
Essential Coding Theory Madhu Sudan
6.896
Extended Due Date: Wednesday, October 2, 2002

Problem Set 2

Instructions: See PS 1.

Problems

1. Prove the noiseless coding theorem, and its converse. (But don’t turn in.)

2. Consider a Markovian source of bits, where the source consists of a 6-cycle with three succes-
sive vertices outputing 0, and three successive vertices outputting 1, with the probability of
either going left (or right) from any vertex is exactly 1/2. Compute the rate of this source. (I
expect an ab initio argument. Hopefully this will motivate you to look up Shannon’s general
method for computing the rate of a Markovian source.)

Basic idea of ad-hoc analysis: Compress state diagram to a minimum and then make
some basic observations to compress the source information.

The state diagram can be compressed into an equivalent one on four states, say E0,
M0, M1, and E1, (E for End, and M for Middle) where states Ei and Mi generate
bit i; and from state Ei the chain jumps deterministically to state Mi at the next step;
and state Mi jumps to state Ei with probability half (Type-1 move) and to state M1−i
with probability half (Type-2 move).

To describe a string generates by the source, notice it suffices to give the start state
(one of four possibilities) and the sequence of moves made from states Mi. After `
visits to the states {M0,M1}, the expected number of Type-1 moves is `/2 and number
of Type-2 moves is `/2. Thus the expected length of the output string after ` visits
to the M states is 2 × (`/2) + `/2. Thus a sequence of ` bits (+ two for the initial
state) suffices to describe 3`/2 output bits (in expectation, or with high probability).
Inverting this gives a compression rate of 2/3.

It is also clear one can’t do better. Any way to describe the output string, describes
the sequence of Type-1/Type-2 moves made from the M states. W.h.p., 2/3rds of
the time is spent in such states. and this sequence of moves is a random, unbiased,
independent sequence of bits.

On systematic analyses: Shannon’s original paper shows (claims?) that the rate of such
a source is the limit of the following quantity: Let Dn denote the distribution of n bit
strings generated by the source after starting at some fixed state and n time steps. Let
H(Dn) denote the entropy of this distribution. Let Rn denote H(Dn)/n. Then the
rate of this source, R, equals limn→∞{Rn}. It is possible to write a set of recurrences
that allow one to describe the entropy of Dn in terms of the entropy of Dn−1 and this
gives a systematic way to show this bound.
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3. Consider a binary channel whose input/output alphabet is {0, 1}, where a 0 is transmitted
faithfully as a 0 (with probability 1), but a 1 is transmitted as a 0 with probability 1

2 and a
1 with probability 1/2. Compute the capacity of this channel. (You should prove this from
scratch using only simple probabilistic facts already stated/used in class - not by referring to
tools gleaned from other courses in information theory. For partial credit, you may just prove
a lower bound on the capacity. The higher your bound, the more the credit.)

Lets pick the encoding function E : {0, 1}k → {0, 1}n at random with E(x) being
independent of E(x′). However, E(x) is not uniformly chosen. Instead, we will pick
E(x) uniformly from Wp,n, i.e., strings of weight pn in {0, 1}n.

We say x is consistent with a received string r if ri = 0 whenever E(x)i = 0. The
decoding algorithm works as follows: (1) If a received vector r ∈ {0, 1}n does not have
weight in the interval [(p/2− ε)n, (p/2 + ε)n] then declare an error. (2) If there exist
two distinct vectors x, x′ that are consistent with r, declare an error. (3) Else, compute
an x that is consistent with r and output x.

For the analysis, first note that the message x sent over the channel is always consistent
with the received vector, so the Steps (2) and (3) are exhaustive. The probability of error
declared in Step (1) is exponentially small, so we can just about ignore it. Error in Step
(2) occurs if some x′ other than the transmitted message is consistent with a received
vector r. For fixed x′, if r has weight w, this probability is exactly

(
n−w
pn−w

)
/
(
n
pn

)
, which

happens to equal
(
pn
w

)
/
(
n
w

)
. (Go figure this one out!) Using w ≈ pn/2 and

(
n
αn

)
≈

2H(α)n, we get that this event happens with probability approximately 2(p−H(p/2))n.
The probability that such an x′ exists is thus 2k−(H(p/2)−p)n. Thus k/n < H(p/2)− p
would lead to exponentially small error in Step 2 also. Thus a rate of H(p/2) − p
is achievable. Some differential calculus yields that this expression is maximized at
p = 2/5 giving a rate of H(1/5)− 2/5.

To show that this is the upper bound fix an encoding and decoding pair (E,D). Suppose
E maps at least 1/(n+ 1) fraction of the messages to vectors of weight pn (such a p
must exist!). Let this subset of messages be M with size K. Consider picking a random
message from this space and encoding and transmitting it. With all but exponentially
small probability the received vector has weight in [(p/2−ε)n, (p/2+ε)n]. Furthermore,
by symmetry, the probability that any specific vector is the one received given a fixed
message from M , is exactly 2−pn. Thus the probability of successful decoding can be
calculated exactly to be K−12−pn

(
n

pn/2

)
which is roughly the reciprocal of the quantity

we got in the forward direction. So K better be at most 2H(p/2)−pn giving that the
capacity computed above is tight.

