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1 Introduction

When we introduced the notion of circuits, one of our hopes was to use combinatorial techniques and circuits
to prove that P # N P. We would like to show exponential lower bounds on circuit size for functions in NP,
but the best we have been able to show is exponential lower bounds for constant depth circuits.

Today, we introduce the class ACy and prove a lower bound for the parity function. We do not introduce
the class ACy because of its power but because of the powerful techniques used in the proof (algebraic
techniques and randomization).

2 Circuit depth

We consider circuits with
e NOT gates (unary function),

e OR & AND gates with unbounded fan-in (the gates have an unlimited number of inputs and we take
the OR/AND of all the input bits).

The depth of a circuit is defined as the longest path from input to output. (A circuit is an acyclic graph
so “longest path” is well-defined and efficiently computable)

The size of a circuit is defined as the number of wires; if we are not interested in polynomial factors, it
is also the number of gates in the circuit. We have seen that the circuit size represents non-uniform time
complexity. Circuit depth represents parallel time, i.e. how fast a parallel algorithm can solve a problem.
The unbounded fan-in simulates concurrent reading and writing on shared memory cells.

We define ACy as the class of constant depth, poly-size circuits with unbounded fan-in OR and AND
gates.

3 Parity function
For every n, the parity function is defined as €, : {0,1}" = {0,1}, @(z1...2,) = > z; (mod 2).

Since the OR and AND gates have unbounded fan-in, the OR and AND functions can be computed in
constant time. We will show that this is not the case for the parity function.

Q(1/d)

Theorem 1 If C is a circuit of depth d computing the parity of n bits, then it must have size at least 2™

Note that we are not proving an impossibility result for constant depth circuits. For instance, there exists
an exponential size circuit of depth 2 which computes the parity function by writing @(z; ...z,) in DNF
(disjunctive normal form= an OR of ANDs) form, \/g.z(A;cg Zi--*)- There is also a circuit of depth logn
and size n which computes the parity of n bits. Hence we want to show that we cannot have simultaneously
small size and small depth: the proof will have to consider these two quantities together.

History of this lower bound:

1. Furst, Saxe, Sipser (83) introduce the method of random restrictions. Their theorem is weaker, the
circuit size is superpolynomial in n.
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2. Yao (85) strengthens the theorem with an exponential lower bound using the same technique.
3. Hastad (87) obtains a simpler proof and a stronger exponential lower bound on the size of the circuit.

4. Smolensky (87) proves the theorem by algebraic methods, this is the proof we’ll see today.

4 Polynomials over Zg

4.1 7

We consider Z3 = {—1,0,1} with arithmetic mod 3, where we think of 2 as —1 since —1 = 2 (mod 3).
There are two ways to represent the Boolean world in Z3:

e The obvious one is {0,1} C Zj3,
e The other one is to use the map p:{0,1} — {1, -1}, where p(0) = 1,p(1) = —1.

The map p is linear: Vz € {0,1},p(z) = 1 -2z and Vy € {1,—1},p7(y) = 12;” We can switch from one rep-
resentation to the other by a linear transformation over the inputs and think of a function f : {0,1}" — {0,1}
or f:{1,-1}" = {1, -1} as functions mapping Z% — Zs.

4.2 Polynomials over Zj

Zs is a field: polynomials over Zs are well-behaved. In particular, the Schwartz lemma from the previous
lecture applies: if p : Z§ — Z3 is a non-zero polynomial of degree d, then

d
Pr [p(a) = 0] < 5
alzn 3
Note that the Schwartz lemma does not appear to be all that interesting in Zg: for instance, the polynomial
o3 — 1 is zero for any element of the field. However, we will find it useful since we will encounter polynomials
of total degree one and for such polynomials the lemma guarantees that the polynomial evaluates to non-zero

values on at least 2/3rds of the inputs.

4.3 Examples

The function AND(z; ...z,) : {0,1}" = {0,1} can be computed by the polynomial z; -z5 . ..-z,. Similarly,
OR(z1...zn) =1—[]1 (1 — ;). In each case, the function is computed by a polynomial over Z3 of degree
1 in each variable. This comes from the following fact:

Fact 2 For every f : {0,1}™ — {0,1}, we can find a polynomial q : ZY — Zg3 such that g has degree 1 in
each variable and agrees with f on {0,1}™.

(proof using AND, OR functions or using interpolation)

We have a similar fact for g : {1, —1}" — {1, —1}: g is computed by some polynomial of degree 1 in each
variable. Suppose that g(p(z)) = p(f(z)) and the boolean function f is represented by the polynomial p.
Then g(y) is represented by the polynomial 1 — 2[p (152, 1582 ... [ 1ogm)],

The parity function has a nice formulation in the {1, —1} representation:

n

P:{1,-13" = {1,-1}, Pz .. .2n) = Hx
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5 Proof of the theorem

Proof Idea The main intuition behind the proof are the following insights.

e The degree of a function is a measure of its complexity.

n
i=

e Parity has high degree since @ (1 ...z,) = [[;; =i-
e Circuits in ACy compute low degree functions.

