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1 Today

• Hilbert’s Nullstellensatz

2 Generic/Random Linear Transformations

Given an ideal in K[x1, ..., xn], our goal is to find a basis for this ideal that is in a nice form. For example,
we might want a basis consisting of only monic polynomials.

We use the notion of a linear map φ on our variables that defines a mapping over K[x1, ..., xn] as
follows:

f(x1, ..., xn) → f̃(x1, ..., xn) = f(φ(x1, ..., xn))

The transformation φ can be represented by a lower-triangular matrix [λi,j ] where the λi,i 6= 0. This
gives us an associated map from Kn → Kn given by a → ã = φ−1(a), in addition to our map from
K[x] → K[x] mapping f to f̃ , such that the following properties hold:

• f(a) = 0 ⇐⇒ f̃(ã) = 0

• ˜f + g = f̃ + g̃

• f̃g = f̃ g̃

• deg f ≥ deg f̃

Claim 1 With high probability over the choices of {λi,j}, f̃ is monic in the variable x1.

Proof Given a polynomial f , we first write f(x1, ..., xn) = g(x1, ..., xn) + g1(x1, ..., xn) where g is
homogeneous of deg f and g1 has a smaller degree than f . To see that f̃ is monic in x1, we subsitute 0
for all of the other variables: f̃(x1, 0, ..., 0) = f(λ1,1x1, λ2,1x1, ..., λn,1x1) = g(λ1,1, λ2,1, ..., λn,1)x

degf
1 +

g1(λ1,1x1, λ2,1x1, ..., λn,1x1). Since with high probability the coefficient of the xdegf
1 term is nonzero, and

the g1 term has smaller degree, we know that the polynomial f̃ is monic in x1.

3 Varieties and Radicals

• Given an ideal I in K[x1, ..., xn], we define V (I) = {ā ∈ Kn|f(ā) = 0∀f ∈ I}
• A set V ⊆ Kn is a variety if there exists an ideal I ⊆ K[x] such that V = V (I)

• Given a variety V , we define I(V ) = {f ∈ K[x]|f(a) = 0∀a ∈ V }. We note that it is clear to show
that I ⊆ I(V (I))

• Given an ideal I, we define the Radical of I by Rad(I) = {f ∈ K[x]|∃m ∈ Z, fm ∈ I}. It is also
clear that Rad(I) ⊆ V (I)
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4 Weak and Strong Nullstellensatz

Theorem 2 (Weak Nullstellensatz) For an ideal I, V (I) = ∅ ⇐⇒ 1 ∈ I

In other words, this theorem states that functions f1...fm(x1, ..., xn) don’t have simultaneous roots
if and only if ∃q1, ..., qm such that 1 = Σfiqi. The Strong Nullstellensatz will be used to help prove the
Weak Nullstellensatz.

Theorem 3 (Strong Nullstellensatz) ∀I ⊆ K[x1, ..., xn], K algebraically closed⇒ Rad(I) = I(V (I))

We will begin by proving the easy directions for both the Weak and Strong Nullstellensatz.

Lemma 4 (Easy Part of Weak Nullstellensatz) For an ideal I, 1 ∈ I ⇒ V (I) = ∅

Proof 1 ∈ I(f1, ..., fm) ⇒ ∃q1, ..., qm such that 1 = Σqifi by the definition of the ideal. Given
arbitrary a ∈ Kn we know 1 = Σqi(a)fi(a) by substitution. This implies ∃i, fi(a) 6= 0 ⇒ a /∈ V (I).
Since a was chosen arbitrarily in Kn, this implies that V (I) = ∅.

Lemma 5 (Easy Part of Strong Nullstellensatz) ∀I ⊆ K[x1, ..., xn], K algebraically closed
⇒ Rad(I) ⊆ I(V (I))

Proof Given f ∈ Rad(I), we wish to show that f ∈ I(V (I)). f ∈ Rad(I) ⇒ fD ∈ I by the definition

of the radical. Because fD is in the ideal, we know that fD =
m∑

i=1

qifi. By substution we see that

∀a ∈ V (I), fD(a) =
m∑

i=1

qi(a)fi(a) = 0 ⇒ f(a) = 0 ⇒ f ∈ I(V (I)).

