Advanced Complexity Theory Madhu Sudan
6.841/18.405J]
Due: Monday, Feb 25, 2001

Problem Set 1

Enclosed are some sample of correct solutions to the first problem set. Solutions include some
of my comments.

Problems

1. The integer factorization function takes as input an mn bit integer X and outputs a list of
primes p1, ..., pe such that X = Hle pi- Give a language that is “equivalent” to the integer
factorization problem. (Include a precise definition of the notion of “equivalence” in your
answer.)

Main issue here is to make sure you realize that languages capture computational
problems effectively. The exercise of defining ‘‘equivalence’’ is motivated by
this goal. Most people got the question right, once the definition was in place.
This solution is taken from Eleni Drinea.

We define the following language:
L={(z,a,8) | 1 <a<p <z & exists a prime factor of z in [a, (]},

where z, a, 8 are integers. This language is equivalent to the integer factorization function F'
under the following notion of equivalence:

(a) If one can compute the function problem, one can efficiently decide membership in L. I.e.,
there exists a polynomial time TM M that with access to an oracle for the factorization
function, decides L.

(b) If one can decide L, then one can efficiently compute F. Le., there exists a polynomial
time TM T7 that with access to an oracle for L, computes F.

We say that L is equivalent to F' if and only if both of the above hold. In the following, we
show why this is the case.

e L reduces to F: M¥ = “On input (z, o,)
(a) Ifnot 1 < a < B <, reject.
(b) Query the oracle F' on the factorization of z (thus get a list of prime factors).
(c) For every prime factor, check whether it is in [«, 3]
(d) If there is at least one prime factor in [«, 8], accept.
Otherwise reject.”
The size of the list output by F' is polynomial in the size of x, the size of the prime factors
of x is at most n, thus traversing the list of the prime factors and checking whether they
are contained in the interval requires time polynomial in n. Thus the running time of
MP¥ is polynomial in n.

e F reduces to L: T' = “On input z
(a) Query oracle L on (z,2,z — 1).
(b) If answer is “no”, output = and halt.

(c) Do binary search for the largest prime factor p; of z with initial interval [2, z], using
the oracle to decide existence of such a factor in the proper intervals.

(d) Output p;.
pril>1,set:v:pilandgoto3;
otherwise, halt.”

The binary search takes O(n) time and we need at most n binary searches. Thus the running
time of T is polynomial in n.

2. Given a language L C {0,1}*, let L, = L N (U2, ({0,1}*)). We say that L is self-reducible if
there exists a polynomial time oracle Turing machine M such that for every z € {0,1}",

zel < MP1(z) accepts.

(a) Given an example of a self-reducible language.
(b) Prove that if L is self-reducible, then L is in PSPACE.

I made an error in not asking for a self-reducible language that is NOT in P.

So most people gave trivial languages, which is perfectly legitimate. More interesting
answers included SAT, and TQBF. The second part, less trivial, wanted an upper

bound on the complexity of self-reducible problems. Here solutions tended to

be wordy, and this often results in ambiguity. If you are describing algorithms,

pick the language of algorithms to describe your solution. And on at least a

couple of occasions I noticed people used the phrase ‘‘poly(x) + poly(x) is still
poly(x)’’ to analyze the space bound. While the phrase is correct, it does not

yield the space bound! Below is a solution taken from Vahab Mirrokni.

e Any language in P is also a self-reducible language. Because in this case, the oracle
TM doesn’t need the oracle and can be executed in polynomial time. We can define for
example this language: L = {z € {0,1}*| number of 1’s in x is even }. It is easy to see
that z : |z| =n,isin Liffz; ...z, isinL and 2z, is0 or z1...2,—1 ¢ L and z, = 1.
It means that we have an oracle Turing machine using the oracle for L,_; for deciding
strings of length n. Thus, L is self-reducible.

