Today

Limitations on performance of codes.

- Lower bounds on n.
- Upper bounds in R, δ .

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Summary (contd.)

- Seen some impossibility results too: Hamming = volume bound. Singleton = projection bound.
- While we can construct decent binary codes, and show existence of even better ones, our constructions are from bounds.
 Would like to know what is right.
- Eventual hope: Upper bounds = Lower bounds.
- Don't have this yet so how to get qualitative understanding of results?
- One focus: Pick the best result (upper bound/lower bound) for every δ .

The course so far

- Seen various codes: Hamming, Hadamard, Reed Solomon, Reed-Muller.
- Concatenation, and using it to build asymptotically good codes.
- Aside on Justesen codes: Let $\mathbb F$ be a field of size 2^ℓ and assume its elements are written as ℓ bit vectors so as to preserve addition. Then the Justesen code has as its messages $c_0,\ldots,c_{k-1}\in\mathbb F$ and maps it to $\langle p(\alpha),\alpha p(\alpha)\rangle_{\alpha\in\mathbb F^*}$ where $p(x)=\sum_i c_i x^i.$ Maps $k\ell$ bits to $\ell\cdot 2^{\ell+1}$ bits. Very explicit. (Thanks to Johan Hastad for pointing this out.)

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

-

- Our focus: Look at the extreme cases $\delta \rightarrow 0$ or $\delta \rightarrow ?$.
- What is the right limit on δ subject to positive rate?

Plotkin bound

(Stated only for binary case)

Plotkin Bound - 1:

If
$$d \geq (1 + \epsilon) \cdot \frac{n}{2}$$
 then $\#$ codewords $\leq 1 + \frac{1}{\epsilon}$.

Plotkin Bound - 2:

If
$$d \geq \frac{n}{2}$$
 then $\# \operatorname{codewords} \leq 2n$.

Plotkin Bound - 3:

$$k \le n - 2d + \log_2 n$$

Interpretation:

- Parts 1 & 2: Address $\frac{1}{2} \le \delta \le 1$.
- Part 3: Gives continuity at $\delta = \frac{1}{2}$.
- Part 3: Reduction to Part 2 by restricting.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- Can't have too many vectors in \mathbb{R}^n with angle $> 90^o$ - Can we?

Plotkin bound: Main idea

- Map Hamming spaces to Euclidean spaces.
 Use geometric intuition.
- Simplest reduction: $0 \to 1$, $1 \to -1$. Maps $\mathbb{F}_2 \to \mathbb{R}$, $\mathbb{F}_2^n \to \mathbb{R}^n$.
- If $x \to v_x$ and $y \to v_y$, then $\langle x,y \rangle = n 2\Delta(x,y)$ Hamming distance related to inner products.
- Code C with m codewords and distance d>n/2:
- Normalize inner product by $n \dots$
- Codewords map to unit vectors.
- Inner product $\leq 1 (2d/n) < 0$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Geometric fact

- Fact: If m vectors of length ≤ 1 have pair wise inner product less than $-\alpha$, then $m \leq 1 + \frac{1}{\alpha}$.
- Tedious, but intuitive, inductive proof:
 - Let v_1, \ldots, v_m be the vectors.
 - Note $v_1 \neq 0$.
 - W.l.o.g. $v_1 = \langle 1, 0, \dots, 0 \rangle$.
 - Therefore $v_i = \langle -\alpha_i, v_i' \rangle$, where $\alpha_i \geq \alpha$.
 - Project remaining vectors to last n-1 coordinates and scale up by $1/\sqrt{1-\alpha^2}$.
 - Induction, preceded by tedious careful calculation, implies number of vectors at most $\frac{1}{\alpha}$.

Nicer proof?

- Use linear algebra. Cleaner proof. Less intuitive.
- Let $v = v_1 + \cdots + v_m$.
- Then $0 \le \langle v, v \rangle \le m m(m-1)\alpha$.
- QED
- Moral: Guess statement by intution, Prove by linear algebra.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- $\delta/2 \le \tau \le \delta$: So E-B bound always better than Hamming, but never better than GV (which is sane).
- $\delta \to 0$, $\tau \approx \delta/2$: So for small rel. distance, don't improve much on Hamming.
- $\delta \to \frac{1}{2}$, $\tau \approx \delta$: So for large δ , approach GV bound.

Elias-Bassalygo-Johnson Bounds

Motivation: Hamming bound better for small δ , Plotkin better for large δ . Any way to get a combined proof?