To prove the other directions of the Weak and Strong Nullstellensatz, we will first prove that they
are equivalent and then use an extension lemma to prove the Weak Nullstellensatz.

Lemma 6 (Strong Nullstellensatz ⇒ Weak Nullstellensatz) For an ideal I, I(V (I)) ⊆ Rad(I),
V (I) = ∅ ⇒ 1 ∈ I

Proof
We first show that 1 ∈ I(V (I)). This is true since V (I) = ∅ and I(∅) = K[x] which contains 1. By

the Strong Nullstellensatz, which tells us that I(V (I)) ⊆ Rad(I), we know that 1 ∈ Rad(I). By the
definition of the radical, this implies that there is some integer D such that 1D ∈ I. But 1D = 1 for all
D, which means that 1 ∈ I.

Lemma 7 (Weak Nullstellensatz ⇒ Weak Nullstellensatz (Rabinowich’s Trick)) (V (I) = ∅ ⇒
1 ∈ I) ⇒ I(V (I)) ⊆ Rad(I)

Proof We begin by taking an arbitrary polynomial f ∈ I(V (I)) and we wish to show f ∈ Rad(I). We
know f(a) = 0 whenever f1, ..., fm(a) = 0 by the definition of the variety. We wish to show that there
exists some integer D and polynomials qi such that fD = Σqifi.

We want a polynomial g that is not zero whenever f1, ..., fm = 0. So we take g = 1−yf(x1, ..., xn) and
look at the ideal I ′ generated by f1, ..., fn and the polynomial g. Because g 6= 0 whenever the fi = 0,
the polynomials generating I ′ can never all be zero at the same time, which means that V (I ′) = ∅.
By the Weak Nullstellensatz, this implies that 1 ∈ I ′. So there exists q′1, ..., q

′
m, q ∈ K[x1, ..., xn, y]

such that 1 = Σq′ifi + qg. Using this identity over K(x1, ..., xn)[y] and substituting y = 1
f(x1,...,xn)

(which is a valid element since f is not zero), we get 1 = Σq′i(x1, ..., xn, 1
f(x1,...,xn) )fi + q[1 − 1

f f ] =
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Σq′i(x1, ..., xn, 1
f )fi. Multiplying both sides of this equality by a sufficiently large power of f , fD. gives

us fD = Σ(q′i(x1, ..., xn, 1
f )fD)fi, where q′i(x1, ..., xn, 1

f )fD = qi ∈ K[x1, ..., xn], so that fD is generated
by the fi over polynomials in K[x1, ..., xn] which proves that f ∈ Rad(I).

Now we just need to prove a single direction of either the Weak or Strong Nullstellensatz to complete
our proof. We will do this by using the following extension lemma, which we will prove later, to prove
the direction needed in the Weak Nullstellensatz.

Lemma 8 (Extension Lemma) Given polynomials f1, ..., fm(x1, ..., xn) ∈ (K[x1, ..., xn−1])[xn] monic
in xn, let I ′ = I(f1, ..., fm) ∩ K[x1, ..., xn−1]. Suppose (a1, ..., an−1) ∈ V (I ′). Then ∃an such that
(a1, ..., an) ∈ V (I(f1, ..., fm)).

We will prove this lemma later, but use it now to prove the Weak Nullstellensatz.
Proof [of Weak Nullstellensatz assuming extension lemma] Given our ideal I, we will assume 1 /∈ I.
We wish to show that V (I) 6= ∅. Let I ′ be the ideal defined in the extension lemma. Because this ideal is
contained in I, 1 /∈ I ⇒ 1 /∈ I ′. By our induction hypothesis, we can assume that ∃(a1, ..., an−1) ∈ I ′. By
the extension lemma, this implies that there exists some an such that (a1, ..., an) ∈ V (I). This implies
that V (I) 6= ∅.