4. If there is a constructive solution to Shannon’s noisy coding theorem with E being a linear
map, then show that there is a constructive solution to Shannon’s noiseless coding theorem
in the case where the source produces a sequence of independent bits of bias p.

Clarifications:

(a) The encoding and decoding functions used in the noiseless theorem should be polynomial
time computable, if the corresponding functions are polynomial time computable in the
noisy theorem.

(b) The compression rate in the noiseless coding theorem should be arbitrarily close to H(p),
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assuming the rate of the encoding function in the coding theorem can be made arbitrarily
close to 1−H(p).

Some further caveats. I should have stated explicitly that we would allow some small
probability of decoding error, (Either that, or I need to use non-uniformity in the choice
of the encoding/decoding algorithm.)

Let the encoding function correspond to a linear code with n × (n − k) parity check
matrix H. Given a vector η from the p-biased source, its compression E′(η) will be the
vector ηH. The decompression algorithm D′(y) is computed as follows: First compute
(by simple linear algebra) a random vector r such that rH = y. Now it decode r to
obtain c = D(r) and let η′ = r − c where c is a codeword. To analyze the probability
that D′(E′(η)) 6= η, note that the c′ = r− η is a random codeword under E, and η is
a random error vector under the binary symmetric channel. Thus the probability that
D(c′ + η) 6= c′ is negligibly small. If this event does not occur, we have D(r) = r − η
and then η′ = η as desired.

5. Given codes C1 and C2 with encoding functions E1 : {0, 1}k1 → {0, 1}n1 and E2 : {0, 1}k2 →
{0, 1}n2 let E1⊗E2 : {0, 1}k1×k2 → {0, 1}n1×n2 be the encoding function obtained as follows:
View a message m as a k1 × k2 matrix. Encode the columns of m individually using the
function E1 to get an n1 × k2 matrix m′. Now encode the rows of m′ individually using E2

to get an n1 × n2 matrix that is the final encoding under E1 ⊗E2 of m. Let C1 ⊗ C2 be the
code associated with E1 ⊗ E2.

For i ≥ 3, let Hi denote the [2i − 1, 2i − i − 1, 3]2-Hamming code. Let Ci = Hi ⊗ Ci−1 with
C3 = H3 be a new family of codes.

(a) Give a lower bound on the relative minimum distance of Ci. Does it go to zero as i→∞?

As noted in class, the product of two codes of minimum distance d1 and d2 respec-
tively is at least d1d2, and there exist codes for which the product has mininum
distance exactly d1d2 (for all linear codes, in fact).
So Ci has mininum distance 3i−2. Its block length is roughly

∏i
j=3 2j = 2Θ(i2).

Thus the relative minimum distance of Ci is 2O(i)−Θ(i2) which goes to zero as
i→∞.

(b) Give a lower bound on the rate of Ci. Does it go to zero as i→∞?

The rate of Hi = 1− i
2i−1

≥ 1− i
2i−1 . The rate of Ci is thus at least

∏i
j=3(1− j

2j−1 ).

Using the formal series 1
1−x =

∑∞
j=0 x

j and 1
(1−x)2 = (

∑∞
j=0 x

j)2 =
∑∞

j=0(j+1)xj ,

we get
∑∞

j=1
j

2j−1 = 4 <∞. we get
∑∞

j=5
j

2j−1 = 3/4. So we get the rate of Ci is

at least
∏i
j=3(1− j

2j−1 ) ≤ (1− 3/4)(1− 4/8)(1−
∑∞

j=5
j

2j−1 ) = 1
32 .

(c) Consider the following simple decoding algorithm for Ci: Decode the rows of the rec’d
vector recursively using the decoding algorithm for Ci−1. Then decode each column
according to the Hamming decoding algorithm. Let pi denote the probability of decoding
error of this algorithm on the Binary Symmmetric Channel with parameter p. Show that
there exists a p > 0 such that pi → 0 as i→∞. (Hint: First show that pi ≤ 4ip2

i−1.)

First note that we have a decoding error when using code Ci only if two of the
rows of the rec’d vector are decoded incorrectly. For any fixed row, the probability
of a decoding error is pi−1. The probability of decoding two fixed distinct rows
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incorrectly is thus p2
i−1. Since the code has 2i−1 rows, the probability there exist a

pair of rows that are decoded incorrectly is thus at most 4ip2
i−1 yielding the bound

in the hint.
We’ll prove by induction that pi ≤ 2−2i/2 . The base cases (for small i) follow if p is

small enough. For induction, we have pi ≤ 4i2−2·2(i−1)/2
= 2−(

√
22i/2−2i) ≤ 2−2i/2

where the last inequality holds provided i is large enough so as to satisfy (
√

2 −
1)2i/2 ≥ 2i. Clearly pi → 0 as i→∞. (In fact, if we express the error probability
as a function of the block length, we have the error shrinks as exp(−2

√
logn for

codes of length n, which is not exponential in n, but better than 1/nc for any c!)
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