Today

- Linear time encodable and decodable codes.
- Shannon capacity with linear time algorithms.

Recall basic codes from last lecture

- Picture of graph.
- Codewords are assignment to left vertices s.t. right vertices have even parity.
- Linear time decodable!
- Linear time encodable? No!
- Can we use similar principle to design linear time encodable codes? No! (Generator matrix has to be dense).

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Spielman Codes

- Basic idea: Use sparse generator and fix what needs to be fixed, recursively.
- Given bipartite graph G with k left nodes and k/2 right nodes, think of this as generating a [3k/2,k,?] code in an obvious way.
- Message = assignment to left.
- Right vertices = get parity of neighbors = check bits.
- Codeword = assignment to all vertices.

Low-Density Generator Codes?

- Let left degree = c.
- Clearly code has distance $\leq c+1$.
- So not an error-correcting code!
- Spielman: Salvages an error-reduction property.
- Insight: To protect message, need to protect check bits very carefully, but don't need to protect message bits all that carefully.
- Gives some glimmer of hope. Very careful recursion extracts this.

Rest of lecture: Formalize insight. Describe recursion.

Insight: Error-reducing codes

Lemma: If G is an expander, and (x,y) is (a,b)-close to (m,c), then FLIP algorithm leads to (x',y)=(c''b,b)-close to (m,c) provided $a\leq???$ and $b\leq???$.

(Will fill in ??? after proof!)

Notation:

- (m,c) Message m with check c.
- (x,y) = (a,b)-close to u,v if $\Delta(x,u) \le a$ and $\Delta(y,v) \le b$.
- FLIP algorithm = similar to yesterday If $\exists u \in L$ with more unsat. ngbrs than sat, flip u.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Analysis of FLIP

- Clearly runs in linear time.
- Termination conditions:
 - Can be some other codeword (distance not large).
 - Can be non-codeword (if check bits awry).
 - But can't be far from correct one, if check bits not too far.
- Initial # unsat. constraints $\leq c \cdot a + b$.
- $\Delta(x', m) \le a + c \cdot a + b$ (at all times).
- If $\Delta(x',m)=s$ then # unsat. constraints $\geq (2\gamma-c)s-b$.

• Set $\gamma = 7/8c$ and $c \ge 8$ to get s > b/2 implies \exists unhappy message bit.

Recursion: 1st Idea

Actual recursion

- ullet Construct C_k (for k message bits) as follows.
- Set up error-reducer code R_k (k message bits and k/2 check bits.
- Protect check bits with $C_{k/2}$.
- Works? No! (May need to correct ϵk errors in check bits, but it corrects only $\epsilon k/2$ errors.
- So need to reduce total number of errors everywhere. How? Use another errorreducing code!

- C_k : Encode message using R_k first. Then encode check bits of first step using $C_{k/2}$. Finally encode all check bits so far using R_{2k} . Get total of 3k check bits.
- Encoding: takes linear time (verify!).
- Decoding: takes linear time (verify!).

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Using to get to Shannon capacity

- Observation 1: Can get lin. time encodable and decodable codes correcting ϵ fraction errors with rate $1-f(\epsilon)$ where $f(\epsilon) \to 0$ as $\epsilon \to 0$.
- Observation 2: If encode message first using Spielman code of rate $1-f(\epsilon)$ and then chop into blocks of constant size and encode each block using constant size, near capacity codes, then rate is near optimal, and error-correction is near optimal and all takes linear time.