
6.895 Essential Coding Theory September 27, 2004

Lecture 6

Lecturer: Madhu Sudan Scribe: Kyomin Jung

Remark: We defer the proof of the next statement to some later lecture.(it occurred in the proof of
Plotkin bound in the last lecture):
if x1, . . . , xm ∈ R

n satisfy ∀ i 6= j, < xi, xj >≤ 0 then, m ≤ 2n.

1 Overview

In this lecture we will examine some topics of decoding codes. Especially we will study Welch-Berlekamp
algorithm, an error detecting decoding algorithm for Reed Solomon Codes(RS Codes).

2 Decoding linear codes

When we encode or decode linear codes, the some problems of finding efficient algorithm arise.

• Encoding codes: by multiplying the generator matrix, complexity of encoding any linear code is
O(n2).1

• Detecting errors : For any linear codes, if the number of errors is less than d, we can detect errors
in O(n2) since it only involves multiplication by H , the error check matrix.

• Decoding from erasures

• Decoding from erroneous codes: This is one of the main topics in codes decoding and in this lecture
we will cover one algorithm for RS codes decoding.

3 Decoding from erasure

Given a generator matrix G, and a codeword y ∈ (
∑

∪{?})n where ‘?′ represents an erasure,
Goal: find x such that xG is consistent with y.
Note that if yi 6=?, (xG)i = x(Gi) = yi because xG is consistent with y. ( Here, Gi refers to the ith
column of G )
Now construct G′ consisting of such ith columns of G, and y′ consisting of non ? elements of y. If the
number of erasure is less than d, than because d ≤ n−k+1, we can obtain unique x such that xG′ = y′.
Then this is the required x.

4 Welch-Berlekamp algorithm for RS codes decoding(’86)

4.1 Brief history for RS codes decoding

• 1958,1959 - BCH codes were discovered.

• 1960 - Peterson gave a polynomial time algorithm for decoding BCH codes.

• 1963 - Gorenstein Zierler saw that BCH codes and RS codes have a common generalization. And
the decoding algorithm extends to more general situation.

• 1968 - Berlekamp, Massey gave more efficient algorithm to decode BCH, RS codes.

1Some codes have lower encoding complexity. For example there exists an O(n(logn)O(1)) algorithm for encoding RS
codes. There even exist some linear-time encoding codes
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4.2 Error-locator polynomial

Let’s recall the RS decoding problem. In this problem inputs are pairwise distinct αi’s (i = 1 . . . n) and
a codeword y = (y1, . . . , yn) ∈ F

n. Now our goal is to find a polynomial P over F such that P has degree
less than k and (the number of i’s s.t. P (αi) 6= yi) ≤ d−1

2
= n−k

2
. Note that the coefficients of P are

the encoded information.
To solve this problem, we may think of an indicator for the i’s where error occurred. To this end,

we will define a Error-locator polynomial E(x). E(x) will be a polynomial over F such that E(αi) = 0
if yi 6= P (αi) and the degree of E is less than or equal to n−k

2
.

Claim 1 Error locator polynomial exists.

Proof

Let S = {αi|P (αi) 6= yi}
Then let E(x) =

∏
αi∈S(x − αi).♠

Now, define N(x) a polynomial over F by N(x) = E(x)P (x). Then E(x) and N(x) have following
properties.

• deg(E) ≤ n−k
2

• E 6= 0

• deg(N) ≤ n−k
2

+ (k − 1) = n+k
2

− 1

• ∀i N(αi) = E(αi)yi

• N
E

= P

The proofs for the above properties are straightforward. Now we introduce Welch-Berlekamp Algo-

rithm. it uses above properties of E and N .

4.3 Welch-Berlekamp Algorithm

Welch-Berlekamp Algorithm

Find two polynomials E0(x), N0(x) such that

1. degE0 = fracn − k2, the highest coefficient of E0 is 1.

2. degN0 ≤ n−k
2

+ (k − 1) = n+k
2

− 1

3. ∀i N0(αi) = E0(αi)yi

We can find these E0 and N0 using n linear equations of 3) over n−k
2

+ n+k
2

= n unknown coefficients
of E0 and N0. It can be performed in O(n3) time.

Let the output of this algorithm be N0

E0

.

Lemma 2 If (N1, E1) and (N2, E2) are two solutions satisfying above 1), 2), 3), then

N1

E1

=
N2

E2

(1)
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Proof

For all i, Nj(αi) = Ej(αi)yi.
If yi 6= 0, we obtain

N1(αi)E2(αi) = N2(αi)E1(αi) (2)

by multiplying N1(αi) = E1(αi)yi and E2(αi)yi = N2(αi) side by side.
If yi = 0, N1(αi) = N2(αi) = 0. So (2) still holds.
Therefore (2) holds for all i.
Then because N1E2 and N2E1 have degrees less than n, they must be identical.♠

Now, it can be easily checked that for some polynomial R(x) with degree n−k
2

−deg(E) , (E(x)R(x), N(x)R(x))

is one solution for 1), 2), 3). And by definition of N(x), it also can be easily checked that N ·R
E·R

= P . So

for any solution (N0, E0) of 1), 2), 3), N0

E0

= P as expected.

5 Abstracting the algorithm

In this section, we will try to generalize the condition given for the Welch-Berlekamp algorithm. When
we consider E,N ,P of Welch-Berlekamp algorithm, E is an element of set A of all the polynomials with
degree n−k

2
or less. Similarly N is an element of set B of all the polynomials with degree n+k

2
− 1 or

less, and P is an element of set C of all the polynomials with degree k − 1 or less.

Then the problem we need to solve is,

Given (A, B, C) and y = (y1, y2, . . . , yn) such that y is (in some sense) close to some element of C,
Find E ∈ A , N ∈ B such that E 6= 0 and ∀i Eiyi = Ni.

More precise description and analysis of this generalization will be given in the next lecture.
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