In order to prove our extension lemma, we will have an aside on classical resultants.

5 Classical Resultants

The classical resultant is defined in terms of polynomials and their roots.

Definition 9 Suppose we are working over an algebraically closed field K, with monic polynomials f(x)
and g(x) that factor into f(x) = (x−α1)(x−α2)...(x−αm) and g(x) = (x−β1)(x−β2)...(x−βn). We
define the resultant of f and g by Res(f, g) = ΠiΠj(αi − βj).

The resultant as defined above has the following properties:

• Res(f, g) = 0 ⇐⇒ f, g have a common root over K, where K is the algebraic clousure of R̃,

• Res(f, g) ∈ R

• Res(f, g) = 0 ⇐⇒ f, g have a common factor in R[x]

We use the idea of resultants to answer the question of finding polynomials a(x) and b(x) of degrees
smaller than g and f respectivelysuch that a(x)f(x) + b(x)g(x) = 1 for monic polynomials f and g that
have no common factor in R̃[x]. If f0, ..., fn are the coefficients of f and g0, ..., gm are the coefficients of g,
then this amounts to finding coefficients a0, ..., am−1 and b0, ...bn−1 such that Σajfi−j + Σbjgi− j = δi0

where δi0 = 1 if i = 0 and 0 otherwise. This amounts to solving a system of linear equations whose
determinant is nonzero only if the system is solvable. Call the matrix of this system M . Then we know:

• Det(M) 6= 0 → we can solve the linear system.

• Det(M) = Res(f, g) ⇐⇒ Res(f, g) ∈ K

• Res(f, g) ∈ I(f, g)

We can now use this relationship between resultants and the determinant of M to prove the extension
lemma which we define again here.
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Lemma 10 (Extension Lemma) Given polynomials f1, ..., fm(x1, ..., xn) ∈ (K[x1, ..., xn−1])[xn] monic
in xn, let I ′ = I(f1, ..., fm) ∩ K[x1, ..., xn−1]. Suppose (a1, ..., an−1) ∈ V (I ′). Then ∃an such that
(a1, ..., an) ∈ V (I(f1, ..., fm)).

Proof We begin with the proof for the special case that m = 2. We have two polynomails f1(x1, ..., xn)
and f2(x1, ..., xn) and we would like to find a common root. We look at the resultant R(x1, ..., xn−1) =
Resxn(f1, f2) ∈ I ′. By assumption we have (a1, ..., an−1) ∈ V (I ′), R(a1, ..., an−1) = 0. We set
h1(xn) = f1(a1, ..., an−1, xn), h2(xn) = f2(a1, ..., an−1, xn) and look at their resultant: Resxn

(h1, h2) =
R(a1, ..., an−1) = 0 which implies that h1 and h2 have a common factor. Since we are working over
an algebraically closed field, this implies that h1 and h2 have a common root, so that there is some
one degree polynomial (x− an) that divides both h1 and h2. So we have a common zero (a1, ..., an) of
f1(x1, ..., xn) and f2(x1, ..., xn).

To prove the general case for arbitrary m, we begin with m polynomials f1, ..., fm(x1, ..., xn) and we
would like to find a common root for these polynomials. We combine these into a single polynomial with
more variables as follows:

F2(x1, ..., xn, y2, ..., ym) =
m∑

i=2

fi(x1, ..., xn)yi

We then look at the resultant of f1 and F2:

R(x1, ..., xn−1, y2, ..., ym) = Resxn(f1, F2) =
∑
ᾱ

hα(x1, ..., xn−1)ȳᾱ, hα ∈ I ′ → R(a1, ..., an−1, y2, ..., ym) = 0

This will allow us to find a common factor:

(x− an(y2...ym))|f1(a1, ..., an−1, xn), F2(a1, ..., an−1, xn, y2, ..., ym)

But an(y2...ym) ∈ K, which implies that (x−an) divides the two polynomials. This means that (x−an)
is a common factor of all of the fi.
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