e We prove it by induction on the size of string. For induction hypothesis, we know that
there exists a PSPACE TM for strings of length less than n. In order to construct a
polynomial space TM for deciding strings of length n, we simulate the polynomial time
oracle TM ML»~! when this machine access the oracle L"!. From induction hypothesis
we know that there exists a polynomial space turning machine for deciding it. We use
this TM to find the answer yes or no of the oracle, then we follow the algorithm. Notice
whenever we call the oracle L,_;, we reuse the previous space and we know that M
takes polynomial space(time) and this new TM for the oracle takes polynomial space
as well. More precisely, from a lemma in the class we know that oracle TM M# can
be simulated with a TM M’ which needs space(M)+space(A) space and by induction
a TM for deciding L needs at most nxspace(M). Thus, the overall space, used by this
algorithm is polynomial. Thus, we can decide strings of length n in PSPACE as well;
and it completes the induction step. For induction basis, it’s easy to see that strings of
length 1 are decidable in PSPACE.

3. Prove that there exists an oracle A such that NP4 # co — NP4,

Main goal here was to make sure you went over the details that I did not go over

in class; and to see where things change because we are now comparing the existential
quantifier with the universal quantifier. Below is a solution taken from David
Woodruff.

We construct an oracle A such that NP4 # co-NPA. We need a language L € co-NP# but
L ¢ NPA. Define L(A) as follows:

L(A) = {w |V € A: |z # w[}

Intuitively, L(A) is the language of words whose length differ from the length of every other
word in A. It is clear that L(A) € co-NP since given input w, we can query A on each
string of length |w| and accept iff A rejects all such strings.

We want to show there is an A for which L(A) is not in NP4, We need to show that
there is an A such that for all nondeterministic polynomial time OTMs M”*, L(M*) # L(A).
First, we let My, Ms,... be an enumeration of all nondeterministic polynomial time oracle
TMs. We construct a sequence

Ayg C A; C... C A, with lengths nq < ny < ..., such that

(a) M (0™) # (0™ € L(4y).

(b) M) = MA™).

(c) 0™ € L(A;) & 0™ € L(A).
The construction algorithm, modified slightly from last year’s 6.841 Lecture 6 lecture notes,
is as follows:

(a) First let Ag = 0.

(b) Fori=1,2,3,... do

i. Choose n; such that Vj < 1, MJA"_1 does not ask about any strings of length n; on

input 0. In addition, MZ-AZ'_1 should run for fewer than 2™ steps on input 0. Such
an n; can be found if taken to be large enough.

ii. Simulate M; with oracle A; ; on input 0. Currently A; has no strings of length
n;. By construction, A;_1 will answer no to all queries of length n;.

iii. If MZ-AF1 rejects, set A; = A;_1. (So Mz-Ai has rejected 0™, but 0™ € L(A4;)).

If MZ-AF1 accepts, then every accepting path of MZ-AF1 makes only a polynomial
number of oracle queries. Hence, for any such path we can find an = such that
|z| = n; and MZ-A”"_1 on input 07 did not ask z. Then set

A;=A;_1 U
(So we have MZ-AF1 accepting 0", but 0™ ¢ L(A))

4. Show that any single-tape, single-head Turing machine recognizing the “palindrome” language
{zz®|z € {0,1}*} (where z® denotes the reversal of the string z) must take time Q(n?).

Several solutions had the right intuition, that a finite space machine has to

run fom one end to the other linearly many times to check palindromes, but were
unable to formalize it. The solution below should help see how to formalize such
intuitions. Some of you observed the connection to ‘‘Kolmogorov complexity’’.
Yet claiming that ‘‘Kolmogorov complexity’’ of most strings is linear in n is

an unnecesarily strong argument for this problem. It is better to resort to only
as much external material as you need - and the Kolmogorov theory, relying on

a universal machine etc., is unnecessary. (0One solution mentioned the connection
and then gave the first principles proof - I would have liked to include it -
except I didn’t have the source.) The solution below is a first principles argument,
taken from Grant Wang.

First, note that it is easy to construct a TM M that accepts L = {zz®|z € {0,1}*} that
takes ©(n?). The machine simply moves back and forth on the input string, recording the
leftmost symbol not yet checked in the finite control, and checking that this symbol is the
rightmost symbol not yet checked. It can determine which symbols have not been checked yet
by marking a special tape symbol. The machine rejects if such a pair (leftmost, rightmost)
do not contain the same symbol, and accepts if the entire string has been rewritten in the
special tape symbol. Note that it moves back and forth n times, so the number of steps the
machine takes is:

in—iz 0(n?)

