Today

Existence of asymptotically good codes.

- The Gilbert proof.
- The Varshamov proof.
- The Gilbert-Varshamov bound.
- Wozencraft's Ensemble.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

The Gilbert Construction

- Exponential time, deterministic construction.
- Greedy algorithm:
 - 1. Initially $S \leftarrow \{0,1\}^n$, $C \leftarrow \emptyset$.
 - 2. While $S \neq \emptyset$ do
 - (a) Pick any element $x \in S$;
 - (b) $C \leftarrow C + \{x\}, S \leftarrow S \mathcal{B}(x, d 1).$
- Gives code of minimum distance d.
- Not linear.
- How many codewords? At least $2^n/\mathrm{Vol}_2(d-1,n)$.
- Will analyze quantitative results shortly.

Plan for the First Part of Course

- Will give some atomic "constructions" of codes.
- Then give some composition results and that will give explicit constructions.
- But today: Exponential time/Randomized polytime constructions. Why?
 - Prove such codes exist.
 - Even better, randomized polynomial construction.
 - Gives target for deterministic (explicit) constructions.
 - Used in deterministic constructions.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

The Varshamov Result

- Polynomial time, randomized construction, working with positive probability.
- Algorithm:
 - 1. Pick a $k \times n$ matrix G at random.
 - 2. Let $C = \{\mathbf{x} \cdot G | \mathbf{x}\}.$
- Claim: w.h.p. C has 2^k distinct elements. Furthermore, their pairwise distance is at least d provided $2^k-1 < 2^n/\mathrm{Vol}_2(d-1,n)$.
- Proof:
 - 1. Suffices to verify that for every non-zero vector \mathbf{x} , $\mathbf{x} \cdot G$ is not in $\mathcal{B}(\mathbf{0}, d-1)$

- 2. Fix x. xG is a random vector. Falls in $\mathcal{B}(\mathbf{0}, d-1)$ w.p. $\operatorname{Vol}_2(d-1, n)/2^n$.
- 3. By union bound prob. exists \mathbf{x} such that $\mathbf{x}G \in \mathcal{B}(\mathbf{0},d-1)$ is at most $(2^k-1)\mathrm{Vol}_2(d-1,n)/2^n$. If this quantity is less than 1, then such a code exists. If much less, then found with high probability.

Gilbert-Varshamov bounds

- Famed phrase in coding theory.
- Non-asymptotic version: There exist $(n,k,d)_2$ codes with $2^k \geq 2^n/\mathrm{Vol}_2(d-1,n)$.
- \bullet Asymptotic version: For every R, δ such that

$$R < 1 - H(\delta)$$

there exists a family of codes with rate R and relative distance δ .

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Reflections on the G-V bound

- Asymptotically good families exist!
- Striking similarity to Shannon's result. Coincidence? Shannon's result implicitly proved the GV bound (earlier than GV).
- Terminology: When "dealing with errors in inf. transmission" talk of the Shannon bound; When "combinatorics of minimum distance" we talk of GV bound.
- In other words: $\sup_{\mathcal{C}} \{R(\mathcal{C})\} \ge 1 H(\delta)$.
- Contrast with Hamming (Volume) bound: $\sup_{\mathcal{C}} \{R(\mathcal{C})\} \leq 1 H(\delta/2).$

Actually far from each other. Which one is right?

Is the GV bound tight?

- Reigning belief in coding community: GV bound is tight. ("Almost every code meets the GV bound, except the ones we know".)
- Applies only to:
 - Asymptotically good families of codes:
 - * Hamming codes beat GV.
 - * Hadamard codes beat GV.
 - * BCH codes beat GV
 - * RS codes beat GV.
 - -q=2.
 - * GV construction extends to q > 2. Roughly says for fixed $R, \delta > 0$ as $q \rightarrow$ ∞ . $\sup_{\mathcal{C}} \{R(\mathcal{C})\} > 1 - \delta - O(1/\log q)$
 - * But there exist algebraic codes s.t. $R \ge$ $1 - \delta - O(1/\sqrt{q})$

- "Almost every code meets the GV bound, except the ones we know, which are better."?
- If counterexample exists, where could it be?
 - Try $\delta \rightarrow 0$. Codes with $R \geq 1$ - $\frac{1}{2}\delta\log\delta^{-1}-o(\delta)$ beat the bound. (Or any $\alpha < 1$.)
 - Some possibilities in the range $\delta \to \frac{1}{2}$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

More non-explicit constructions

- More randomness: Completely random code.
- Less randomness: Pick G to be Toeplitz.
- Wozencraft: Nice, with a slightly more explicit feel.

Wozencraft's Ensemble

- Basic idea: "Pack" $\{0,1\}^n$ with linear codes C_1, \ldots, C_t .
 - $C_i \cap C_i = \{0\}.$
 - $-\cup_i C_i = \{0,1\}^n$.
- $t \geq \operatorname{Vol}_2(d-1,n)$ implies some C_i has distance d. More strongly, $\epsilon t \geq \text{Vol}_2(d -$ (1,n) implies more than $1-\epsilon$ fraction of C_i 's have distance d.
 - Proof: Every point in $\mathcal{B}(\mathbf{0}, d-1)$ rules out one code C_i . But we have more codes than points in $\mathcal{B}(\mathbf{0}, d-1)$.
- t = ?: Conditions imply $t = (2^n 1)/(2^k 1)$ 1). So exist codes satisfying $2^n - 1 \ge$

11

 $(2^k-1)\cdot \operatorname{Vol}_2(d-1,n)$ provided we can "pack".

Wozencraft Packing

- Say n = ck.
 - View elements of \mathbb{F}_2^k as elements of \mathbb{F}_{2^k} .
 - So message is one field element.
 - Encoding is c field elements.
 - Codes described by c field elements $\alpha_1, \ldots, \alpha_c$, not all zero, with first non-zero element being 1.
 - Claim: This Packs $\{0,1\}^n$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

14

Conclusion

- Can get very low-randomness constructions. Down to O(n) randomness.
- Nothing explicit yet.
- GV bound very natural comes up in so many ways.
- So it is right?
- When it fails, no intuition as to why it fails. No natural proofs of existence of Hamming codes, BCH codes, RS codes. etc.
- Next lecture: Explicit constructions of asymptotically good codes.