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Today, we will continue our approach to factoring bivariate polynomials. We will begin by recalling
Hensel’s Lifting Lemma, and we will discuss a few new things about the Lemma. We will then give an
outline of how we will perform the factoring, and develop another concept: the resultant. Once we have
these concepts, the algorithm will be easy, and moreover, these concepts will help us in other domains.

1 Hensel’s Lifting

Suppose f(x, y) = g(x, y)h(x, y) (mod yk). We wanted a factorization for higher powers of y: f(x, y) =
g̃(x, y)h̃(x, y) (mod y2k). Hensel’s Lifting says we can obtain this if g and h are “relatively prime,”
and that the g̃ and h̃ we obtain are essentially unique. Formally:

Lemma 1 (Hensel’s Lifting) If R is a ring, J ⊆ R is an ideal, and there exist f, g, h, a, b such that

(H1) f = gh (mod J)

(H2) ag + bh = 1 (mod J)

then there exist g̃, h̃, ã, b̃ such that

(C1) g = g̃ (mod J) and h = h̃ (mod J)

(C2) f = g̃h̃ (mod J2)

(C3) g̃ã + b̃h̃ = 1 (mod J2)

Uniqueness: if g?, h? also satisfy (C1) and (C2), then ∃u ∈ J such that g? = g(1+u) and h? = h(1−u).

These conditions allow us to continue to y4k and so on.
We are planning to apply this with R = Fq[x, y] and J = (y− y0)k for some y ∈ Fq. We’ll start with

a factorization in Fq[x], and we’ll increase the powers of y. We ultimately hope to get a factorization
that is not modulo any ideals.
Remark We were given explicit formulas for g̃ and h̃. So, given g, h, a, b, f , we can compute g̃, h̃, ã, b̃
in O(1) operations in R, (mod J), (mod J2), and so on.

For example, g̃ = g + g1 where g1 = a(f − gh).

Although we need to be capable of efficiently carrying out ring operations, and the operations of
reducing modulo an ideal, g̃ and h̃ don’t require any serious computations.

One more clarification: uniqueness will take on a nicer form for us.

Corollary 2 Suppose R = Fq[x, y] and J = (y − y0)k, and assume f, g, h are monic in x. Then, if
g and h are relatively prime and f = gh (mod J), there exist monic polynomials g̃ and h̃ such that
f = g̃h̃ mod (y − y0)2k and g̃, h̃ are unique mod(y − y0)2k.

Naturally, we can’t expect any better than this modulo (y − y0)2k.
Proof Existence and the fact that the polynomials are monic follow immediately.

Suppose g̃, h̃, g?, h? satisfy the conditions. Then, by Hensel’s Lifting, g? = g̃(1 + u), h? = h̃(1 − u).
If u 6= 0 mod (y − y0)2k, then g? is not monic.

9-1



2 Outline of Factoring

We now turn to the question of how we can use Hensel’s Lifting for bivariate factoring—specifically, how
we initiate it, and what we do after applying it.

Suppose we are given f(x, y) and we wish to factor it into f1(x, y)f2(x, y) · · · fk(x, y). Suppose we
pick some y0 and substitute it in for y to obtain f(x, y0) = p(0)(x), a polynomial of one variable, which
we therefore know how to factor into p

(0)
1 (x) · · · p(0)

k (x). Suppose now that we are very lucky, and by
picking y1 6= y0, we obtain f(x, y1) = p(1)(x) = p

(1)
1 (x) · · · p(1)

k (x). Then we could “interpolate” pairs
(p(0)

1 (x), p(1)
1 (x)), (p(0)

2 (x), p(1)
2 (x)), . . . (p(0)

k (x), p(1)
k (x)) to obtain polynomials in y. Of course, we haven’t

formally defined what we mean by this, and moreover, it’s not clear how we should pair up the factors
of p(0)(x) and p(1)(x). Even more troublesome, depending on our choice of y0, we could get many more
than k factors!

