6.841/18.405J: Advanced Complexity Theory February 25, 2001

Lecture 06
Lecturer: Madhu Sudan Seribe: Mike Alekhnovich

PS submission suggestions:

- avoid if possible using PDF files. Tex or PS are just fine...

- try to choose a name of the file that can identify yourself. Certainly names like “psl.ps” is not a great
idea at all...

Brief content:
Today we will learn what randomized computation is, will define eight new complexity classes, and see
several interesting randomized algorithms.

1 Randomized Computation

Why do we care about randomized complexity? Well, mostly physisists. It is their beleif that nature is
random and the system always evaluates to increase the entropy. How does this assumption alter our notion
of “physically realizable computing”? As usual, in order to study this resource formally we define a new
complexity class(es) and then try to relate them to earlier defined ones. It doesn’t really matter if they are
physically realizable, as long as it is mathematically definable. However, it appears that this particular one
is realizable, which is very exciting.

1.1 How to define?

In parallel to non-determinism there are two ways to introduce the resource formally:

e As a computation on Turing machine with a special state R which picks randomly between two other
states, and jumps to one of them.

e As acomputation on two input turing machine M (x, y), where z is our “real” input and y is a “random”
string.

We will give the second variant of the definition. Let L be a language and and M be two input turing
machine. Following the terminology of logical proof theory we can define completeness and soundness of M
recognizing L:

e Completeness. This is the minimal probability of M accepting a “true” word that belongs to the
language. Formally
¢ = inf Pr[M(z,y) accepts]
zeL y

e Soundness. This is the maximal probability that M accepts a “wrong” word that is not in the
language. Formally

s = sup Pr[M(z,y) accepts]
gL Y

The case s = 0 is reffered as perfect soundness (no false positives), ¢ = 1 as perfect completeness (no false
negatives). Intuitively one can suggest 4 essentially different patterns of ¢ and s that make the language L
randomly tractable:

-c>s,
-¢c>0,5=0
-c=1,s<1

06-1

-c=1,5=0

They exactly correspond to the four randomized complexity classes (more precisely to the eight classes
because one can bound the time and the space of the computaion).

1.2 Time bounded computation

In this case we require our machine M (-,-) run in time polynomial in z (clearly this implies that we need
only polynomial number of random bits, so we can assume that |y| < |z|?()). According to the four patterns
of s and c the following classes can be defined:

e BPP (¢ = 2, s = §): BPP (stands for bounded error probability polynomial) is a most general

randomized class. We admit our machine do both types of error with bounded probability.
e RP (c= %, s = 0): we admit only one-sided error of rejecting the “true” world.
e coRP (¢ =1, s = 2): the class dual to RP.

e ZPP (¢ =1, s = 2): ZPP (stands for zero-equal probability) is a class of randomized computations
with expected polynomial time.

1). These classes are robust with respect to ¢ and s. As we (probably) will show in the sequel, the particular
choice of these constants doesn’t play any role, we can choose them arbitrarily (as long as we preserve
conditions ¢ = 1, s = 0).

2). Tt is believed that classes P and BPP are very close to each other, it is even conjectured (although we are
still far from proving it) that P = BPP. Sadly, we don’t have a complete problem for BPP (in particular
the natural idea with universal random machine doesn’t seem to work). However this class contains a lot of
other interesting problems.

3). How does ZPP work? Notice that in this case we don’t admit any error, all we require of the machine
is to run on average in polynomial time. It is an exercise to show that ZPP = RP N coRP. A natural
example of a problem in ZPP is primality testing. It is not hard to show that PRIMES € coRP. By a
more sophisticated algorithm due to Adleman and Huang, PRIMES € RP as well. If we run both routins
in parallel then we get a ZPP primality testing algorithm.

1.3 Space bounded computation

So far we have seen polynomially bounded randomized computation. What is our machine M (-, -) is restricted
to run in LOG — SPACE instead? Well, there are four classes: BPL, RL, coRL and ZPL. They are defined
analogously to time bounded classes, there are two catches though.

Catch 1: we should require M run in polynomial time.
Catch 2: in two input model we should provide only one-way access to the second input (the machine

cannot return to previously given random bits).

1.4 Relationships with other classes

The following inclusions that relates randomized complexity with other classes are known:
e RPCNP
e coRP C coNP
e BPPC PH

06-2

e BPP C P/poly

It is open if BPP C NP, however BPP is contained in the higher levels of polynomial hierarchy. Later we
will prove some of these inclusions. Let us now turn to some interesting problems in the defined classes.

