6.841/18.405J: Advanced Complexity Theory February 6, 2002

Lecture 1
Lecturer: Madhu Sudan Scribe: April Rasala

1 Administrivia

The course web page is http://theory.lcs.mit.edu/~madhu/ST02/. If you have not received a class email
from Professor Sudan, please email him at madhu@mit.edu to be added to the class email list. As mentioned
on the course web page, grades for the course will be based on scribing 1-2 lectures, 4 problem sets and class
participation. The only prerequisite for the course is 6.840 or an equivalent course at another institution.

2 Course Contents

Informally, complexity theory examines the effect of limiting resources on the ability to solve a computa-
tional problem. Typical resources to consider are time, space, and non-determinism. We’ll also consider
quantifier alternation and talk about the polynomial time hierarchy. In addition, we will look at random-
ness as a resource. In determining the power of randomization it is natural to consider related topics like
derandomization and pseudorandomness. We will touch on these topics but anyone with a specific interest
in derandomization and pseudorandomness might also want to check out a course at Harvard offered by Salil
Vadhan (http://www.courses.fas.harvard.edu/~cs225/).

We will consider questions such as “What is a proof”, “How does interaction affect computation?”, “How
does knowledge affect computation”? We will also briefly study topics related to circuit complexity and
lower bounds for computation. Finally, if time permits, we will consider other models of computation such
as quantum computing.

A more detailed description of possible topics and a lecture schedule is available on the course web page.

3 Classical Computational Complexity

Starting with work by Edmonds, Karp, Cook and Levin, complexity theory has traditionally looked at what
sorts of things we can compute when we place a limit on a particular resource. For instance, we might
restrict the amount of space used in the computation to be at most logarithmic in the input size. Other
classic resources to consider are time and non-determinism.

Given a limit on some resource, such as time or space, we then try to collect a set of interesting problems.
We attempt to link these problems together by understanding which problems are computationally no easier
than other problems. We can imagine that we have a set of problems which are represented pictorially as a
bunch of dots (figure on the left). If we can determine that problem z is no harder than problem y, then we
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draw an arrow from the dot representing x to the dot representing y. Interesting problems, under the given
resource restriction, are those problems with many arrows pointing toward them (for instance the dark dot
in the picture on the right). We then define what aspects of this problem make it interesting and determine
other problems that have a similar structure. In this way, we can show that this is not a unique interesting
problem. This allows us to define a complexity class of problems.

Another question to ask is “what arrows can we rule out?” Hopefully we can eventually get a map of all
computational problems and the complexities involved.

4 Reductions

A formal reduction allows us to turn this notion of the relative hardness of problems into a precise definition.
As it turns out, there are already two different types of reductions and both are important for our purposes.
Let O be an oracle (or subroutine) that solves problem y.

e Turing reduction: Given oracle O solving y with the given resource restrictions, there is an algorithm
using O that can solve problem 2 with the same resource restrictions.

e Karp reduction: Given an oracle O solving y, there is an algorithm that can solve problem x by using
O once and simply returning the output.

Clearly both types of reductions would allow us to draw some connections between different problems.
However, Karp reductions require that z and y be the same ”type” of problem. In contrast, a Turing
reduction can be used to show that a search problem (say finding a satisfying solution to an instance of
SAT) is no harder than a decision problem (such as determining if a given SAT instance is satisfiable).
Therefore Turing reductions allow us to focus on questions involving membership in a language.

Since Karp reductions are a restricted version of Turing reductions, the next question is why do we also
need Karp reductions? One justification is that Turing reductions might be too powerful to really describe
subtle relative difficulties of problems. For instance, suppose we want to determine if a 3-CNF formula ¢
is unsatisfiable. Using a Turing reduction we could show that this was ”"no harder” than determining if ¢
is satisfiable since we could simply call the oracle for 3SAT on ¢ and then negate the answer provided by
the oracle. But this doesn’t mesh well with our intuition that seems to say that there is something harder
about showing that a boolean formula is unsatisfiable. If we use a Karp reduction then we are not allowed
to negate the answer that the oracle produces.

Thus the benefit of Turing reductions is that they allow us to restrict our attention to decision questions
about membership in a language. Once we are concerned with only languages,Karp reductions provide more
insight.

4.1 A Word on Notation

If there exists a polynomial time Turing machine M with access to an oracle for problem Lo that can solve
problem Li, then we write L gl} L,. To denote ”algorithm A using O” we use A°.

5 Complexity Classes

The classical complexity classes are depicted in the following picture. Note that E refers to the class of
languages that can be decided in TIME(2°(™) and EXP refers to the class of languages that can be decided
. o)

in TIME(2™ ).

What can we say about these classes? First, as shown in the picture, the set of problems that can be
solved in t(n) steps on a deterministic Turing machine is contained within the set of problems that can be
solved in t(n) time on a non-deterministic Turing machine. This set of problems is in turn contained within
the set of problems that can be solved using only #(n) space. Stated formally,
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E/EXP
(Succinct SAT, Chess)

PSPACE
(QSAT/TQBF, Games)

L
(Addition)

TIME(t(n)) C NTIME(t(n)) C SPACE(t(n)).
Furthermore, SPACE(t(n)) C TIME(2{™).

5.1 Hierarchy Theorems

Roughly the Time Hierarchy Theorem says that if ¢; (n) < t2(n), then TIME(¢;(n)) C TIME(t3(n)). In making
this precise, we must consider two cases

Theorem 1 The set of languages that can be recognized by a Turing machine in TIME(t1(n)) is strictly
contained within the set of languages that can be recognized by a single-tape Turing machine in TIME(t2(n))

if ta(n) = Q(t3(n)).-

Theorem 2 The set of languages that can be recognized by a Turing machine in TIME(t;(n)) is strictly
contained within the set of languages that can be recognized by a 2-tape Turing machine in TIME(t2(n)) if

ta(n) = Q(t1(n) logti(n)).

