6.841/18.405J: Advanced Complexity Theory February 20, 2002

Lecture 05

Lecturer: Madhu Sudan Scribe: Seth Gilbert
Contents
1 Collapse of the Polynomial Hierarchy 05-1

We believe this hypothesis does not hold, and base many other proofs on this assumptions. 05-1
2 Circuit Complexity (Non-Uniform Complexity) 05-2

This is a new model of computation, which is somewhat different. We examine a new way

of bounding resources: non-uniformity. 05-2

3 Karp-Lipton Theorem 05-5

This theorem relates the circuit complexity model to the collapse of the polynomial hierarchy.05-5

1 Collapse of the Polynomial Hierarchy

What does the polynomial hierarchy look like?

It is an infinite tower of increasing complexity, with each level of the hierarchy nested inside the
next level of the hierarchy.

e That is, ¥¥ C ¥¥ | and X CII?

¢ And similarly, I C X%, and II? C IT}

Each level of the hierarchy contains a complete problem.

In particular, for the i** level of the hierarchy, i-TQBF is complete. The subset of i-TQBF whose
first quantifier is 3, is complete for ¥¥, and the subset whose first quantifier is V is complete for II}.

Collapse

By collapse of the polynomial hierarchy, we mean that the entire hierarchy collapses to a finite level.
That is, Vi > i, ¥ = X¥. (The same is true for IT{.) Note that this does not imply anything about
levels of the hierarchy below the collapse point.

Theorem 1 The polynomial hierarchy collapses if and only if the existential and the forall hierar-
chies are equal. That is:

=0 < X} =X%1,Vj>i

These versions of collapse may seem slightly different, as one is a horizontal collapse, and the other
is a vertical collapse. But in fact they are equivalent.

Proof Once the incremental case comparing ¢ and ¢ + 1 is proved, it is clear by induction that
it holds for the entire hierarchy (above that point) collapsing. That is, we only prove here that if
P =17, then £¥ , (and the converse), and the rest follows by induction.

05-1

Lemma 2 II? C ¥ — II? = %P

Proof If we can show inclusion in one direction, then the two classes are equal. This is true
because the two classes are complementary.

Lell? <= L e€%? (because they are complements)
VLe¥? — L €ZX? (by the inclusion hypothesis)
— Xrcrm?

First, assume that the polynomial hierarchy collapses at level i. That is, ¥¥ = %7 ;. Since
I} = %7, ,, this clearly implies that ¥} = TI7.

(3

Next, assume X7 = TI?. Start with (i + 1)-TQBF, a complete problem for ¥ ;. We will show
how to solve this in X¥. Define:

L' = {(¢,z1)|Ve23z3 - - - QiprZi1, P(1, T2, T3, . . . , Tiy1) = 1}

That is, L' is the language of (i+1)-TQBF problems and z;’s that allow the TQBF to be true. It is
clear that L' C II? C ¥?, as the first quantifier is a V, and there are only ¢ alternations.. Therefore,
we can construct another language (say L") that is in X¥. In particular:

L' < {31 Vy2 - - Qiwis ¥ (Y1, y2,- - - ,¥i)}

This ¢4, is constructed so that (¢,z) € L' <= 1 € i — TQBF. The following is the procedure
to decide the (i + 1)-TQBF in X%.

1. Guess z;

Compute (4 4,)

Guess y1

ForAll y, Guess ys3 ...
Verify ¥ (y1,.--,y;) =1

Note that steps (1-3) involve only a single 3 quantifier. That is, only a single alternation. And
the rest of the y; require only ¢ — 1 alternations. Therefore we can solve (i + 1)-TQBF with only %
alternations, that is, in ¥, which proves that ¥ = %7 ,. H

oo

Note that this only holds for i > 0 This proof generally indicates that the ability to switch
qualifiers is powerful and carries up the hierarchy, once equivalence is found at any level.

It hasn’t been proven that the polynomial hierarchy does not collapse, but we generally believe
that it does not collapse. We often therefore assume that the polynomial hierarchy does not collapse,
and use this to prove other theorems. This is a strong assumption, however it allows us to reduce
many of our conjectures to a single assumption. We will see some conjectures supported by this
assumption later.

