Today

- Complexity results for coding problems
 - (Might as well restrict to linear codes).
 - Hardness of the nearest codeword problem (NCP).
 - Approximation variants.
 - Decoding with preprocessing.
 - Decoding Relatively Near Codeword.
 - Minimum distance problem.
- What is not (known to be) hard?

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Approximations

Search question: Given G and \mathbf{r} compute \mathbf{x}' such that $\Delta(\mathbf{x}'G,\mathbf{r}) \leq \alpha\Delta(\mathbf{x}G,\mathbf{r})$ for any \mathbf{x} .

Estimation question: Compute $t \in [\Delta(\mathbf{x}G, \mathbf{r}), \alpha\Delta]$

Gap decision problem: Given (G, \mathbf{r}, e) promise that $\tau = \min_{\mathbf{x}} \Delta(\mathbf{x}G, \mathbf{r}) \notin [t, \alpha t]$ decide if $\tau \leq t$ or not.

Note: Problems are provably no harder as we go down.

Analogous definitions for maximization problems.

Hardness of Nearest Codeword

- Given code with generator matrix G and received vector \mathbf{r} , find \mathbf{x} that minimizes $\Delta(\mathbf{x}G, \mathbf{r})$.
- Hard even when r=1.
- Let G be incidence matrix of graph.
 - Rows = vertices
 - Columns = edges
 - 1 if edge incident to vertex.
- Messages = subset S of vertices; Codewords = characteristic vectors of cuts (1 if edge $S \to \overline{S}$).
- Nearest codeword to 1 is Max Cut!

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Approximating NCP

- Know: Max Cut hard to approximate to within some $\alpha > 1$.
- Conclude? NCP hard to approximate?
 - Not immediate: If $X \in \{0, \dots, m\}$ hard to approximate, is m-X also hard? Not necessarily. E.g., if X actually in $\{0,\dots,\sqrt{m}\}$, then m is a GOOD approximation to m-X!
 - Fortunately, in our case, we know $X \in \{m/2, \ldots, m\}$.
 - Can conclude: α approximation to m-X gives $\alpha'=1/(2-\alpha)$ approximation to X. (Not useful if $\alpha\geq 2$. Why? But as $\alpha\to 1,\ \alpha'\to 1$ also!)

• Conclude: NCP hard to approximate to some $\alpha > 1$.

Approximating NCP (contd.)

- Self-improving problem: Given G of length n can construct a "product" $G^{(2)}$ of length n^2 such that G has vector of weight n-w iff G has vector of weight n^2-w^2 .
- Conclude α -approx. hard implies α^2 approximation is hard implies any constant approximation is hard.
- The actual product:
 - Codewords of $G^{(2)}$ have n blocks of length n.
 - Any codeword of $G^{(2)}$ labels blocks as 0/1. 0 blocks contain codewords of G, 1 blocks contain their complement.

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- 0/1 labelling of blocks corresponds to codeword of ${\cal G}.$
- Exercise: Show how to construct such a linear code.

First round of criticisms

- Code shouldn't be part of input.
 - After all we should be given lots of time to devise decoding algorithm.
- But how is this code "error-correcting".
 - To make sense, should be trying to correct less errors than minimum distance of code.
- What about Reed-Solomon codes (or substitute your favorite codes here)?

Decoding a fixed family of codes

uck-Naor: Can "inject" generator of code into received vector, while fixing code.

- Works whenever generator is a-sparse, i.e., has $a\ 1s$ (even more general, actually).
- Basic idea: a-code C: Generator matrix has $2\binom{k}{a}$ columns, two for every column of a 1s.
- Now suppose have code B and received vector ${\bf r}$ as instance of NCP. Construct new received vector ${\bf r}'$ as follows: if a twin-pair of columns of C not in B, then put a 0,1 in corresponding coordinates of ${\bf r}'$. If twin-pair is in B, then duplicate corresponding entry in ${\bf r}$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

- Claim: $\Delta(\mathbf{x}C, \mathbf{r}') = N/2 n + 2\Delta(\mathbf{x}B, \mathbf{r})$ where N is block length of C and n is block length of B.
- Conclude: Can't compute NCP exactly in for code C.
- Hardness of approximating in this setting: [Feige-Micciancio, Regev].

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Addressing other complaint

o-Sudan: Can "boost" distance of code without altering the problem at hand (by much).

- Idea: Suppose finding nearest codeword to code generated by A is hard to approximate (to within factor of 100).
- Specifically, have A, \mathbf{r}, d such that telling if $\tau > d$ or $\tau \leq d/100$ is hard.
- Attach to A, a matrix B which is generator of code of distance d.

11

ullet How to generate ${f r}'$? Details skipped...

A related problem

- Can we even compute minimum distance?
- Hardness of RNC above implies NO!
- Suppose G generates code of distance d with (G, \mathbf{r}, d) being hard instance of NCP. Then code $G' = G + \mathbf{r}$ (with codewords being codewords of G translated by some multiple of \mathbf{r} has distance < d iff orig. instance is a YES instance.
- Implies Min Dist is hard to approximate to within some constant.
- Self-improvability (why?) implies hard to approximate to within any constant.

Open questions

- Solved problems raise more questions than resolve.
- Potentially polynomial-time solvable problems:
 - Exists a single decoding algorithm decoding all codes upto half the minimum distance.
 - Exists a minimum distance lowerbounding algorithm with guarantee that $\begin{array}{ll} \text{if rel.} & \text{distance is } 1-\frac{1}{q}-\epsilon, \text{ its lower} \\ \text{bound is at least } 1-\frac{1}{q}-\sqrt{\epsilon}. \\ - \text{ NCP for Reed-Solomon (or your favorite)} \end{array}$
 - codes can be solved in polynomial time.
- Another general question: Decoding is a property of code? or the generator?

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896