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The problem which we consider today is the following: given m polynomials in n variables over a
field K,

f1, ..., fm ∈ K[x1, ..., xn],

does there exist a vector ā
def=(a1, ..., an) ∈ Kn such that

f1(ā) = ... = fm(ā) = 0?

We work over fields K that are algebraically closed – that is, fields where every polynomial has a
root.

Questions of this form are said to form the existential theory over K.
We point out that this problem is a generalization of problems like 3-SAT. In 3-SAT we want to

satisfy m clauses of the form (x1 ∧ ¬x2 ∧ x3). Algebraically, this clause becomes

(x1)(1− x2)(x3),

and we wish to simultaneously satisfy n such clauses. Clearly this problem is a special case of the above.
We note that we can make the problem even broader by adding more layers of quantification: given

f1, ..., fm is it the case that ∃a1∀a2∃a3...Qan s.t.

f1(ā) = ... = fm(ā) = 0?

These questions form the quantified theory over K.
We can also consider the search versions of these decision problems: given f1, ..., fm ∈ K[x̄, ȳ], for

what choices of b̄ ∈ Kn will it be the case that ∃a1, ..., an s.t.

f1(ā, b̄) = ... = fm(ā, b̄) = 0?

Returning to the original problem, we note that the question is in the version of NP over K, since
we can provide short vectors ā as witnesses of feasibility. We now ask: can we provide short proofs of
infeasibility? We answer this by introducing Hilbert’s Nullstellensatz theorem.

Theorem 1 (Nullstellensatz) Given polynomials f1, ..., fn ∈ K[x̄], the following two statements are
equivalent:

∃ā such that f1(ā) = ... = fm(ā) = 0

and
¬

(
∃q1, ..., qm ∈ K[x̄] such that

∑
fiqi = 1

)
.

We might prove this later in the course. For now we note that one direction is clear: if there
exists a linear combination of the polynomials f that is uniformly 1, then the polynomials can never be
simultaneously 0.

To re-express some of the above in more algebraic language, we make the following definition:

Definition 2 (Variety) Given polynomials f1, ..., fm over some vector ā ∈ kn define the set

S
def= {ā|f1(ā) = ... = fm(ā) = 0}.

We call S a variety.
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Motivated by the Nullstellensatz, we look at the ideal

I(f1, ..., fm) = {∑fiqi|qi ∈ K[x̄]}.

Hilbert’s Nullstellensatz may be re-expressed as the following:

V (f̄) = ∅ ⇔ 1 /∈ I(f̄).

We note that the definition of variety allows us to go from sets of polynomials to sets of points. To
go in the reverse direction, we create an ideal from a set of points: given a set S ⊆ Kn, define

IS
def= {f |∀ā ∈ S, f(ā) = 0}.

Thus we can go from f to V (f) to IV (f). We may now compare this ideal to the straightforward
ideal I(f). By definition, any linear combination of the polynomials in f takes on zero values in V (f),
so

I(f) ⊆ IV (f).

However, the reverse inclusion does not necessarily hold: suppose f = h2 for some polynomials h. Then
V (f) = V (h), which implies IV (f) = IV (h). However, I(f) 6⊆ I(h).

By the Nullstellensatz, in order to determine if a variety is nonempty, we need only determine if 1 is
in a specific ideal. The natural generalization of this is the ideal membership problem:

Given f, f1, ..., fm ∈ K[x̄], is f ∈ I(f̄)?

Unfortunately for us, Mayr and Meyer proved that this problem is EXPSPACE complete, even if all
the coefficients are 0 or 1 and all the degrees are at most 2.

Nevertheless, we try to proceed with our intuitions to see what will develop.
The natural thing to try is the following: given f1, ..., fm ∈ K[x̄], let g = gcd(f1, ..., fm). Thus to

determine whether f ∈ I(f̄), we need only determine whether f ∈ I(g), which can be computed via
another gcd. However, in the multivariate case this will not work because some of these notions become
ill-defined.

Consider, for example when

f = x2y + xy2 + y2

f1 = xy − 1

f2 = y2 − 1.

