Today

e Low Density Parity Check Codes.

e Linear Time Decoding.
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Low Density Parity Check Matrices

e Defn: H has sparsity c if every column has
at most d non-zeroes.

e Defn: {H, ,,}n.m defines a LDPC Code
if there exists d such that every matrix in
family is c-sparse.

e Theorem: [Gallager '63] LDPC codes
achieve Gilbert-Varshamov bound.

e Theorem: [Gallager '63] 3 LDPC codes

that correct constant fraction in linear time
(efficiently)!

e Subsequent work: [Tanner] (composition
+ explicit directions); [Sipser-Spielman]
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Decoding from Parity Check & Syndrome

e Parity check matrix H is nxm (k = n—m).
e y codeword iff yH = 0.

e If y is close to codeword, then can yH give
any info?

— Idea: let (yH); # 0, then one of the bits
i such that H;; # 0 is corrupt.

— Usually: This is not useful. Too many
such bits.

— Low-Density Parity Check Idea: But may
be useful if H has low weight.
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explicit construction 4 analysis of
decoding.
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Graph-theoretic view

e n x m 0/1 Matrices = Bipartite Graphs
(L, R, E) with |L| = n, and |R| = m.

e Left vertex = coordinate of (code)words.
e Right vertex = constraint

® ¢y,...,c, codeword if parity of neighbors
of every right vertex is even.

e When/Why is this an error-correcting code
(of large minimum distance)?
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Unique neighbors in graphs

e How can we prove existence of unique
neighbors for small sets?

e Well studied in context of expansion: If
graph is a very good expander then small
sets have unique neighbors.

e Defn: G is (¢, d)-regular if every left vertex
has degree ¢ and every right vertex has
degree d.

e Expansion: G = (L,R,E) is a 7,0
expander if every set S C L with |[S| < én
has T(S)| > 11S]. (T(S) = {j € RP3i €
S, (1,7) € E}).
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Bad graphs

e If there exists a subset S C [ of small
size such that S has neighbors of only even
degree on right. Then 1g is a codeword
(necessary and sufficient).

e How to rule this out?

e Suppose know that no small set S has
neighbors of degree > 2. Or ... Every
small set has some “Unique neighbors”.

e Then (G leads to good code.
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Folklore theorem about unique neighbors

e v > ¢/2 implies, S of size less than Jn has
unique neighbor.

e v and c?

— Note trivially v < c.

— Should scale linearly with ¢ for § = o(1).

— For random (¢, d)-regular graph, can get
v =c— 1 for some § > 0
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Formal folkore claim & proof

Claim: G (c,d)-regular and (v, d)-expander
implies S of cardinality < dn has at least

(2 — ¢)|S| unique neighbors.

Proof: Let U be unique neighbors and D be

degree two or greater neighbors. We have
U+ 2D < # edge into S = ¢S.
U+ D > ~S. Combining, get bound.
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e Leads to following algorithm.
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Decoding?

e Once again boils down to unique neighbors

.... How?

Lets start with a simple hope: Pick violated
constraint and flip some variable in it.

Not such a good idea - since most likely
violated constraint has a unique flipped
neighbor and mostly correct neighbors. So
we are more likely to flip good guy instead
of bad!

Better idea: Take a violated constraint and
try to figure out which one of its neighbors
is the error. How to detect this? Erroneous
bit hopefully participates in many violated
constraints.

Madhu Sudan, : 10

Decoding algorithm

e While 1 left vertex with more violated

neighbors than unviolated ones, FLIP this
vertex.

Note: Alg. can be implemented to take O(1)
time per iteration.
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Analysis

e # iterations < # initially violated
constraints.

e = Alg. must terminate.

e Termination possibilities:

1. Terminates with right codeword.
2. Terminates with wrong codeword.
3. Terminates at non-codeword.
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Analysis: Ruling out (3)

Claim 2: At final iteration, say S is the set
of indices that are in error. Then if 0 <
|S| < dn, then there exists i € S with more
violated neighbors than unviolated, provided
v > 3c/4.

Proof:  Actually will prove more unique
neighbors than non-unique. Say # unique
neighbors > (¢/2)[S|. (True if 2y — ¢ > ¢/2
or v > 3c¢/4). Then some vertex in S has
more than (¢/2) unique neighbors. QED.
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Analysis: Ruling out (2)

Claim 1: If # errors < 6n/(2c) then Case 2
can't happen.

Proof: If # errors as above, then initial #
violated constraints is less than 6n/2. So
alg. terminates in dn/2 steps. At this point
distance from transmitted word < #errors +
# steps < on/(2¢) +dn/2 < én. But if rec'd
vector is distinct from transmitted word, then
distance > dn.
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Conclusion

e | DPC code based on very good expander
leads to Linear time decoding.

e Can we find such good expanders?

e For long time, answer was NO. Random
graph was this good, but couldn’t even pick
one at random and test. Big bottleneck
exactly at v = ¢/2. The unique neighbor
property can not be guaranteed by the
eigenvalue method ...

e Recent breakthroughs: Capalbo, Reingold,
Vadhan, and Wigderson. Can build such
graphs; and techniques quite familiar.
Might do some of this next time.

Madhu Sudan, : 16



e What did we know to construct? Graphs Tanner products
with v < ¢/2.

e Can we do anything with these?  Yes

e Suppose 7 > ¢/A.
[Tanner,SipserSpielman]. /

e Can we use this to do anything?

e Can't prove neighborhood of S has unique
neighbor.

e But can prove has low-degree neighbor

(into 9).

e Claim: |S| < én implies (Avy —¢)|S|/(A —
1) neighbors of degree less than A into S.

e Proof as usual.

e So what?

Madhu Sudan, : 17 Madhu Sudan, : 18

e Now insist that neighbors of constraint
vertex come from code C' of min. dist.

A.

e Gives explicit construction of (2(1) rel. dist.
code.

e Sipser-Spielman give linear time decoding
algorithm.
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