Today

- Linear time list-decodable codes.
 - (Yet another family of) Expander-based codes.
 - A "simple" decoding algorithm.
 - Towards analysis of list-decodability.
 - Best known results.
- Achnowledgments: Thanks to Piotr Indyk for slides and Amir Shpilka for the lecture!

Decoding with adversarial error

- Best known results
 - RS codes of rate ϵ^2 can (list-)decode $1-\epsilon$ fraction error, but take super-linear time.
 - Can construct binary codes of rate ϵ^4 decoding $1/2-\epsilon$ error, again in superlinear time
 - But what about linear-time.
 - Requires simpler coding/decoding schemes.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Code

ABNNR Codes

- Alon-Bruck-Naor-Naor-Roth '93.
- Yet another family of expander based codes.
- New elegant idea using expansion of large sets.
- Only known construction (to Madhu) going from codes over small alphabets to codes over large alphabets. An important direction!

- Ingredients:
 - Asymptotically good $[n, k, \delta n]$ binary code A
 - (c,c)-regular (γ,δ) -weak bipartite expander G with n vertices on each side: Every set of size δn has at least $\gamma \delta n$ neighbors (no requirements on smaller sets).
- Gives: (non-linear) code over $q=2^c$ -ary alphabet, with message length k/c message and n block length and minimum distance $\gamma \delta n$.
- Construction: given message m (= k-bit string), encode using A first to get c = n

bit string. Then label left vertices with bits of c. For each right vertex now write the label of all c right neighbors (in canonical order). The labels of right vertices form a q-ary string of length n. This is the encoding of m.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

it is worse: Can get $\gamma \delta \leq 1 - O(1/c)$. (Why we can't do better? Take a set of size n/(2c) on right. Has at most n/2neighbors on left. So exists sets of size n/2 on left with at most n(1-1/(2c))neighbors on right. For random c-regular graphs - this is about right.)

- Moral of the story: Can get q-ary codes of rate $\Omega(\epsilon)$ of rel. distance $1 - \epsilon$ over $2^{O(\epsilon)}$ -sized alphabet.
- Compares decently with q-ary random (Similar relationship between codes. alphabet size and distance).
- Not as good as AG codes.
- But good enough for concatenation. Also gives binary codes of rate $O(\epsilon^3)$ with rel.

Properties

- Rate = k/(cn).
- Distance = $\gamma \delta n$.
- Alphabet = 2^c .
- How to make sense?
 - Will fix k/n = frac14, say.
 - Fixes $\delta = \Omega(1)$.
 - Remaining parameter c. Study behaviour of code as c grows.
 - Rate = O(1/c), Alphabet size = 2^c . Main issue: How does distance behave?
 - Clearly $\gamma \leq c$. But we'll take $c \gg \frac{1}{s}$. In such case, clearly $\gamma \delta < 1!$ Actually

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

distance $\frac{1}{2} - \epsilon$.

- Major novelty (partly in hindsight): Leads to linear time encoding and linear time listdecodability.
- Encoding obvious. Decoding needs more from graph.

Decoding algorithm

- Given set of assignments for right vertices.
- Will compute assignment to left vertices.
- Obvious idea: Write most popular vote for each vertex.
- Then decode left hand side.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Expanders, Mixers, Extractors, Refrigerators

- Lots of notions of expansion.
- Should be thought of as a generic notion, not specific (α, β) -property.
- Most supposed to be some notion of "pseudorandom graph".
- ullet E.g., Extractors: For every large enough left subset S, random neighbor of random element of S is almost uniform left neighbor.
- Mixing is a similar property.

Additional assumptions

- Code A is linear-time decodable.
- Graph is a strong weak expander call it mixer!
- Will want: For every subset T of size $(frac12 + \epsilon)n$ on right, the set of vertices that have fewer than c/2 neighbors into T, is at most δn .
- Note: random vertex has most neighbors into T.
- Random graph is a $\delta, \frac{1}{2} + \epsilon$ mixer.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

10

Recent Results

- Guruswami-Indyk Constructions (a factory).
- Construction of list-decodable expanderbased codes:
 - Decoding radius: $(1 \delta)n$
 - Constant rate $r(\delta)$
 - Linear-time encoding/decoding
 - Constant alphabet
- In a sense, unifies the results of Spielman and Guruswami-Sudan
- Departs from the current list-decoding technology
 - Combinatorial construction
 - No polynomials

11

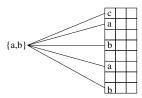
G-I Results ctd.

- Rate $r=1/2^{2^{1/\delta^2}}$, i.e., pretty low
- However, for simple list decoding scenarios, matches the rate of RS

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

List Rec. ⇒ List Dec.

- \bullet Assume we have a $(1-\epsilon,l,L)\mbox{-recoverable}$ code C
- $\begin{array}{l} \bullet \text{ Take a graph } G = (A,B,E) \text{ such that for any } Y \subset B \text{, } Y| \geq |B|(\frac{1}{l+1} + \epsilon') \text{, the fraction of } i \in A \text{ for which } \textit{Neighbors}(i) \cap Y| > \frac{D}{l+1} \text{ is } ge1 \epsilon \\ \end{array}$
- Then G(C) is list-decodable from $1-(\frac{1}{l+1}+\epsilon')$ fraction of errors:



15

Central theme: List-Recoverable codes

A code $C\subset \Sigma^n$ is $(\alpha,l,L)\mbox{-recoverable,}$ if for any

$$\mathcal{L} = L_1 \dots L_n, \ L_i \subset \Sigma, \ |L_i| \le l,$$

there are at most L codewords $c \in C$ such that

 $c_i \in L_i$ for $\geq \alpha n$ coordinates i

- l = 1: list decodability
- Algorithmic version defined analogously

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

14

- The i-th left node creates the list L_i of l most frequent symbols
- Apply the list-recovering procedure
- $D = (1/\epsilon + 1/\epsilon' + l)^c$ suffices (Ramanujan graphs)

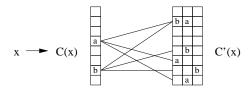
16

Goal: $(1 - \epsilon, l, L)$ -Recoverable Codes

- Will give a (1,2,2)-list recoverable, linear-time code
- Indicate how to:
 - Handle errors
 - Allow l > 2

(1,2,2)-Recoverable Codes: Construction

- Take any code C that:
- Can be encoded in linear time
- Can be decoded from, say, 90% of erasures in linear time
- Take a good expander G = (A, B, E)
- C' = G(C)

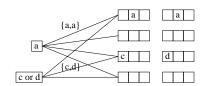


© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

1

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

1, 2, 2)-Recoverable Codes: Decoding



- If many left-node symbols determined:
 - Replace rest by erasures
 - Decode the left-code C from erasures
- If few left-node symbols determined:
 - Remove left nodes with determined symbols
 - For all remaining edges i, j:

- Find large connected component
- Use it to determine the left symbols
- Decode the left code from erasures

l > 2

- There will be erroneous edges between connected components
- Need to find large components with few outgoing edges
- Spectral partitioning:
 - Find the eigenvectors of the adjacency matrix
 - Use them to partition the graph
- $O(n \log n)$ time, can reduce to O(n) by one level of concatenation

- ullet O(l) layers of expander graphs
- Similar ideas, more messy details

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

2

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Conclusions

- \bullet Can decode from 99% of errors in linear time
- Questions:
 - Can we improve the rate while preserving linear time ?
 - Can we beat RS rate while preserving polynomial time?