6.841/18.405J: Advanced Complexity Theory Feb. 11, 2002

Lecture 2
Lecturer: Madhu Sudan Seribe: Vahab S. Mirrokni

In this lecture, we will see the diagonalization method as the most powerful method in complexity
theory. We will discuss some results from this method e.g. Ladner’s theorem; relativization, its relation with
diagonalization method, and Baker-Gill-Solovay’s theorem which implies that the diagonalization method
does not help to prove NP # P. Finally, we will have an introduction to alternation.

1 The Diagonalization Method

In order to find a relation between different complexity classes and to construct a better view of complexity,
the only powerful known method is diagonalization. The main advantage of this method is to prove that
some problems are not computable e.g. the undecidability of halting problem. Time and space hierarchy
theorems are based on diagonalization. The other result from this method is the following: if P # NP, it is
not possible to describe if a language is NPcomplete. Ladner’s Theorem, which we will describe briefly, is
another proof based on this method. It says that between any two different complexity classes there is an
infinite hierarchy of complexity classes. For example, if P # NP, it says that there are some problems that
are niether in P nor in NPcomplete. Furthermore, there are infinite hierarchy of complexity classes between
these P and NPcomplete. Ladner’s theorem has an important effect on the philosophy of complexity theory.
It means that in the case of P # NP we can’t classify all the problems in a finite number of complexity classes.
Some examples of NP problems that are not known to be in P or NPcomplete are Primality testing, Graph
isomorphism, and Factoring. Linear Programming was imagined to be in the middle of P and NPcomplete,
but after some time it has been proved to be in P. Primality testing has a randomized polynomial time
algorithm and it may be in P. On the other hand, it will be surprising if Factoring or Graph isomorphism
is in P. More precisely, Ladner’s theorem is the following:

Theorem 1 (Ladner, 1978) If P # NP, then for all k > 1, there are languages L1, ... , Ly € NP such that
L<pli<p--- <ka<pL'
where L € P and L' is NPcomplete.

Proof Idea We just explain the intuition behind a weaker statement by taking k = 1: 3L € NP such that
L<pLi<pLl’. Let n; =1 and n; = 2™, and let Ly = L for strings of length [n;_1,n;) for odd i, and Ly = L'
for strings of length [n;_1,n;) for even i. Then probably L; ¢ P, because it has a large part of L' which
is NPcomplete. Also, probably L; is not NPcomplete, because otherwise if there is a polynomial reduction
from L' to L, for a string s of length n € [n;_1,n;) for odd ¢ in L', it can not be reduced to a string of
greater length in L, because in that case the length of this string must be exponentially greater than n and
it contradicts the fact that the reduction is polynomial. On the other hand, if s can be reduced to a string
with smaller length, its length is exponentially smaller; thus, we can use an exponential time algorithm for
the new problem, and It solves the first problem in L' in polynomial time of the input size, and it contradicts
the fact that there is no polynomial time algorithm for deciding L'. The flaw of this argument is that we
are assuming that the hardness of the NPcomplete problem (L') is uniformly distributed. Ladner’s proof is
based on picking a more careful choice of n;’s so that the above statements are not probable but certain.
He used diagonalization method to find these n;’s. The idea is the following: list all polynomial reductions
from L' as Ry, Rs, ... and all polynomial Turing machines M7, M, ..., and then start from string of length
0, and include all strings in L until it contradicts with M7, then exclude all strings in L until it contradicts
the reduction R;, and so on. Actually, this argument was not complete. l

So far, we have seen power of diagonalization. The big question here is ”can it resolve P vs. NP?”
Baker-Gill-Solovay theorem answers this question negatively. To go through this theorem, first, we discuss
relativization, i.e. stuff with oracles.

2-1

2 Relativization

Definition 2 Let C' be a complexity class of languages decidable with TM with some upper bounds on some
resources, and let A be an arbitrary language. Then C4 is the set of languages accepted by oracle TM with
access to oracle A with the same or similar resource bound as a TM in C.