Like the Time Hierarchy Theorem, the Space Hierarchy Theorem allows us characterize some of the
relationships between the complexity classes based on restricted space. However, it requires only that t2(n)
be growing slightly faster than t; (n).

Theorem 3 The set of languages that can be recognized by a Turing machine in SPACE(t1(n)) is strictly
contained within the set of languages that can be recognized by a Turing machine in SPACE(t2(n)) if t1(n) =
oft2(n)). !

INote: We assume that t(n) = Q(logn).
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The above theorems apply to deterministic classes. The technique for proving them relies on a simple
diagonalization argument. Roughly, suppose we want to show that there is some language L that is in time
t2(n) but not in time ¢1(n). We do this by specifically defining L such that it is different from all languages
that are decidable in time ¢;(n). In particular, suppose that Turing machine M runs in time #;(n). If M
accepts its own encoding, then we define L to reject the encoding of M. On the other hand, if M rejects its
own encoding, then we define L to accept the encoding of M. Thus L = {(M) | M runs in time #;(n) and
(M) ¢ L(M)}

Since every language decidable in time ¢;(n) has an associated Turing machine M that recognizes it
and since L is designed to specifically differ from M on the encoding of M itself, L must differ from every
language decidable in time ¢;(n). The only trick is that we need to be sure that the Turing machine deciding
L has enough time to simulate M on its own encoding. Thus the need for time ¢?(n) with a single tape
Turing machine and time ¢1(n)logt; (n) if the machine deciding L has two tapes.

Notice that the diagonalization argument required that we negate the decision of M on its own encoding.
This is only possible if M is a deterministic Turing machine. However, a more difficult argument due to
Cook shows that NTIME(¢;(n)) C NTIME(#2(n)) as long as ts is slightly faster growing than #;.

Finally, Blum’s Speedup Theorem says that if we can solve a problem in time cn for some constant c,
then we can solve it in time ¢'n for any constant 0 < ¢’ < ¢ by making the Turing machine ”bigger” by a
constant factor.

5.2 Open Questions

Probably the biggest open question is whether P equals N P. We will generally assume P # NP. A stronger
assertion would be that NP # CoNP. Weaker assumptions would be P # PSPACE, SAT ¢ L or NP # L, and
SAT ¢ TIME(n log®n) for any constant c. In addition we can consider these relationships in pairs. For instance
we know that either L # P or P # PSPACE by the Space Hierarchy Theorem.

5.3 Savitch’s Theorem

We now consider the relationship between non-deterministic space and deterministic space. We will be prov-
ing Savitch’s Theorem which says that something computable in non-deterministic space #(n) is computable
in deterministic space t2(n).

We begin by considering the space needed to compute the composition of two functions.

Lemma 4 If g : {0,1}" — {0,1}", f: {0,1}" — {0,1}", g € SPACE(s1(n)) and f € SPACE(s2(n)), then
f og € SPACE(s1(n) + s2(n))

Sketch of Proof The obvious algorithm to compute f(g(n)) would be to compute g(n) and then compute
f(g(n)). However, we don’t know if we can write down all of g(n) in SPACE(s2(n)) (for example if s2(n) =
logn). We get around this problem by computing the it* bit of g(n) whenever we need it. Thus each time
we need a bit of the input, we recompute g(n) and only write down the bit that we need at that step of the
computation. Thus we can reuse the same s;(n) space each time we compute another bit of g(n). At the
same time we can be using s2(n) space to compute f(g(n)). Thus the total space used is at most s1(n)+s2(n)
as claimed. W

We are now ready to prove Savitch’s Theorem.
Theorem 5 For any t(n) > logn, SPACE(t(n)) C SPACE(t?(n)).

Sketch of Proof We first simplify the task by showing that we only need to consider ¢(n) = logn. By

a standard padding argument, one can see that if ¢(n) = Q(logn) then we can always pad the input with

enough zeros so that the algorithm that ran in #(n) space, now runs in logn’ space where n' is the length of

the input after it has been padded. Thus proving this theorem for ¢(n) = logn proves it for all t(n) > logn.
To further simplify things we consider an NL-complete problem, namely

1-4



STCON = {(G, s, t) | there exists a path from s to ¢ in directed graph G.}

(This problem is also known as PATH.) First, G can be represented by the adjacency matrix A where
A(i,i)=1forall 0 <i <n—1and A(,j) =1 if and only if there is an edge from ¢ to j in G. Given this
representation of G, using boolean multiplication,

A" =AAA... A
—_

n times

will have the property that A™(i,j) = 1 iff there is path of length at most n from ¢ to j in G and
A™(i,5) = 0 otherwise. Thus if we can compute A" in O(log®n) space, then we will have shown that
STCON € SPACE(log® n) and hence all problems in NL € SPACE(log® n).

Consider the space needed to compute A2°. If L = 1, then A2° = A? which can easily be done in
clogn space for some constant ¢. Now we assume for the purpose of induction that we can compute
A2""" in ¢(L — 1)logn space. To show that A?" can be computed in cLlogn space we first compute
A7 in ¢(L — 1)logn space. We can then square A2"7" in clogn space. Since we used ¢(L —1)logn
space to compute A2° " and clogn space to compute A2° "' - 42°7", by Lemma 4, we can compute A2 in
¢(L —1)logn + clogn = cLlogn space.

To complete our proof note that A™ = A" and therefore A™ can be computed in log? n space. W
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