1.5 RP and Polynomial Identity Testing

Polynomial over integers is a finite sum

—_— il . i2 . . in
P = E Civig.in " X1 " Ty *ee " T

Ciqig...in

We can define degree of a single variable deg,, (P) as a maximal i for which P contains a term (zf - ...). The
total degree deg(P) of a polynomial P is the maximal sum 4y + 42 + ... + 45, over all non-zero coefficients

Civia...in -

Example. P(z1,z2) = 2?23 + 323 + 473

For this polynomial, deg,, (P) = 3, deg,, (P) = 4 and deg(P) = 5.

Now we define Polynomial Identity (to zero) Testing problem:
Instance: polynomial A : Z" — Z represented as an oracle, an integer d = deg(A).
Question: Jay,...,a, A(ay,...,a,) # 0?

Before we will give a randomized algorithm for this problem let us discuss some applications and conse-
quences. As posed, the problem naturally contains in NP4, In fact, one can show that it doesn’t belong to
P4 thus this oracle separates P4 and RPA.

Example of an application. Let M;; =) cyz be a matriz that contains polynomials as elements. Let
det(M) be its determinant calculated by standard rules (thus det(M) is a polynomial over x). The question
is det(M) =07

We can consider det(M) as an oracle, indeed for any specific value of x we can calculate det(M)(z) by the
Gaussian method. Together with an algorithm for polynomial identity this gives us a randomized algorithm
that solves the problem.

Theorem. Polynomial identity testing € RP.
Proof. We run the following algorithm:

1). Setm = 3d
2). Pick ay, ..., a, independently from {1,...,m}.

3). If A(aq,...,an) # 0 then accept
else reject

The question is why does this algorithm work? The soundness is trivially 0 (if there is no point for which
P # 0, we will never accept.) The completeness is less trivial and appeals to the following useful lemma:

Lemma (Schwartz). Let P(z1,...,2,) be a non-zero polynomial over an arbitrary field and S be a finite

subset of domain of P.Then

d
P P =0] < —.
an DT g tPlan s an) =01 < g

06-3

Proof by induction. If n = 1 then the statement of the lemma is just the classical theorem that degree d
non-zero polynomial cannot have more than d roots. Assume that n > 1 and P(z1,...,%,) is a polynomial
of degree d. Consider a variable z,, let d,, = deg, (P). Let us represent P in the form:

P(z1,...y) = Q(z1, ...,mn_l):cz" + R(x1, .y Tp)

so that deg(Q) < d — d,, and deg, (R) < d,.

Let ay,...,a, be a randomly chosen subset of S. Let g(z,) = P(a1,as2,...,an,,Tn) be the univariate
polynomial that results after we replace each 1, ..., 2,1 with aq,...,a,_1 in P. Clearly degg < d,,. Define
two “bad” events:

E1 . Q(al,...,an_l) = 0
E2 : El /\g(ﬂ)n) =0

Obviously if neither of them happens then P(a4,-...,a,) # 0. Thus we need to estimate the probability of
the event Ey V E3. By the induction hypothesis, Pr[E;] < %. If the event E; does not occure then g can

have at most d,, roots, thus we have Pr[E:] < %"l. Finally

PI‘[El \% EQ] S PI‘[El] + PI‘[EQ] S |;;|,
which finishes the proof.
Now, applying the lemma we get
2
c= Pr [A(ala'"aan) 750] > o
a1,...,an€[1..m] 3

and the theorem follows.

1.6 RL and Undirected S-T Connectivity
At the end we will briefly describe an example of a language in RL. Consider the following

Undirected S-T connectivity (USTCON) problem:
Instance: Undirected graph G.
Question: Is there a path connecting s to t%

We present an algorithm based on the random walk:
For n* steps do
Pick a random neighbor v of u
u:i=v
If u =t then stop and accept

The algorithm runs random walk over the matrix of G for a while. If it reaches ¢, it is clearly connected.
If after a great deal of time it has not succeeded, it rejects.

Despite the innocent simplicity of the algorithm, the analysis is by far not that simple. In fact, for a long
time people had been thinking that USTCON is as complex as STCON, till the following beautiful result was
proved by Aleliunas, Karp, Lipton, Lovasz and Rackoff: For every connected graph with high probability
the random walk will visit each node in O(n?) steps.

06-4