Now, we wish to show that we can’t do any better. Consider a TM M that decides L, and let
Ly the subset of length n strings of the form {z#3 2%z € {0,1}%}. Consider M operating
on an input string. In particular, consider the state of the finite control as M crosses (either
left or right) between the ¢ and i + 1th symbols on an input string. For a particular index i,
let ¢;(x) be the sequence of finite control states M is in when crossing between index 7 and
1+ 1, in either direction.

Consider z # y,z,y € Ly, and consider the middle portion of the two strings z,y. Then
there cannot exist 2 < ¢ < j < 32 such that ¢;(z) = c¢j(y). Suppose such i, exist. Then
consider the string z that is concatenation of the prefix of of length 4, and the suffix of y
of length n — j. Then M accepts z, because everything that occurs to the left of i exactly
simulates M on the prefix of =, and everything to the right of 7 exactly simulates M on the
suffix of y, since it enters the correct state on either side when crossing between 7 and 7 + 1.

This provides us with a method to lower bound the running time of M. Consider each € L,
and let s; be the shortest sequence, i.e. s; = min ;c;(z), for all T <7 < ?ﬂT". Let s;,40 be
the maximum length sequence over all = of s;. Since for each z,y € Ly it must be the case
that each c;(z) # ¢;(y) for all 2 < 4,5 < 32 5., must be large, or else two strings will have
the same sequence. There are 27 such strings (note that we are only considering strings of
the form z#2 z®). What is the smallest possible value of |s;ez|? Note that each such string
must have a unique smallest sequence, by the above paragraph. If we let) be the number
of states of M, we must have that the number of all possible sequences of length less than

. n
|Smaz| 1s at least 27, so we have:

|5maz‘

YolQF > 2@
=1
|Q||5maz|+1 —1 S 2%
Q-1 -
|Q||3mam|+1 -1 n
log——— > log21
Q-1 -

|Smaz| > O(n)
So we have that for a particular string x € Ly (namely, the string = for which s, was
maximum), the smallest sequence is ©(n). But then, for each of the § positions, each sequence
is ©(n). This implies that the TM M must at least generate these sequences, which is % -O(n)
steps, i.e. ©(n?) steps, which is the result we desired.

5. Let LIN-SPACE be the class of languages recognizable in linear space. Show that LIN-SPACE
P.

This was a relatively straightforward problem. Key is to note that while we prove
inequivalence, we don’t know if any side is more powerful than the other. The
solution below is taken from Seth Gilbert.

Define the function pad(A, k) as it is defined by Sipser in exercise 9.18:

pad(s,]) = s#’ where j = max(0, | — n and n is the length of s
pad(A, f(n)) = {pad(s, f(n))| where n is the length of s}

The function pad effectively makes an input longer, giving a Turing machine more time
(or space) with which to work. The first thing to note is that A € P if and only if
pad(A,n*) € P,Vk. Clearly if A can decide input z in polynomial time, it can decide
pad(x,n*) in polynomial time: the input length is now longer, providing more time, while the
amount of calculation necessary has not changed. Conversely, if pad(A, n¥) can be decided in
polynomial time, say O(nP), then clearly A can be decided in O((n*)?)): an input of length
n to A is equivalent to an input of length n* to pad(A,n*), which will take O((n*)P) time.

Assume for the sake of contradiction that LIN-SPACE = P. Let B be a language that can
be decided in O(n?) space, but cannot be decided in O(n) space. That is, B is a language
that really requires O(n?) space to compute. The space-hierarchy theorem shows that such
a language exists. We know that pad(B,n?) is in LIN-SPACE, since given an input to B
of length n, we need O(n?) space to solve it, and given the same input to pad(B,n?), we
in fact have O(n?) space available (because of the padding). (If you are worried about
constant factors, use a higher order polynomial than n? to pad with: there exists a k such
that pad(B,n*) € LIN-SPACE.) This implies that pad(B,n*) € P, which implies (by the
reasoning above) that B € P. By our assumption, this means that B € LIN-SPACE. However
this contradicts our definition of B as a language that can not be decided in linear space.

