Today

e Linear time list-decodable codes.

— (Yet another family of) Expander-based
codes.

— A “simple” decoding algorithm.

— Towards analysis of list-decodability.

— Best known results

e Achnowledgments: Thanks to Piotr Indyk
for slides and Amir Shpilka for the lecture!
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ABNNR Codes

e Alon-Bruck-Naor-Naor-Roth '93.
e Yet another family of expander based codes.

e New elegant idea - using expansion of large
sets.

e Only known construction (to Madhu) going
from codes over small alphabets to codes
over large alphabets. An important
direction!
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Decoding with adversarial error

e Best known results

— RS codes of rate €? can (list-)decode 1—¢
fraction error, but take super-linear time.

— Can construct binary codes of rate e*
decoding 1/2 — € error, again in super-
linear time.

— But what about linear-time.

— Requires simpler coding/decoding schemes.
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Code

e Ingredients:

— Asymptotically good [n,k,dn| binary
code A.

— (e, ¢)-regular (v, §)-weak bipartite expander
(G with n vertices on each side: Every set
of size dn has at least dn neighbors (no
requirements on smaller sets).

e Gives: (non-linear) code over ¢ = 2°ary
alphabet, with message length k/c message
and n block length and minimum distance
Yon.

e Construction: given message m (= k-bit
string), encode using A first to get ¢ = n

Madhu Sudan, : 4



bit string. Then label left vertices with bits Properties
of c¢. For each right vertex now write the
label of all ¢ right neighbors (in canonical

order). The labels of right vertices form e Rate = k/(cn).
a g-ary string of length n. This is the
encoding of . e Distance = von.

e Alphabet = 2°.

e How to make sense?

— Will fix k/n = fracl4, say.

— Fixes 6 = Q(1).

— Remaining parameter c. Study behaviour
of code as ¢ grows.

— Rate = O(1/c), Alphabet size = 2°.
Main issue: How does distance behave?

— Clearly v < ¢. But we'll take ¢ > %
In such case, clearly v < 1! Actually

Madhu Sudan, : 5 Madhu Sudan, : 6

it is worse: Can get v < 1 — O(1/¢). distance % — e

(Why we can’t do better? Take a set of

size n/(2¢) on right. Has at most n/2 e Major novelty (partly in hindsight): Leads

neighbors on left. So exists sets of size to linear time encoding and linear time list-

n/2 on left with at most n(1 — 1/(2¢)) decodability.

neighbors on right. For random c-regular

graphs - this is about right.) e Encoding obvious. Decoding needs more
— Moral of the story: Can get g-ary codes from graph.

of rate ()(e) of rel. distance 1 — ¢ over
20(¢)_sized alphabet.

e Compares decently with g¢-ary random
codes. (Similar relationship between
alphabet size and distance).

e Not as good as AG codes.

e But good enough for concatenation. Also
gives binary codes of rate O(e*) with rel.
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Decoding algorithm

e Given set of assignments for right vertices.
e Will compute assignment to left vertices.

e Obvious idea: Write most popular vote for
each vertex.

e Then decode left hand side.
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Expanders, Mixers, Extractors,
Refrigerators

e Lots of notions of expansion.

e Should be thought of as a generic notion,
not specific (a, 3)-property.

e Most supposed to be some notion of
“pseudorandom graph”.

e E.g., Extractors: For every large enough
left subset S, random neighbor of random
element of S is almost uniform left
neighbor.

e Mixing is a similar property.
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Additional assumptions

e Code A is linear-time decodable.

e Graph is a strong weak expander - call it
mixer!

e Will want: For every subset 7' of size
(fracl2 + €)n on right, the set of vertices
that have fewer than ¢/2 neighbors into 7',
is at most 7.

e Note: random vertex has most neighbors
into 7.

e Random graph is a 5,%+ € mixer.
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Recent Results

e Guruswami-Indyk Constructions (a factory).

e Construction of list-decodable expander-
based codes:

— Decoding radius: (1 —d)n
— Constant rate r(0)

— Linear-time encoding/decoding
— Constant alphabet

e In a sense, unifies the results of Spielman
and Guruswami-Sudan

e Departs from the current list-decoding
technology

— Combinatorial construction
— No polynomials
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G-l Results ctd.

2
e Rate rr = 1/221/5 , i.e., pretty low

e However, for simple list decoding scenarios,
matches the rate of RS
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List Rec. = List Dec.

e Assume we have a (1 — ¢, [, L)-recoverable
code

e Take a graph G = (A, B, F) such that for
anyY C B, Y| > |B|(ZJ+1+6’), the fraction
of i € A for which Neighbors(i)NY| > 2;

is gel — ¢

e Then G(C) is list-decodable from 1—(ZJ%1+
¢’) fraction of errors:

{ab} b
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Central theme: List-Recoverable codes

A code C' C X" is (o, 1, L)-recoverable, if for
any

,C:Ll...Ln, L; CX, |LZ|§l,

there are at most L codewords ¢ € C such
that

¢; € L; for > an coordinates 7

e [ = 1: list decodability
e Algorithmic version defined analogously
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— The i-th left node creates the list L; of [
most frequent symbols
— Apply the list-recovering procedure

e D= (1/e+ 1/ +1)¢ suffices (Ramanujan
graphs)
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Goal: (1 —¢,l, L)-Recoverable Codes (1,2,2)-Recoverable Codes: Construction

o Will give a (1,2,2)-list recoverable, linear- e Take any code C' that:

time code .o )
— Can be encoded in linear time

— Can be decoded from, say, 90% of
erasures in linear time

e Indicate how to:

— Handle errors

— Allow [ > 2 e Take a good expander G = (A, B, E)
e C'=G(0O)
x — C(X) C'(x)
b
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1,2, 2)-Recoverable Codes: Decoding — Find large connected component

— Use it to determine the left symbols
— Decode the left code from erasures

e If many left-node symbols determined:
— Replace rest by erasures
— Decode the left-code C' from erasures
e If few left-node symbols determined:

— Remove left nodes with determined
symbols
— For all remaining edges i, j):

i [c][d] [l T1 ML I ;
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(1 —¢,2,2)-Recoverable Codes

e There will be erroneous edges between
connected components

e Need to find large components with few
outgoing edges
e Spectral partitioning:

— Find the eigenvectors of the adjacency
matrix
— Use them to partition the graph

e O(nlogn) time, can reduce to O(n) by
one level of concatenation
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Conclusions

e Can decode from 99% of errors in linear
time

e Questions:

— Can we improve the rate while preserving
linear time ?

— Can we beat RS rate while preserving
polynomial time ?
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[ >2

e O(l) layers of expander graphs

e Similar ideas, more messy details

Madhu Sudan,

22



