Today

- Locally decodable codes.
- Local decoding of Reed-Muller codes.

Sub-linear time decoding?

- What is the fastest time for decoding one can hope for?
- Exp \rightarrow Poly \rightarrow Linear \rightarrow Sublinear?
- "Clearly can't get last step!". Don't have enough time to read input/write output!
- But can if we allow:
 - Implicit representation of input/output.
 - Randomization + low-error probability.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

,

Local Decodability

Defn: $[n,k,d]_q$ Code C is (ℓ,ϵ) -locally decodable upto relative error δ if there exists an algorithm A that behaves as follows:

- Takes input $i \in [n]$.
- Has oracle access to received vector $r \in \Sigma^n$.
- Tosses some random coins \$.
- Makes at most ℓ queries to r.
- Soundness: If there exists codeword $c \in C$ with $\Delta(r,c) \leq \delta \cdot n$, then $\Pr_{\$}[A(i) \neq c_i] \leq \epsilon$.

Will skip ϵ to imply such an $\epsilon < 1 - 1/q$ exists.

Complementary Property: Local Testability

- Local Decodability promises decoding if received vector is close to a codeword.
- What if vector not close to a codeword?
 Do we get to tell? No such guarantee!
- Detecting if close to codeword is a complementary property. We won't discuss today.

Why local decodability?

- Possibly first interesting sub-linear time algorithm!
- Self-correcting programs and average-case complexity of the permanent.
- Permanent of a matrix.
 - Definition.
 - Complexity.
- Observation: Permanent is a multivariate polynomial. So written as a truth-table, it is a codeword of some enormous Reed-Muller code. If Reed-Muller code is locally decodable, then it implies permanent is hard to compute on random instances.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

-

Local decodability

- Reed-Solomon [n, k, d] code is not k-locally decodable
- Proposition: If a linear code is (ℓ, ϵ) locally decodable, then its dual code must have distance less than or equal to $\ell+1$.
- So what kind of codes are locally decodable?
- Hadamard codes? Dual is a Hamming code
 so in principle 2-locally decodable.
- Reed-Muller codes? Duals are supposedly also Reed-Muller codes, but only under severe restrictions. In any case have nice

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Local decoding of Hadamard Codes

- For today Hadamard codes will be homogenous polynomials of degree 1 in k variables. So they are $[2^k, k, 2^{k-1}]_2$ codes.
- Codeword is a function $f: \mathbb{F}_2^k \to \mathbb{F}_2$, given by coefficients a_1, \ldots, a_k and $f(x) = \sum_i a_i x_i$.
- Local Decoding Question: Given oracle access to $r: \mathbb{F}_2^k \to \mathbb{F}_2$ that is δ -close to f, and input $x \in \mathbb{F}_2^k$ can you compute f(x)?
- Points to be noted:
 - Oracle access is to r, not f.

- Output needs to be f(x), not r(x).
- -r(x) usually equals f(x), but this probability is over x not good enough for defn. of local decoding.

Local decoding algorithm

- Key idea: For codeword f, we have f(x) = f(x+y) f(y) for every x,y.
- f(y) usually equals r(y).
- f(x+y) usually equals r(x+y); Prob. only over y, not x!
- Union bound, bounds probability of either event not happening.

Algorithm & Analysis.

- Algorithm: Given x, Pick y at random. Output r(x+y)-r(y).
- Analysis:
 - $-\Pr_y[f(y) \neq r(y)] \leq \delta.$
 - $\Pr_y[f(x+y) \neq r(x+y)] \leq \delta$.
 - $\Pr_y[$ Either of above $] \leq 2\delta.$
 - If $\delta < 1/4$, then answer correct w.p. more than 1/2.
- Conclude: These Hadamard codes are 2locally decodable upto nearly half their minimum distance!

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

11

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Reed-Muller Codes

- What was the basic idea above?
- Restrict attention of code to small dimensional (linear/affine) subspace containing point of interest, and infer value of codeword at the point of interest, based on its value at other points in subspace.
- Hadamard case: Subspace = $\{0, x, y, x + y\}$.
- Reed-Muller Case: Subspace = Lines = $\{x, x+y, x+2y, \dots, x+ty, \dots\}$.

Lines/Small dimensional subspaces in \mathbb{F}^m

- Algebraic Property: Low-degree poly restricted to subspace is a low-degree polynomial.
- Randomness Property: Random t-dimensional subspace containing t-1 fixed points, is mostly a collection of random points.

Decoding Algorithm

- Problem: Given oracle $r: \mathbb{F}^m \to \mathbb{F}$ s.t. $\exists f: \mathbb{F}^m \to \mathbb{F}$ of degree D that is δ -close to r. Also, given x and D. Find f(x).
- Algorithm: Let $\alpha_1, \ldots, \alpha_{D+1} \in \mathbb{F}$ be non-zero and distinct. Pick $y \in \mathbb{F}^m$ at random. Let $y_i = r(x + \alpha_i y)$. Compute univ. degree D poly p(t) s.t. $p(\alpha_i) = y_i$. Output p(0).
- Analysis:
 - $\Pr_y[r(x + \alpha_i y) \neq f(x + \alpha_i y)] = \delta.$
 - $-\Pr_y[\exists is.t.r(x+\alpha_i y) \neq f(x+\alpha_i y)] \leq (D+1)\delta.$
 - W.p. $1 (D+1)\delta$, $p(\cdot) = f|_{L}(\cdot)$. So $p(0) = f|_{L}(0) = f(x+0 \cdot y) = f(x)$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

• Conclude: Reed-Muller codes are (D+1)-locally decodable upto error $1 - \frac{q-1}{q(D+1)}$.

14

Some range of parameters

- If $D = \log^c k$ and $m = \Omega(\log k/((c-1)\log\log k))$, then # coefficients = k.
- Pick field size = 2D to get encoding size $n = (2D)^m = k^{c/(c-1)}$ (= poly rate).
- Get D-local decodability = poly $\log n$.
- Pretty good. Almost best known.
- Error-tolerance not so good. Will do better next time.