Today

Applications of Codes in Computer Science: Randomness Extractors

Randomness and Computation

- Randomness useful in design of algorithms.
- In reasonable number of cases only efficient algorithms known are randomized algorithms.
- What happens in practice?

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Randomness in nature

- ullet One hope: Computational pseudorandomness. Universal algorithm that given t,m produces $\operatorname{poly}(t)$ strings of length m that look "random" for any algorithm A running in time t.
- Other hope: Randomness inherent in physics. But, even then:
 - Algorithms assume m unbiased independent bits
 - Sources of randomness produce dependent bits.
 - How to "extract" pure randomness?

Notions of imperfect randomness

- Good imperfectness: statistically close to uniform.
 - Prob. distribution is a vector of ℓ_1 norm 1.
 - Statistical distance between π and σ is $\frac{1}{2}||\pi-\sigma$
 - Statistical distance between π and σ at most ϵ implies $\Pr_{x \in \pi}[A(x) = 1] \Pr_{x \in \sigma}[A(x) = 1] \le \epsilon$.
 - While would be ideal to convert imperfect randomness into m independent uniform bits, it is good enough to generate distribution that is ϵ -close to U_m the uniform distribution on m bits.

Notions of imperfect randomness (contd.)

- Bad imperfectness: k bits of min-entropy.
- Distribution π on $\{0,1\}^n$ has k bits of minentropy if no string $x \in \pi$ has probability more than 2^{-kn} .
- Example: Some *k* bits random, others fixed in advance.
- Worse example: Uniform on some 2^k strings.
- How to use such "randomness"?
- Non-trivial!

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Trevisan Extractors

- Ingredients:
 - $[N,n,*]_2$ code E list-decodable upto $\frac{1}{2}+\delta$ fraction error with $\operatorname{poly}(1/\delta)$ codewords. Will let $N=2^\ell$.
 - (t,ℓ,a) -block design \mathcal{B} with $|\mathcal{B}|=m$: i.e., $\mathcal{B}=\{S_i\}_{i\in[m]}$, where $S_i\subset[t]$ and $|S_i|=\ell$ and $|S_i\cap S_j|\leq a$.
- $y \in \{0,1\}^\ell$ defines projection $\pi_y: \{0,1\}^N \to \{0,1\}^m$ as follows: $\pi_y(z)=z_{y|S_1}\cdots z_{y|S_m}.$
- $\operatorname{Ext}(x,y) = \pi_y(E(x))$!

Extractors

- Ext : $\{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ is a (k,ϵ) -extractor if for every distribution D of min-entropy k, the distribution $\{\operatorname{Ext}(x,y)\}_{x\in D,y\in U_t}$ is ϵ -close to uniform.
- Usage: Given n bit string $x \in D$ and algorithm A using m bit random strings, run A on $\{D(x,y)\}_y$.
- ullet W.p. $1-\sqrt{\epsilon}$, x is such that $E_y[A(\operatorname{Ext}(x,y))]$ is $\sqrt{\epsilon}$ close to its expectation on uniform.

Analysis

- Consider x's such that A not fooled by $\operatorname{Ext}(x,y)$.
- Then A can predict many next bits of $\operatorname{Ext}(x,y)$.
- Step 1: Show by careful argument that this gives a succinct description of some \mathbf{r} close to E(x) (for fixed A).
- Step 2: this implies that x has small description.
- By PHP, can't have too many x's with small description (even with fixed A).

8

- For us Step 2 is trivial: If E is $((\frac{1}{2} \epsilon)N, L)$ -error-correcting, then $\log L$ additional bits specify x provided $\Delta(E(x), \mathbf{r}) \leq (\frac{1}{2} \epsilon)N$.
- So we can focus on Step 1.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

• Step 1.3: Put two & two together.

Details of Step 1

- Fix A, x. Let w(y) = Ext(x, y) and z = E(x).
- Step 1.1: Suppose A has different acceptance probability on $\operatorname{Ext}(x,y)$ than on uniform, then there exists $i \in [m]$ and function f such that $f(w(y)_1, \ldots, w(y)_{i-1})$ equals $w(y)_i$ with high probability for random y.
- Step 1.2: There exist y_1, \ldots, y_n such that $w(y_j)_i = z_j$; the string $\{w(y_j)_{i'}\}_{i' < i, \ j \in [n]}$ can be specified with much less than n bits (specifically $m2^a$ bits); and f retains its advantage on y_1, \ldots, y_n .

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

. .

Details of Step 1.1

- Disclaimer 1: Standard argument. Goes back to [[Yao,unpublished]].
- Let D_0, \ldots, D_m be distributions moving from extractor to uniform: Pick random w from extractor, and u uniformly. $D_i = \text{last } i$ bits from u, and first m-i bits from w.
- Triangle inequality implies A has different biases on D_{i-1} and D_i for some i.
- f follows somehow ...

Details of Step 1.2

- Natural choice for y_1, \ldots, y_n when we think about it.
 - Fix y_* on all but S_i to fixed random values and on S_i let is vary over all n possibilities.
 - f should retain its bias on this set to, by averaging.
 - How many possibilities for $y_j|S_i$? All n!
 - How many possibilities for $y_j|S_{i'}$? At most 2^a , since $|S_i \cap S_{i'}| \leq a$.
 - Can specify $x_{y\mid S_{i'}}$ for all i' by specifying $m\cdot 2^a$ values.
 - Obtain properties needed.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896