However, in the above definition, the effect of A on a TM in C is not clear, and it is not an exact definition.
It can be restated for the class P and NP more precisely.

Definition 3 P4 is the set of all languages accepted by deterministic polynomial time oracle TM’s with
access to oracle for A.

Definition 4 NP4 is the set of all languages accepted by non-deterministic polynomial time oracle TM’s
with access to oracle for A.

By the Turing machine with access to oracle for A, we mean a TM which has the ordinary input, work,
and output tapes and also the oracle tape. This new tape gets an input and gives the output 0 or 1 that
indicates ifthe input is in A or not.

Proposition 5 If diagonalization shows Cy ¢ Ca, then for every A, C{* ¢ C4'. Roughly speaking, Cy ¢ Ca
relativizes.

Proof Idea If we know C1 ¢ C> using diagonalization, then it means that we can find m € C; as the
universal TM for TM’s in C5 i.e. it can simulate every TM N € (s, then we simulate N and negate the
answer. Now, we can augment these machines into oracle machines and have similar results. In other words,
we have TM m“ € C{! as the universal TM for TM’s in Cj! i.e. it can simulate every TM N4 € C3'; then
we simulate N and negate the answer. Thus, the similar argument shows that C{* ¢ C3'. B

Actually, there are many philosophies behind this proposition and these definitions. In the case of P and
NP all above make sense, but somewhere else we can not use the same arguments.

Theorem 6 (Baker-Gill-Solovay) There ezist oracles A and B such that
1. PA=NP4, and
2. PB £ NP5,

Proof The first part is straightforward. The idea is to take some language that is sufficiently powerful e.g.
PSPACE-complete. Let A be TQBF. Clearly P4 C NP4, For the other direction, as TQBF is PSPACE-
complete, we have

NP“ C NPSPACE = PSPACE C P4 C NP

For the second part, the idea is that non-determinism gives us more powerful access to the oracle, allowing

us to ask more questions than a deterministic TM can.

Definition 7 For any language B, let
L(B) = {z|3w : |z| = |w| and B(w) =1}

One can easily observe that VB : L(B) € NP2, because we can guess w the same length as z, and see if
B(w) = 1. We want to show that there is a B for which L(B) € PZ. In order to do this for all TM’s, first we
can examine how this is done for one. Let M’ € P?. We know that M’ is a polynomail time oracle TM, its
running time is a polynomial p(n) and we can find n such that p(n) < 2". We want to construct B so that
M?P® gives a wrong answer on some string of length n, say 2 = 0", provided M ® runs in time < 2" —1. To
do so, we start simulating M” for an input string .

2-2

e The answer for any query of length n from M? is 0.

e At the end, some w € {0,1}" remians unasked, becuase M’ runs in p(n) and it can ask at most 2" — 1
strings of length n.

e Now, if M7 says “yes, z € LB”, then set B(w) = 0 for every w € {0,1}".
e if M says “no, z ¢ LP”, then B(w) = 1.

In either case, L(MB) # L(B), because MB(0") # (0™ € L(B)) (This part of the proof is from [1]). Now
we need an oracle B such that for all polynomial time oracle TM’s M?, L(M?) # L(B). Suppose M1, Ma, ...
are an enumeration of polynomial time oracle TM’s. We construct a sequence By C B; C ... C B, with
lengths ny < na < ..., such that

1. MPi(0™) # (0™ € L(By)).

2. MPi(0™) = MP(0m).

3. we L(B;) : 0™ € L(B;) & 0™ € L(B).
The construction algorithm is as follows:
1. First let By = 0.

2. Fori=1,2,3,... do

(a) Choose n; such that Vj < i, M f ‘= does not ask about any strings of length n; on input 0%. In
addition, MiB =1 gshould run for fewer than 2" steps on input 0™.

(b) Simulate M; with oracle B; 1 on input 0™. (At this point, B; has no strings of length n,.) This
will answer no to all queries of length n;.

