Advanced Complexity Theory Madhu Sudan
6.841/18.405J]
Due: Monday, March 18, 2002

Problem Set 1

Problems

1. Give a randomized logspace algorithm for determining if an undirected graph is bipartite (i.e.,
if the vertices can be partitioned into two sets V7 and Vs such that all edges have exactly one
endpoint in V; and one in V3). Include a formal definition of the language you are working
with, and say whether your algorithm places this language in BPL, RL or co-RL.

For extra credit, show that this problem is in ZPL.

2. A language L is said to be rare if there exists a polynomial p such that for every n, the number
of strings in L of length n is at most p(n).

Show that if a rare language is NP-complete then the hierarchy collapses.

For extra credit, show that if a rare language is NP-complete then NP=P.

3. The depth of a ciruit is the longest path from an input node to an output node in the circuit.
A circuit is said to be a formula is every computation node has fan-out one (i.e., only one
wire leaves every internal node). In this problem, we’ll only consider formulae and circuits
with unary NOT gates, and binary AND and binary OR gates.

Show that a family of functions {f, : {0,1}" — {0,1}}, has a family logarithmic depth
circuits if and only if it has the family of functions has polynomial size formulae.

4. If PSPACE C P/p01y then show that PSPACE = ZkP for some constant k.

5. A promise problem is a generalization of the notion of a language. A promise problem
IT = (Ilygs, IIno) consist of two disjoint subset IIygs and IIxg of {0,1}*. A Turing machine
M is said to decide II if it accepts every string in IIygs and rejects every string in IIxo (and
we don’t care what happens with the rest). Promise problems play an important role in
modern complexity theory.

Let promise-RP be the class of promise problems decided by a randomized polynomial Turing
machine M (-,-): i.e., if £ € [Iygs then Pry[M(z,y) accepts] > 2/3, and if z € IIxo then
Pry[M(z,y) accepts] = 0.

Show that if P=promise-RP, then P=BPP. l.e., suppose, for every promise problem II in
promise-RP, there is polynomial time algorithm A that accepts every instance in ITygg and
rejects every instance in Ilxo, then show that P=BPP.

Instructions:

e Usual rules on collaboration and references.



e Turn in the solutions to the above problems by 1lam on Monday, March 18, 2002 (even
though we have no lecture then).



Additional Exercises: Not to be turned in!!

The following exercises are highly recommended. They give more practice with the notions in class.
Doing the exercises is not mandatory.

1. Show that ZPP = RP N co-RP.

2. For a deterministic polytime Turing machine M and polynomial p, define a sequence of
strings (a1,...,a,) to be GOOD if |a;| = p(i) and for every cnf formula ¢ of length i < n,
¢ € SAT & M (¢, a;) accepts.

Use the self-reducibility of SAT to show that the task of recognizing if a sequence of strings
is GOOD is in co-NP.

3. A Branching Program is yet another non-uniform model of computation. Such a program is
specified by a directed acyclic graph on m nodes with one designated start node and two end
nodes labelled 0/1. Start nodes and all other internal nodes are labelled by a variable name
from z1,...,z,. End nodes have out-degree 0. All other nodes have out-degree two with
one edge labelled 0 and the other labelled 1. The branching program represents a Boolean
function as follows: Given a 0/1 assignment to the variables we follows the path out of the
start node that is consistent with the assignment (i.e,, taking the edge labelled 0 out of a
vertex labelled z; if z; = 0 etc.) till we reach an end node. The label of the end node gives
the value of the function on this input. The size of a branching program is the number of
nodes in it. The size represents “non-uniform” space requirement of a computation.

(a) If L €eSPACE(s(n)) then show that L, is computed by a poly(2°(®)-sized branching
program.

(b) Given a branching program, show that it is NP-complete to determine if the branching
program accepts any input.

(c) A branching program is read-once if every variable appears at most once on every in-
put/output path. Give a randomized algorithm to test if two read-once branching pro-
grams accept the same Boolean function.