Elias-Bassalygo Bound: $R \leq 1 - H(\tau)$ where τ comes from Johnson bound below.

<u>Johnson Bound:</u> If C is an $(n,?,\delta n)_2$ -code, then any Hamming ball of radius τn has at most O(n) codewords, where

$$\tau = \frac{1}{2} \cdot \left(1 - \sqrt{1 - 2\delta} \right).$$

• τ vs. δ ?

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Elias-Bassalygo Bound

- Pushes the packing bound.
- Go to larger radius.
- Suppose: Can prove that at most 4 balls of radius e=2d/3 contain any one given point.
- Prveious argument gives:

$$V(n, 2d/3, q)q^k \le 4q^n.$$

- Lose almost nothing on RHS.
- Improve LHS (significantly).

Motivates the Johnson question.

11

Johnson Bound

Question: Given $\mathbf{r} \in \Sigma^n$, $(n,k,d)_q$ code $\mathcal{C}.$ How many codewords in $B(\mathbf{r},e)$?

Motivation: (for binary alphabet)

How to pick a bad configuration?

I.e. many codewords in small ball.

W.l.o.g. set $\mathbf{r} = \mathbf{0}$.

Pick c_i 's at random from $B(\mathbf{0}, e)$.

Expected' dist. between codewords = ? Let $\epsilon = e/n$.

Codewords simultaneously non-zero on ϵ^2 fraction of coordinates;

Thus distance $\approx (2\epsilon - 2\epsilon^2)n$.

Johnson bound shows you can't do better!

Hamming to Euclid

- Map $\Sigma \to \mathbb{R}^q$: ith element $\mapsto 0^{i-1} \ 1 \ 0^{q-i}$.
- Induces natural map $\Sigma^n \to \mathbb{R}^{qn}$:
 - Maps vectors into Euclidean space.
 - Hamming distance large implies Euclidean distance large.

Argue: Can't have many large vectors with pairwise small inner products.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

1

15

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

. .

Hamming to Euclid (contd).

In our case:

Given: c_1, \ldots, c_m codewords in Σ^n and $\mathbf{r} \in \Sigma^n$, s.t.

- $\Delta(c_i, \mathbf{r}) \leq e$
- $\Delta(c_i, c_j) \geq d$

Want: Upper bound on m.

After mapping to \mathbb{R}^{nq} (and abusing notation)

Given: c_1,\ldots,c_m $\mathbb{R}^{n\,q}$ and $\mathbf{r}\in\mathbb{R}^{n\,q}$, s.t.

- $\bullet \langle \mathbf{r}, \mathbf{r} \rangle = n.$
- $\langle c_i, c_i \rangle = n$.
- $\langle c_i, \mathbf{r} \rangle \ge n e$
- $\langle (\rangle c_i, c_j) \leq n d$

Want: Upper bound on m.

Hamming to Euclid (contd).

Main idea: Find a new point O' to set as origin, such that the angle subtended by C_i and C_j at O' is at least 90° .

Conclude: # vectors \leq dimension = nq.

Johnson bound (contd).

Johnson bound (contd).

How to pick the new origin?

Idea 1: Try some point of the form $\alpha \mathbf{r}$.

Then
$$\langle c_i - \alpha \mathbf{r}, c_j - \alpha \mathbf{r} \rangle$$

$$= \langle c_i, c_j \rangle - \alpha \langle c_i \mathbf{r} \rangle$$

$$-\alpha \langle c_j, \mathbf{r} \rangle + \alpha^2 \langle \mathbf{r}, \mathbf{r} \rangle$$

$$\leq (1 - \alpha)^2 n + 2\alpha e - d$$

Setting $\alpha = 1$, says: Need $e \leq d/2$.

Setting $\alpha = 1 - e/n$ yields: Need $e/n \le 1 - \sqrt{1 - \delta}$.

(Not quite what was promised.)

A better choice for origin.

Idea 2: Try some point of the form $\alpha \mathbf{r} + (1 - \alpha) \mathbf{Q}$, where $\mathbf{Q} = (\frac{1}{a})^{qn}$.

Appropriate setting of $\alpha=1-e/n$ yields, the desired bound.

C Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

17

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Back to Elias Bound

Plugging Johnson bound into earlier argument:

$$k \le (1 - H_q(\epsilon))n + o(n),$$

where ϵ such that the Johnson bound holds for $e=\epsilon n$.

Importance:

- Proves e.g. No codes of exponential growth with distance (1-1/q)n.
- Decently comparable with existential lower bound on rate from random code.