of the ith player. If on this view the player guesses that u
is the right view, then lets draw an edge v → u, if the player guess that v is the
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right view, lets draw an edge from u → v and lets not draw any edges between u
and v if the player abstains.
In the graph obtained this way every vertex with positive indegree and zero outdegree
corresponds to a winning position. Thus the winning probability corresponding to
this strategy is K(G)/2n.

(b) Using the fact that the out-degree of any vertex is at most n, show that K(G)/2n is at
most n

n+1 for any directed subgraph G of the n-dimensional hypercube.

Let S be the set of vertices with positive in-degree and out-degree zero in G. I.e.
|S| = K(G). We have

∑
v∈{0,1}n in-deg(v) ≥

∑
v∈S in-deg(v) ≥ |S| = K(G).

We have
∑

v∈{0,1}n out-deg(v) =
∑

v 6∈S out-deg(v) ≤ n(2n − |S|). And finally∑
v in-deg(v) =

∑
v out-deg(v). Thus we get K(G) ≤ n(2n−K(G)) ⇔ K(G)/2n ≤

n
n+1 for any graph G.

(c) Show that if n = 2` − 1, then there exists a directed subgraph G of the n-dimensional
hypercube with K(G)/2n = n

n+1 . (This is where the Hamming code comes in.)

Let C ⊆ {0, 1}n be any code of distance at least 3. Construct G as follows: For
every pair of vertices such that u ∈ C and v 6∈ C such that ∆(u, v) = 1, draw an
edge u → v. Since the distance of the code is at least 3, this ensures there are
no edges from u → v and v → u. Furthermore, every vertex at distance 1 from a
codeword has out-degree zero and so K(G) = n·|C|. To optimize this construction,
we need a code of distance 3 which has maximum number of codewords. Hamming
codes give this to us, when they exist, with |C| ≥ 2n/(n + 1) and this gives the
desired result.
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