2 Circuit Complexity (Non-Uniform Complexity)

Circuit complexity is slightly different, but essentially the same technically as non-uniform complex-
ity. It provides a new approach to the problem of P # NP.

05-2

Circuits

Circuits are a model of computation with a fixed number of input bits. A Turing Machine works as
follows:

1. Design algorithm.
2. Decide input to algorithm.
A circuit works as follows:
1. Decide length of input, n
2. Design algorithm to solve problems of length n

3. Decide input to algorithm (of length n)

Formally

A circuit is a directed, acyclic graph.

3 types of nodes:

1. input: z1,... ,z,
2. output: 01,...,0p
3. computation: OR, AND, NOT

Each set of nodes is disjoint (for now)

Fan-in: the number of edges going into a node

Node Type | Fan-in
Input 0
Output 1
OR, AND 2
NOT 1

Fan-out: the number of edges leaving a node

Node Type | Fan-out
Output 0
All Others 00

To determine output:

1. Topological sort (linear time)

2. Calculate each level of the tree (linear time)

Circuit computes some function f: {0,1}" — {0,1}".

What resource to measure? Size of circuit = # of gates/nodes

— Sometimes count # of wires/edges, but one measure is quadratic in the other

— If you assume maximum fan-out of two, then at most twice as many wires as nodes

Can compute function in (deterministic) time linear on # of nodes/edges

05-3

e Therefore, size is a good measure of how efficiently a circuit can compute.

What is interesting, however, is not determining how big a circuit is for a particular constant
size. Instead, we want to define a set of functions, parameterized on the input size, n. We want to
examine the size of the smallest circuit that can compute the function for that input. This gives us
something interesting to measure as n gets large. That is, we can study size as a function of n.

Consider a family of boolean functions {f : {0,1}" — {0,1}}52,. How does the smallest circuit
computing f,, grow with n?

This pins down the function once we set n. There is an absolute minimum for each n. This
therefore provides a more concrete and combinatorial approach to examining complexity.

A common example of family circuits: ¢,, the SAT family.

e f, takes as input CNF formula ¢ of length n
o f,=1if and only if ¢ € SAT
If P=NP, the SAT family of circuits will be polynomial sized in n
e Draw TM tableau
e Create boolean formula to implement
So if we prove that f,, has no polynomial sized circuit , then NP # P. Unfortunately, we don’t

know how to do this.

Non-Uniform Complexity
e Modify/enhance TM so that we only worry about length n inputs
e TM may work differently on different length inputs
e TM works as follows:

1. Fix machine M
2. Given length n
3. Determine advice al, ... ,an

— a; used to decide language
— binary strings on {0, 1}P(")
— length of advice polynomial in n
4. Given input z € {0,1}"
5. Run M(z,a,) to decide if € L or not.
Definition 3 P/Poly = {L|
e dM € P
e polynomial p(.)
® {a17 s 7an} s.t. |a1| = p(l)
such that Vr € {0,1}*,2 € L <= M(z,ay|)accepts}

This provides a concrete way of asking how to use input length without defining a particular
model of computation (i.e. circuits).

05-4

Lemma 4 P/Poly = class of functions that have polynomial sized circuits

Proof If there is a known polynomial circuit for a given problem, then design M to calculate the
value of a circuit, and have the advice strings be the circuits for various sized inputs. M using the
advice can then clearly decide the output. Conversely, if we have a TM that can use advice to solve
the problem, create a circuit to simulate the computation on the TM and build the advice into the
circuit.

Lemma 5 Any problem in P has polynomial-sized circuits

Proof Take language L € P decided by algorithm A. The goal is to find C,, = A(z), where
|z| = n. Construct a tableau for the TM’s computation. It is of size p(n) x p(n). For every cell, for
every o contents of the cell, let 2., = 1 if (and only if) the cell has a ¢ on it.

Compute z. , based on Zc;_, o,,Tc;,00, Tei11,05 V0. Thereis clearly a small circuit that will encode
this piece of the TM computation. In this way all the variables can be determined by the circuit. If
Tepinat,oaccepr = 1, aCCEPL, else reject.

