Advanced Complexity Theory Madhu Sudan
6.841/18.405J]

Due:

Monday, Feb 25, 2001

Problem Set 1

Problems

1.

The integer factorization function takes as input an n bit integer X and outputs a list of
primes p1,...,p¢ such that X = Hle p;- Give a language that is “equivalent” to the integer
factorization problem. (Include a precise definition of the notion of “equivalence” in your
answer. )

. Given a language L C {0,1}*, let L,, = LN (U?_,({0,1}?)). We say that L is self-reducible if

there exists a polynomial time oracle Turing machine M such that for every z € {0,1}",
re€l < MI"1(z) accepts.

(a) Given an example of a self-reducible language.
(b) Prove that if L is self-reducible, then L is in PSPACE.

. Prove that there exists an oracle A such that NP4 # co — NPA.

. Show that any single-tape, single-head Turing machine recognizing the “palindrome” language

{zz®|z € {0,1}*} (where z® denotes the reversal of the string z) must take time Q(n?).

. Let LIN-SPACE be the class of languages recognizable in linear space. Show that LIN-SPACE

£ P.

Instructions (Revised):

Turn in the solutions to the above problems before lecture on Monday Feb. 25.
Solutions should be written in latex; and turned in online by email to madhu@mit.edu.

Collaboration is allowed and encouraged. You may consult (1) the text by Papadimitriou,
(2) the text by Sipser, and/or (3) the notes from 6.841 from Spring 2001. But you are not
allowed to look at any other sources (previous years psets; papers etc.). And you must list
all collaborators and sources!

Correctness, clarity, and succinctness of the solution will determine your score.



Additional Exercises: Not to be turned in!!

The following exercises are recommended if your complexity theory is somewhat rusty. Doing the
exercises is not mandatory.

1. Show that a k-tape Turing machine M running in time #(n) can be simulated in time O(#2(n))
on a single-tape Turing machine and in time O(¢(n)logt(n)) on a 2-tape machine.

Open: For every £ show that there exists a language L that can be solved in time #(n) by
a k tape Turing machine, for some k, but not in time o(¢(n)logt(n) by any ¢-tape Turing
machine.

2. Prove Blum’s speedup theorem: Specifically for every Language L decidable in time t(n) =
w(n) and every constant € > 0, there exists a Turing machine M that decides L in et(n) steps.

3. Let ATISP/a,t, s] consist of the set of languages decidable by an alternating Turing machine
M that makes a(n) alternations (on inputs of length n), uses ¢(n) time and s(n) space. Show
that

ATISP[0,t%, s] C ATISP[a, ast, ast].



