Today

Recall Problem

- Local decoding of Reed-Muller codes.
- Local list-decodability.

- Given:
 - Oracle access to $r: \mathbb{F}^m \to \mathbb{F}$.
 - Point of interest: $x \in \mathbb{F}^m$.
 - Promise: $\exists p: \mathbb{F}^m \to \mathbb{F}$ of degree D s.t. $\Delta(r,p) = \Pr_{y \in \mathbb{F}^m}[r(y) \neq p(y)] \leq \delta$.
- Goal: Compute p(x) with probability $> \frac{1}{2}$.
- Desired runtime: $\operatorname{poly}(m, D, \log q)$. Can even tolerate $\operatorname{poly}(q)$, where $q = |\mathbb{F}|$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Basic idea

- Restrict r/p to some line L.
 - For $a, b \in \mathbb{F}^m, t \in \mathbb{F}$, let $L_{a,b}(t) = a + t \cdot b$. - $L_{a,b} = \{L_{a,b}(t) | t \in \mathbb{F}\}$.
- Line is a function $L_{a,b}: \mathbb{F} \to \mathbb{F}^m$.
- $f: \mathbb{F}^m \to \mathbb{F}$ restricted to line L is just the composed function $f|_L: \mathbb{F} \to \mathbb{F}$, with $f|_L(t) = f(L(t))$.

Lines in \mathbb{F}^m

 Algebraic Property: Low-degree poly restricted to subspace is a low-degree polynomial.

$$deg(f) \le D \Rightarrow deg(f|_L) \le D.$$

 Randomness Property: Random line is a collection of pairwise independent points.

$$\forall t \neq s, \Pr_{a,b}[L_{a,b}(t) = c \text{ and } L_{a,b}(s) = d] = 1/q^{2m}.$$

Random line through a is $L_{a,b}$ with b being random. Random line through a is 1-wise random, except at t = 0.

$$\forall t \neq 0, \Pr_b[L_{a,b}(t) = c] = 1/q^m.$$

Decoding Algorithm

- Fix $\alpha_1, \ldots, \alpha_{D+1} \in \mathbb{F}$ non-zero and distinct.
- Pick $y \in \mathbb{F}^m$ at random.
- Let $\beta_i = r(x + \alpha_i y)$.
- Compute univ. degree D poly h(t) s.t. $h(\alpha_i) = \beta_i$.
- Output h(0).

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Some range of parameters

- If $D = \log^c k$ and $m = \Omega(\log k/((c 1)))$ 1) $\log \log k$), then # coefficients = k.
- Pick field size = 2D to get encoding size $n = (2D)^m = k^{c/(c-1)}$ (= poly rate).
- Get D-local decodability = poly $\log n$.
- Pretty good. Almost best known.
- Error-tolerance not so good. Will do better next time.

Analysis

- Hope for every query Q that r(Q) = p(Q).
- Bad event $E_i: p(L_{x,y}(\alpha_i)) \neq r(L_{x,y}(\alpha_i)).$
- Claim 1: $\Pr_{v}[\exists i \text{ s.t. } E_{i}] \leq (D+1)\delta$. $\Pr_{u}[E_i] = \Delta(r, p) \leq \delta + \text{Union bound}.$
- Claim 2: $\forall i \overline{E}_i \Rightarrow \text{Algorithm correct}$.
 - For all $i \in [D+1]$, $p|_L(\alpha_i) = h(\alpha_i)$.
 - But $p|_L$, h of degree D.
 - So $p|_{L} = h$ and $h(0) = p|_{L}(0) = p(x + 1)$ 0y) = p(x).

Conclude: RM code with parameters m, D, \mathbb{F} is D+1-locally decodable for $\delta < 1/(2(D+1))$ with poly(m, D) field operations.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Improving error-correction

- Idea 1:
 - Sample more points $\alpha_i, i \in [10D]$ from
 - Now get $\beta_i, i \in [10D]$. Find h of degree D agreeing with many pairs α_i, β_i (just RS decoding!) and output h(0).
 - Analysis: Use Markov's inequality to bound too many errors.
 - Can get error close to $\frac{1}{4}$.
- More sophisticated algorithm + analysis corrects error close to $\frac{1}{2}$.

List-decoding?

- What is implicit list-decoding?
 - Main issue: First think about list-decoding; then about implicit representation of the output.
 - Technically easier to do it the other way, but that may be pointless.
 - Specifically, if p_1, \ldots, p_c are the nearby polynomials, then easier to come up with an algorithm that produces $\{p_1(x), \ldots, p_c(x)\}$. But how do you produce an algorithm that only outputs, say, $p_1(x)$?
 - How does the algorithm distinguish p_1 from the rest?
 - Solution: Give it some advice (non-

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

from the rest.

- Example $p_1(z) = \gamma$.

Implicit "List-Decoding" Algorithm

- Given: Oracle r, Advice z, γ , input x.
- Algorithm:
 - Let $L = L_{x,z-x}$, so L(0) = x, L(1) = z.
 - Compute a list of all polynomials h_1, \ldots, h_c of deg. D s.t. $h_i(\alpha) = r(\alpha)$ for $\delta/2$ fraction of $j \in \mathbb{F}$'s.
 - If \exists unique i s.t. $h_i(1)=\gamma$, then output $h_i(0)$, else "BLAH".

11

Analysis

uniform) to allow it to distinguish p_1

- No randomness? !
- Can't do it right? Right!
- Will only show correct for
 - Random z.
 - Random x.
 - W.h.p. assuming $p_1(z) = \gamma$.

Analysis (contd.)

- Bad events:
 - -A:(x,z) s.t. $p(L(\alpha))=r(L(\alpha))$ for less than $\epsilon/2$ fraction of $\alpha\in\mathbb{F}.$
 - -B: z s.t. some $h_j! = p|_L$ satisfies $h_j(1) = p|_L(1).$
 - $\Pr[A]$ bounded by Chebychev.
 - $\begin{array}{lll} & -\Pr[B] & \text{more subtle.} & \text{Think of } L \\ & \text{being picked first, and } z & \text{later.} & \text{Then} \\ & \Pr_{z|L}[B] \leq cD/q. & \end{array}$
- ullet If neither A nor B occur, then printer outputs correct response.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896