Today

- Low Density Parity Check Codes.
- Linear Time Decoding.

Decoding from Parity Check & Syndrome

- Parity check matrix H is $n \times m$ (k = n m).
- y codeword iff yH = 0.
- If y is close to codeword, then can yH give any info?
 - Idea: let $(yH)_j \neq 0$, then one of the bits i such that $H_{ij} \neq 0$ is corrupt.
 - Usually: This is not useful. Too many such bits.
 - Low-Density Parity Check Idea: But may be useful if H has low weight.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Low Density Parity Check Matrices

- Defn: H has sparsity c if every column has at most d non-zeroes.
- Defn: $\{H_{n,m}\}_{n,m}$ defines a LDPC Code if there exists d such that every matrix in family is c-sparse.
- Theorem: [Gallager '63] LDPC codes achieve Gilbert-Varshamov bound.
- Theorem: [Gallager '63] ∃ LDPC codes that correct constant fraction in linear time (efficiently)!
- Subsequent work: [Tanner] (composition + explicit directions); [Sipser-Spielman]

explicit construction + analysis of decoding.

Graph-theoretic view

- $n \times m$ 0/1 Matrices \equiv Bipartite Graphs (L, R, E) with |L| = n, and |R| = m.
- Left vertex = coordinate of (code)words.
- Right vertex = constraint
- c_1, \ldots, c_n codeword if parity of neighbors of every right vertex is even.
- When/Why is this an error-correcting code (of large minimum distance)?

 \bullet If there exists a subset $S\subseteq L$ of small size such that S has neighbors of only even

Bad graphs

- degree on right. Then 1_S is a codeword (necessary and sufficient).
- How to rule this out?
- Suppose know that no small set S has neighbors of degree ≥ 2 . Or ... Every small set has some "Unique neighbors".
- Then G leads to good code.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Unique neighbors in graphs

- How can we prove existence of unique neighbors for small sets?
- Well studied in context of expansion: If graph is a very good expander then small sets have unique neighbors.
- ullet Defn: G is (c,d)-regular if every left vertex has degree c and every right vertex has degree d.
- Expansion: G=(L,R,E) is a γ,δ expander if every set $S\subseteq L$ with $|S|\leq \delta n$ has $|\Gamma(S)|\geq \gamma |S|$. $(\Gamma(S)=\{j\in R|\exists i\in S,(i,j)\in E\})$.

Folklore theorem about unique neighbors

- $\gamma > c/2$ implies, S of size less than δn has unique neighbor.
- \bullet γ and c?
 - Note trivially $\gamma \leq c$.
 - Should scale linearly with c for $\delta = o(1)$.
 - For random (c,d)-regular graph, can get $\gamma=c-1$ for some $\delta>0$

Formal folkore claim & proof

Claim: G (c,d)-regular and (γ,δ) -expander implies S of cardinality $\leq \delta n$ has at least $(2\gamma-c)|S|$ unique neighbors.

Proof: Let U be unique neighbors and D be degree two or greater neighbors. We have $U+2D \leq \#$ edge into S=cS. $U+D \geq \gamma S$. Combining, get bound.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

• Leads to following algorithm.

Decoding?

- Once again boils down to unique neighbors How?
- Lets start with a simple hope: Pick violated constraint and flip some variable in it.
- Not such a good idea since most likely violated constraint has a unique flipped neighbor and mostly correct neighbors. So we are more likely to flip good guy instead of bad!
- Better idea: Take a violated constraint and try to figure out which one of its neighbors is the error. How to detect this? Erroneous bit hopefully participates in many violated constraints.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

10

Decoding algorithm

 While ∃ left vertex with more violated neighbors than unviolated ones, FLIP this vertex.

Note: Alg. can be implemented to take ${\cal O}(1)$ time per iteration.

Analysis

- ullet # iterations \leq # initially violated constraints.
- → Alg. must terminate.
- Termination possibilities:
 - 1. Terminates with right codeword.
 - 2. Terminates with wrong codeword.
 - 3. Terminates at non-codeword.

Analysis: Ruling out (2)

Claim 1: If # errors $\leq \delta n/(2c)$ then Case 2 can't happen.

Proof: If # errors as above, then initial # violated constraints is less than $\delta n/2$. So alg. terminates in $\delta n/2$ steps. At this point distance from transmitted word $\leq \#$ errors + # steps $\leq \delta n/(2c) + \delta n/2 < \delta n$. But if rec'd vector is distinct from transmitted word, then distance $> \delta n$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

13

15

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

. .

Analysis: Ruling out (3)

Claim 2: At final iteration, say S is the set of indices that are in error. Then if $0 < |S| \le \delta n$, then there exists $i \in S$ with more violated neighbors than unviolated, provided $\gamma > 3c/4$.

Proof: Actually will prove more unique neighbors than non-unique. Say # unique neighbors >(c/2)|S|. (True if $2\gamma-c>c/2$ or $\gamma>3c/4). Then some vertex in <math display="inline">S$ has more than (c/2) unique neighbors. QED.

Conclusion

- LDPC code based on very good expander leads to Linear time decoding.
- Can we find such good expanders?
- ullet For long time, answer was NO. Random graph was this good, but couldn't even pick one at random and test. Big bottleneck exactly at $\gamma=c/2$. The unique neighbor property can not be guaranteed by the eigenvalue method ...
- Recent breakthroughs: Capalbo, Reingold, Vadhan, and Wigderson. Can build such graphs; and techniques quite familiar. Might do some of this next time.

- What did we know to construct? Graphs with $\gamma < c/2$.
- Can we do anything with these? Yes [Tanner,SipserSpielman].

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- \bullet Gives explicit construction of $\Omega(1)$ rel. dist. code.
- Sipser-Spielman give linear time decoding algorithm.

Tanner products

- Suppose $\gamma > c/\Delta$.
- Can we use this to do anything?
- Can't prove neighborhood of S has unique neighbor.
- But can prove has low-degree neighbor (into S).
- Claim: $|S| \leq \delta n$ implies $(\Delta \gamma c)|S|/(\Delta 1)$ neighbors of degree less than Δ into S.
- Proof as usual.
- So what?

©Madhu Sudan, Fall 2002. Essential Coding Theory: MIT 6.896

18