(c) If MZ.B"‘1 accepts, set B; = B;_1. (So M} has accepted 0™, but 0™ ¢ Lpg,).
If M~ rejects, then find 2 such that |z| = n; and M,”"* on input 0™ did not ask z. Then set

B;=B; 1U {.’L’}
Set B = U;’io Bi- [|

Again, notice that the above proof is only true for the special case (P vs. NP), and in general cases there
are other issues that we won’t discuss in this lecture.

One can similarly prove that there exists an oracle B such that NP? # coNP®.

Now, consider this question: why do we use TQBF (a PSPACE-complete) problem for the first part of
BGS theorem? Is an NP-complete problem sufficiently powerful? To answer this question, we should answer
if NPNP = NP? The answer is No. Actually we get a new complexity class that is not known to be equal to
NP. To argue about this question, first we define the following problem.

Definition 8 MINDNF is the language consisting of pairs (¢, k), where ¢ is a DNF formula and k is an
integer such that 3 a DNF formula v such that || < k and v is equivalent to ¢.

Proposition 9 MINDNF is in NPNP .

Proof We can construct a non-deterministic oracle TM using SAT oracle to solve MINDNF.
o First guess ¢ of length < k.

e Ask SAT oracle if there exists an assignment x such that ¥ (z) # ¢(x).

2-3

config 0
et - @\T
(=)
' Plﬁ 0 0

tree formula

reject

0
Q-

leaves (= final states) leaves (= final states)

Figure 1: The computation tree of an ATM and corresponding circuit configuration

e Accept if oracle says No, otherwise reject.

This TM decides the MINDNF problem, and from the existence of this oracle TM, we can conclude
MinDNF e NP"*. H

Similarly, one can prove that co-NPC NPNY. Notice that MINDNF has one 3 quantifier. Let’s investigate
the case that there are more quantifiers.

3 Alternation

In the definition of non-deterministic TM, one way to think about it is a normal TM which has ”existential
states” (3). The converse of TM with Existential states is one with Universal (V) states. At each node, the
machine can be thought of as spinning off two parallel actions and taking both paths at the same time. The
machine accepts if all of its branches end in the accept state.

We can now consider machines with both Existential and Universal states. They are called Alternating
Turing Machines (ATM).

Definition 10 The Alternating Turing Machine (ATM) is a TM with two special states 3 and V. Compu-
tation accepts after entering

e 1, if at least one of the outgoing edges lead to accept.

o VYV, if ALL of outgoing edges lead to accept.

Figure 3 illustrates one ATM.

Similar to TM’s, main resources for the ATM’s are TIME and SPACE, but the other resource for them is
Alternation i.e. # times we alternate from 3 to V and vice-versa. More precisely, for machine M and input
z, TIME is the deepest path you can find in the tree. SPACE is maximum space on paths. Alternation is
maximum # of alternations along the paths.

According to these resources, we can define general complexity classes as follows:

Definition 11

ATSPJa, t,s] = class of all languages decided by ATM with a(n) alternation, t(n) time, and s(n) space.
In particular, ATIME (t) = Uy,,s AT SPJa,t,s] and ASPACE(s) = Uy, sATSP]a,t, s].

We have the following facts:

o ATIME(poly)=PSPACE

2-4

e ASPACE(poly)=EXPTIME

The interesting point is that alternation increases the computation power and also change TIME and SPACE
in these cases.

Definition 12
NP = ATSP[1, poly, poly], with condition starting 3 state

NPNP = vF = ATSP[2, poly, poly], with condition starting 3 state
¥ = ATSP[i, poly, poly|, with condition starting 3 state

and similarly,
Hf = ATSP[i, poly, poly], with condition starting ¥ state

In the next lecture, we will study more about relations between these complexity classes.

References

[1] LECTURER: DAN SPIELMAN, SCRIBE: EDWARD EARLY, 6.841/18.405J Advanced Complexity The-
ory: Lecture 6, Feb. 27, 2001.

2-5