For example, consider f(x, y) = (x− 5)(x− 3)(x− 2) + y, which is irreducible. If we now substitute
y = 0, we obtain f(x, 0) = (x− 5)(x− 3)(x− 2), which has three factors. We therefore see that we have
a one-to-many correspondence between the factors of f(x, y0) and the factors of p(x), in general:

f(x, y) = f1(x, y) · f2(x, y) · · · · · fk(x, y)

p(x) =
︷ ︸︸ ︷
p11(x)p12(x) · · · p1i1(x) ·

︷ ︸︸ ︷
p21(x)p22(x) · · · p2i2(x) · · · · ·

︷ ︸︸ ︷
pk1(x)pk2(x) · pkik

(x)

By Hensel’s Lifting and a few other facts, we’ll see that this is okay, that p11 and its many lifts will tell
us f1, provided that p11 is relatively prime to pij for all i and j.

Still, it is not yet clear how we will ensure that these elements are relatively prime. We know this
will not happen if f(x, y) = f1(x, y)5. More generally, suppose f(x, y) = f1(x, y)af2(x, y) · · · fk(x, y) for
a ≥ 2. It turns out that our intuitions from calculus hold here: suppose we take derivatives of f with
respect to x and y. If f1(x, y) has positive degree in x, then ∂f

∂x and f will have a nontrivial GCD. We
can argue this the same way as before, using the sum and product rules. So, it turns out that we don’t
need to worry about repeated factors in the factorization of f .

Now, suppose f(x, y) = xk + y, and we try f(x, 0) = p(x) = x ·x · · ·x. We started with a polynomial
with no repeated factors; how can we guarantee that our choice of y will not yield a polynomial with
repeated factors? It’s clear that not every choice of y fulfills this condition. In general, we will be looking
at the GCD of a polynomial and its derivative, so we will be studying the GCDs of two polynomials
more carefully.

We’d like reasoning of the form: if f(x, y) and g(x, y)
(
= ∂

∂xf(x, y)
)

have no common factors,
then ∃y0 such that f(x, y0) and g(x, y0) have no common factors.

This begs the question, how can we derive statements about the GCDs, when plugging in values for
y changes the structure of the polynomial completely? Our answer will be the resultant.

3 Resultants

There are many ways of developing and talking about resultants, and our definition may be inconsistent
with some of the others, but it will work for our purposes.

Definition 3 Let R be a UFD with some notion of order on its elements1 and let f, g ∈ R[x]. The
resultant of f and g is then the “minimal” element in the ideal generated by (f, g): {af +bg|a, b ∈ R[x]}.
That is, the element with the smallest leading coefficient among the lowest degree polynomials in that set
(excluding the zero polynomial).

When R = Q, the lowest degree polynomial is easily obtained from the GCD, whereas if R = Z (e.g.,
if R is not a field), f = 2x3 + 3x, and g = 9x10, then we find that resultant(f, g) is some multiple of x
(we take the smallest one).

1For R = Z, this order is given by the magnitude. For R = Fq [y], the order is given by the degree in y
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Now consider polynomials f, g ∈ Fq[x, y] that don’t share a common factor. Let Resx(f, g) denote
the resultant of f and g when we take R = Fq[y]. We will see that we can say that the x degree of
R(x, y) = Resx(f(x, y), g(x, y)) is zero.

We can see this if we consider f, g ∈ F̃q[y][x]. Over a field, since f and g have no common factors, we
know gcd(f, g) = 1 = R(x, y). Thus, over Fq[y], we should at least be able to get some polynomial in y

(which is divided out in F̃q[y]). That is, ∃a(x, y), b(x, y) such that a(x, y)f(x, y) + b(x, y)g(x, y) = R(y)
where R(y) 6= 0.

Recall that we wanted to show f(x, y0) and g(x, y0) don’t have a common factor; we generally show
this via the extended GCD by demonstrating af(x, y0) + bg(x, y0) = 1. Now, if R(y) 6= 0, then in some
extension field we will be able to find a y0 such that this condition holds. We’ll guarantee this by placing
bounds on the degree of R.

We’d now like to find a and b to obtain Res(f, g). Note that our ideal {af + bg|a, b ∈ R[x]} is a linear
space and our conditions are linear, so we’ll be able to solve for a and b easily.

Bounding the degree of R(y): put degx f ≤ d1, degy f ≤ d1, degx g ≤ d2, degy g ≤ d2.