There is a caveat in this reasoning: the functions AND and OR have also degree n and belong to ACy! But
if we delete part of the input to the function, we can represent the rest with a small depth circuit and a small
degree polynomial. We will show that AC, “essentially” computes only small degree polynomials. These
ideas are formalized in the next three lemmas. ll

Lemma 3 If f : {0,1}" — {0,1} is computed by a depth d circuit of size s = 27 ? " then there exist a

set S C {0,1}" of size |S| > 3 - 2" and a polynomial p : Z} — Zs of total degree < (log $)9D such that
p(z) = f(z),Vz € S.

Lemma 4 If there exists a degree D polynomial p : % — Zs such that p(x) = @(z) for allz € S C {0,1}",
then every Boolean function f : S — {0,1} is represented by a polynomial of total degree T + D and of degree
1 in each variable.

Lemma 5 If hi,--- ,hn : S — {0,1} are such that for every f : S — {0,1},3au,--- ,an such that
f= Zj\;l aih;, then N > |S|

Proof of Theorem 1: Proof by contradiction. Suppose there exists a circuit C' of depth d and size

s =20 computing the parity function.

e By Lemma 3, the parity function is computed on S of size |S| > § - 2" by a polynomial of degree
D < (log 5)°(@).

e By Lemma 4, every Boolean function on S is computed by a polynomial of degree § + D <  +

(log 5)°(@,
e Let hi,- - ,hy be all the monomials 2% --- 2% where i; € {0,1} and 3i; < 2 + D. Note that
hi,--- , hy generate all Boolean functions on S, hence by Lemma 5, we must have that N > S| > 2.2,

How many such monomials are there?

34D

N < Z (n) choose how to distribute up to n/2 + D ones in a vector of size n
i
=0
: s+
N <
< 2()+20)
=0 z:%+1
1 2m n . . 2m
N < 2" 4+D-|{— each term ( . | for n/2 <i < n/2+ D is smaller than | —
vn i vn
If we assume that s < 27°/" then % < 1and N < 2.2". This contradicts Lemma 5, hence there

is no such circuit C.
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6 Proofs of lemmas

Proof of Lemma 5:

Note that the set of functions f : S — {0, 1} are members of the vector space Z |35| that contain the “unit”
functions {0, }secs where 6,(y) = 1 if y = = and 0 otherwise. Furthermore the §, functions are linearly
independent of each other. Thus any collection of functions hy,...,hy that generate all the functions f
must have size N > |S|. The following paragraph elaborates further on this proof.

Every function f : S — {0,1} can be viewed as a vector of size |S| over {0,1}. We will ignore most of
these functions and just focus on the &, functions defined above. Consider the |S| x |S| matrix F' whose
zth row is the vector corresponding to the function d,. Note this matrix is simply the identity matrix. Now
suppose there exists functions hq,--- ,hy : S — Z3 such that for every function f : S — {0, 1}, there exists
i, - ,an € Zs. such that f = Efil a; f;. In particular, let o 1, ... ,0q,~ be the multipliers needed to get
the function d,. Let us represent the functions hq,... ,hn as |S| dimensional vectors over Z3 as well, and
consider the N by |S| matrix H whose rows are the vectors hi, ... ,hn. Now let A be the |S| by N matrix
whose rows are indexed by « € S and columns by index ¢ € {1,... , N} and where the entry A, ; = a;;. By
construction, A - H = F! Now we get |S| = rank(F) = rank(A - H) < min{rank(A),rank(H)} < N. R

Proof of Lemma 4: Let S be a subset of {0,1}". Assume that @ : {0,1}" — {0,1} is represented by a
polynomial p : Z} — Zg3 of degree D. Let T' C {1,—1}" be the associated set, T = {p(z)|z € S}. Then
the map pgy : T — {1, -1}, py(1 - - - yn) = [ 11—, vi agrees with the polynomial r(y) =1 —2p (I_Ty) on the
set T. r is a polynomial of total degree D: the hypothesis about the parity function holds in the {1, -1}
representation as well.

Consider a Boolean function f : S — {0,1}. Let g : T — {1,—1} be the associated function which is

represented by a polynomial, i.e. by a summation of monomials. Let {4;} be monomials of total degree less
or equal to n/2 and {B;} be monomials of total degree more than n/2.

Qg =Y aidi+ Y BB

Let C; = H""E; “L (complement of the variables appearing in B;). Then B; - Cj = pgy(21...2,) and in

the {1, —1} representation, B; = Cj - pgy (1 .. . Zn).
Qg = Z%‘Ai +re Zﬂici
i i

g is represented on T by the polynomial @, of total degree at most 7 + D and of degree at most 1 in each
variable (by substituting z7 = 1). Switching back to the {0, 1} representation, we have that the function f
is represented by the polynomial Qf(x) = M of degree § + D on S.
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