The algorithm we expect to work would try to find the smallest remainder of f after subtracting out
linear combinations of f1 and f2, and if this remainder is non-zero, we conclude that f /∈ I(f1, f2). The
problem comes when we try to define smallest. Consider the following three candidate representations
of f :

f = (x + y)f1 + f2 + (x + y + 1)
f = xf1 + (x + 1)f2 + (2x + 1)
f = (x + 2y)f1 + (1− x)f2 + (2y + 1),

where the three remainders produced are x+y+1, 2x+1, and 2y+1 respectively. Which of these should
we call the true remainder? Which of these should we call the smallest?

To resolve the above difficulties, we create an order on monomials, and then extend this to an order
on polynomials. If we do this right, then we should be able to:

a. Find the least possible remainder
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b. If this remainder is nonzero, conclude that f /∈ I(f̄)

In the following, we take the notation x̄ā to mean xa1
1 · xa2

2 · ....
We call an ordering “≤” admissible if it satisfies the following conditions:

1. ≤ is a total order

2. x̄ā ≤ x̄b̄ ⇒ x̄āx̄c̄ ≤ x̄b̄x̄c̄

3. ∀ā, x̄0 ≤ x̄ā

We thus define the remainder of f with respect to f1, ..., fm to be the minimal polynomial r such
that (f − r) ∈ I(f̄).

We define the degree of a polynomial deg(f) to be that maximal ā under ≤ such that x̄ā is in the
support of f .

The lexicographic ordering, and its variants are standard examples of admissible orders.
Given a polynomial f(x̄) = cāxā+ ... where ā is the largest monomial, we define the leading monomial

of f to be x̄ā, the leading coefficient of f to be cā, and the leading term to be cāxā.
We are now in a position to begin the analysis of an algorithm for finding the least remainder. We

will see that the analysis shares many features with the analysis of the permutation group membership
algorithm.

We start out, as with the permutation group membership algorithm, with a definition of a basis that
at first appears neither feasible nor helpful.

Definition 3 (Groebner basis) Given J = I(f1, ..., fm), the polynomials g1, ..., gt form a Groebner
basis for J if the following two conditions hold:

1. I(g1, ..., gt) = J

2. I(LT (g1), ..., LT (gt)) = I(LT (J))

where LT (f) is the leading term of f , and LT (J) is the set of all the leading terms of elements of J .

We then define the remainder as follows:

Definition 4 (Weak Remainder) The weak remainder of f with respect to f1, ..., fm is an r such
that for all monomials x̄ā ∈ r, and for all i,

LT (fi) 6 |x̄ā.

The crucial fact here is that weak remainders with respect to Groebner bases are unique. That is,
the weak remainder is independent of the choice of Groebner basis. We prove this here.

We first prove a few preliminaries. The first is about the structure of ideals generated by monomials.

Claim 5 Given x̄ā ∈ I(x̄ā1 , ..., x̄ām), there exists i such that x̄āi |x̄ā.

Proof If x̄ā is in the ideal, then x̄ā is expressible as

x̄ā =
m∑

j=1

qj x̄
āj ,

for polynomials qj . Since x̄ā is a monomial, it must be divisible by some monomial from the right, as
desired.

We next claim the following:
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Claim 6 If r is a weak remainder of f with respect to a Groebner basis g1, ..., gt for an ideal J , then for
all monomials x̄ā ∈ r, x̄ā /∈ I(LT (J)).

Proof By the definition of a Groebner basis

I(LT (J)) = I(LT (g1), ..., LT (gt)).

Further, by the contrapositive of the previous claim, if

∀i, LT (gi) 6 |x̄ā

then
x̄ā /∈ I(LT (g1), ..., LT (gt)).

Since this last condition is the definition of a weak remainder, the claim is proved.

We now prove uniqueness of weak remainders.

Claim 7 The weak remainder of f with respect to a Groebner basis g1, ..., gt is unique.

Proof Suppose for the sake of contradiction that there were two different weak remainders, r1, r2.
Thus

r1 = f −A

and
r2 = f −B

for A,B ∈ J = I(g1, ..., gt). Thus r1 − r2 ∈ J , where by assumption r1 − r2 6= 0.
Taking the leading term of this expression, we have that

LT (r1 − r2) ∈ LT (J).

Since all the monomials of r1−r2 are monomials of r1 or r2, without loss of generality we may assume
that LT (r1− r2) is a monomial of r1. However, by the previous claim, no monomials of r1 are in LT (J),
the desired contradiction. Thus the weak remainder is unique.
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