Claim 4 ∃R, a nonzero polynomial with deg R ≤ 2d1d2 such that R(y) = a(x, y)f(x, y) + b(x, y)g(x, y).

Proof Let the coefficients of a and b be unknowns, and R(x, y) = a(x, y)f(x, y) + b(x, y)g(x, y). Note
that R is temporarily a polynomial in x as well as y. We’ll say that the coefficients of xiyj are linear
forms in the unknowns, and require that they be zero if i > 0. So we have a system of homogeneous
linear constraints, where we need a solution other than a, b = 0 and af + bg = 0. First, we’ll make the
degrees in x small, so there’s no chance of cancellation. Then, we’ll “shoot for” deg R(y) = ∆. We bound
degx a < degx g (so a /∈ {±g}) and degx b < degx f (which similarly rules out b ∈ {±f}). We now further
impose degy a < ∆− d1 (so degy(af) < ∆) and degy b < ∆− d2. Thus, now, degx R < degx f + degx g
and degy R < ∆.

Claim 5 ∃a, b 6= 0 satisfying these constraints.

(e.g., with degx(af + bg) ≤ 0) Observe:

# of unknowns : degx g(∆− d1)︸ ︷︷ ︸ + degx f(∆− d2)︸ ︷︷ ︸ ≥ ∆(degx f + degx g)− 2d1d2

# coeffs in a # coeffs in b
# of constraints : (degx f + degx g − 1)︸ ︷︷ ︸ · ∆︸︷︷︸ = ∆(degx f + degx g)−∆

# powers in x # powers in y

So we see that # unknowns > # constraints if ∆ > 2d1d2: we can then find a and b such that there are
no powers of x in R. All that remains is to show that af + bg is not identically zero.

Claim 6 We can’t obtain an identically zero polynomial unless f and g share a common factor.

Observe that, if f and g have no common factors, since we are in a UFD, then af + bg = 0 implies that
the factorizations of af and bg are the same. Since f and g share no factors, a must have all of the
factors of g and b must have all of the factors of f , which can’t happen by our bounds on the degrees in
x of a and b.

Now, by our bound on the degree of R(y), for a sufficiently large extension field, there must be choices
of y0 such that R(y0) 6= 0. Hence, if f and g have no repeated factors, for such a choice of y0, f(x, y0)
and g(x, y0) have no repeated factors.2 We can take the derivative or plug in y0 in any order we like.

2When g = ∂f
∂x

, Res(f, g) is called the “discriminant” of f . For f = ax2 + bx + c, disc(f) = b2 − 4ac. We ignored
questions about whether the discriminant was positive or negative, so our notions may not agree, but at least we know
that ours is nonzero if there are no repeated roots, and is zero otherwise.
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4 Outline of Factoring, revisited

We now give a more complete outline for factoring bivariate polynomials.
Given a monic f(x, y) ∈ Fq[x, y], we’ll work with some extension field K of Fq.

1. Find y0 ∈ K such that f(x, y0) has no repeated factors. (how do we do this? compute Res
(
f, ∂f

∂x

)
,

and plug in y0 = 1, 2, . . . until we find one that works.)

2. Put p(x) = f(x, y0), and factor it. Some factor should be linear; if not, we extend K. We know
that every field can be extended until the polynomial splits completely, but we only need a low
degree extension with one linear factor, say p(x) = (x− α)h(x). We assume (x− α) and h(x) are
relatively prime.

3. Now we start to apply Hensel’s Lifting: f(x, y) = (x−α)h(x) mod (y − y0). After some iterations,
f(x, y) = (x−A(y))H(x, y) mod (y − y0)t.

4. Now, from A(y) we ask if we can find a nontrivial factor of f . We will see that this is related to
the notion of minimal polynomials. We will try to find f1(x, y) with degx f1 < degx f such that
f1(x, y) = (x−A(y))H1(x, y) mod (y − y0)t. It will turn out that, if the f1 we find is the same as
f , then we will have a proof that f has no nontrivial factors!

We’ll complete the last step by using linear algebra (which, along with the GCD, comprises our toolbox at
the moment), e.g., we’ll give linear constraints and show that solutions exist. Then, we’ll say something
along the lines of “if gcd(f1, f) is nontrivial, report it, else f is irreducible.”
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