This circuit is at most a polynomial size larger than the TM; it blows up no more than p?. (And,
as before, Cooke was able to reduce this to something like nlogn. l

Using this, we can easily see that it is possible to build a polynomial sized circuit that solves the
problem using advice. B

Question: Is P/Poly more powerful than P?
e BPP C P/Poly
e Every unary language (where all strings are of the form 17) is in P/Poly

— Even undecidable unary languages in P /Poly

— There is only one string of a given length, so hardwire the advice string

— There is one advice string per input string, so the advice string indicates whether the
appropriate unary string is in the language

e Every unary language is not in P. (Some unary language are undecidable.)

P/Poly is not contained in P, NP, PSPACE

P/Poly includes undecidable languages

Conclusion: P/Poly is more powerful than P??

Question: Is NP C P/Poly?

Can you give polynomial advice to solve SAT?
Belief: NP ¢ P/Poly We want to relate all our beliefs to a single belief: the polynomial hierarchy
collapse.

05-5

3 Karp-Lipton Theorem
Theorem 6 If NP C P/Poly, then the Polynomial Hierarchy collapses.

Proof For the sake of contradiction, suppose NP C P/Poly. This implies that that we have
M,P,(ay,--. ,a,) such that:

M(¢,a|g|) =1 << ¢ SAT

Goal: Show X%, ; C XP. We need a Turing Machine with i alternations. We can compress M and P,
but we cannot compress all a,, since there are infinitely many advice strings. So we need to figure
out how to generate/encode an infinite sequence of advice strings.

Given ¢ € (i + 1)—TQBF, need to compute right a,, for that ¢.

Definition 7 a, is GOOD if it functions as right advice.

As long as it causes M to compute correctly, it is good, regardless of whether it is the same as the
original a,. That is, M (¢,a,) =1 <= ¢ € SAT, for all ¢ of length n. We can decide this property
efficiently: in the 2nd level of the polynomial hierarchy.

Lemma 8 a, € GOOD can be decided in II5.
Proof We know how to check all ¢ of length n using a forall quantifier (that is, it is in co-NP).
V¢ of length n, M (¢, a,) = “¢p € SAT”

But we know how to check if ¢ € SAT using a single existential quantifier. We just ask an NP
oracle. And we already know that co-NPY¥ =TI5. B

Further, we can then find a, in ¥, since we can use the first existential state to guess the advice
string, and then use the remaining two levels to verify.

Lemma 9 If a, € GOOD is in II}_,, then X7, C X7.
Proof Let i be even. Take an example of (i + 1)—TQBF. We want to decide:
{Y|31 Vs - Qiva1Tizr, Y(z1, T2, . .. ,Tig1}
Given a set of x1, ... ,%,, define ¢ as a function of the last variable of ¢). That is:
o(y) = (21,22, .. ,2i,y)

In order to decide whether ¢ € SAT, we can use the P/Poly machine M, along with the advice a 4.
Given a, € GOOD, we can determine whether ¢ € SAT in deterministic polynomial time.

How do we determine a,,? By the lemma above, we can guess and verify a,, is three alternations.
However, in parallel, we also need to guess and verify x1, ... ,z, using n alternations.

The following is a £¥ machine for deciding if ¢ € (i + 1)-TQBF.

1. Guess a,
2. Guess 1

3. ForAll: a,, is GooD
4. ForAll: z4
5

. Guess z3

05-6

6. Repeat alternating ForAll and Guess

7. ForAll: z;

8. Calculate ¢, given x4, ... ,x; guessed above

9. Calculate in deterministic polynomial time M (¢, a,) and accept if and only if ¢ € SAT.

Notice that this machine uses only 7 alternations. Steps 1-2 use a single 3, and steps 3—4 use a single
V. The guessing and verifying of a,, happen in parallel with guessing and verifying z1,... ,z;. By
using the P/Poly deterministic machine to solve the last SAT problem, we are avoiding one level of
the hierarchy. As a result, this ¥ machine can solve (i + 1)—=TQBF, showing that the polynomial
hierarchy collapses. B

05-7

