6.841/18.405J: Advanced Complexity Theory April 08, 2002

Lecture 14
Instructor: Madhu Sudan Scribe: Dah-Yoh Lim

In this lecture, we will show that IP O PSPACE; together with IP C PSPACE
(proved last lecture), this concludes our prove that IP = PSPACE. Actually, we will first

prove that #P C IP , then introduce straight line programs of polynomials to aid us in
proving IP D PSPACE.

1 #PCIP

Suppose that we have a formula ¢, and we wish to count the number of satisfying assign-
ments, #¢, by setting up an interactive protocol. If the prover claims that #¢ = N, how
can we check it? Using the self reducibility of SAT, we can progress down the self reducibil-
ity tree, and try to verify consistency at every level. Let ¢g denote the formula ¢ with its
first variable set to 0, i.e. ¢g9 = ¢(z1 = 0); likewise, let ¢p1 = ¢(z1 = 1). Say that the prover
tells us that ¢g = Ny and ¢1 = N7. Therefore, the verifier should try to check that #¢ = N
by checking that N = Ny + N1 = (Ngo + No1) + (N1g + N11) and so on, until it reaches the
nodes where all the varibles have been assigned, at which point it can directly check the
prover’s claim by evaluating the formula. The problem is that the tree is exponential, so
the polynomial-timed verifier cannot walk down the whole tree.

The way out of this is to change the logical computations to arithmetic computations,
so that we can somehow combine the checks. This is done by setting up an arithmetic way
of looking at #SAT.

1.1 Arithmetizing SAT

Consider the following correspondence:

Boolean Constructs Arithmetic Polynomials
variables: | z; 2

literals: Ti, T; ziy (1 — 2;)

clauses: | Cp=z; V;V xy P=1—-(1-2)1—-2)(1—z)
formulae: | ¢(z1,...,xn) = A2, C; | Q(z) =112 P(z)

Note:
1. For our purposes, we can think of the arithmetic as done over Z, Z,, or .
2. For a € {0,1}", Q(a) = 1 iff a satisfies ¢.
3. @ is a polynomial of total degree < 3 - m.
4. ##¢ = Dacqo,132Q(a)

14-1

1.2 #SAT € IP

So now, instead of working on the N,s directly (where o € {0,1}), we can work with the
analogous Qs (where a € {0,...,p — 1}); all calculations are done modulo p. We should
think of p as a very large prime (we will determine its value later). This generalizes our

previous self-reducibility tree, a binary one, to a p-nary tree. At the root node we have

def def def

Q)\ = ZJaE{O,l}”Q(a) ; at level one, we have QO = #¢ = EGQ,.--GnG{O,I}Q(07a2’ "'7an)7 Ql =
. def

#¢ = 210.2,...(1716{0,1}Q(la ag, -.., an)7 and in general, Qa = #¢ = Eaz,...anE{O,l}Q(aa ag, .., a'n)-

Suppose the prover claims that Qo = #¢ = N, and it gives Qo = No, Q1 = N1, ...,Qp—1 =
Np_1 to support its claim. Consider the polynomial p(z) = Z,,,.. 4, Q(z, a2, ...,ay), a uni-
variate function of = (the other variables are being summed over); p(z) is still a polynomial
of degree < 3 - m, because it is just a sum of polynomials all of degree < 3 - m.

The protocol starts as follows:

1. The prover gives Q», Qo, @1
2. The verifier verifies that @) < 2™ and rejects if not. The verifier asks for the polyno-
. def
mial p(z) = X,,.. 0, Q(z, a2, ..., ap).
3. The prover responds with h(z) (by sending the coefficients).

4. The verifier verifies that h(z) is of degree < 3 -m, Qo = h(0), @1 = h(1), and
Qx = Qo + Q1(modp); if any one fails, it rejects. Now it picks a random «a € Z, and
sents it to the prover, asking it to prove that the polynomial p(«) as defined would
evaluate to Q.

Recursively:

2j. The verifier is trying to verity that Qb = gcqo,1}»-:Q(b,s), where the vector b =
b1by - - - b; represents the sequence of choices that the verifier made (at random) from

the root to the current node. Now, the verifier asks for the polynomial p(z) def
ESIE{O,l}n—i—IQ(b,.’E,SI).

2j+1. The prover responds with a h(z).

2j+2. The verifier verifies that h(z) is of degree < 3-m and Qv = h(0) + h(1)(modp); if any
one fails, it rejects. Now it picks a random « € Z, and sents it to the prover, asking
it to prove that the polynomial p(«) as defined would evaluate to Qpq.

2n+4. At the end, the verifier can verify directly the claims, since Q5 = @(a), where a is
the vector a = a1a9 - - - ay.

14-2

1.2.1 Proof of Correctness of the protocol

So far, we have only outlined the protocol, without any claims- this allows us to separate
the protocol from its proof.

completeness This is quite obvious as the correct prover can start with the correct value
of #¢, and at all iterations, the prover can send the correct polynomial. Certainly
then, every (local consistency) check that the verifier makes will work out, so it accepts
with probability 1.

soundness Without loss of generality assume that the prover always responds with h(-)
s.t. h(0) +h(1) = Qp at the i-th level, because or else the verifier would have rejected
right away. Also, we assume that Q) # Eae{o,l}nQ(a), i.e. it is a crooked prover that
is trying to prove something that is false to the verifier.

Claim 1 If Q) # Yaco,1}»Q(a) then the inequality holds (mod p) with probability
> % provided that p €g [n?,2n2] or [10mn, 20mn), which ever is larger.

Proof Q) — Xacqo,13»Q(a) has at most n < % prime factors for p in the given
range.lll

Claim 2 Suppose Qp # LsQ(b,s); then, Qp o # T Q(b, a,s') with a certain proba-
bility over a.

Proof p(x) def YeQ(b,a,s’); we know that p(0) + p(1) = X:Q(b,s) # Qb =
h(0) + h(1), i.e. p(0) + p(1) # h(0) + h(1), so p(-) # h(-). Since they are polynomials
of degree < 3 -m, by the Schwartz lemma we have that for random «, p(a) # h(«)
with probability 1—377”. In each iteration, the prover has probability 37m of getting away
with lying; by the union bound the probability that the prover successfully cheats the
verifier is < Ban < 13—0.-

Combining the above two claims, we see that the soundness is %.

2 Abstracting the Proof

Note that what helped us in the above proof is not some specific features of #P. What we
used is essentially the downward self-reducibility of the language to reduce a complicated
property to a collection of progressively less complicated properties. So we could apply the
same idea to all languages in PSPACE (which is exactly the collection of self-reducible
languages). The arithmetization allows us to effectively compress questions down to one
question, without requiring any structure on the questions. Below we look at how we can
extend the compression.

14-3

2.1 Extending Compression: low-degree curves

Suppose that computing Qp(x) involves computing @}, (xo) and Qf (x1), where x¢ and x3
are not related.

Consider lines in an n-dimensonal integer grid: [: F — F* Geometrically a line is... a
line. Algebraically, it is a collection of n functions, each of which is a degree 1 polynomial;
the i-th function gives the i-th coordinate. For any two points x¢ and xj, there is a
line through the two points. In other words, 3l s.t. 1(0) = xo and l; = x3; specifically,
I(t) = (1 —t)xo + tx1.

Since Q' maps F"* to F, the composition of Q' and I, Q' ol : F — F, is a univariate
function. What is nice about this composition is that it preserves degrees: if Q' is of degree
d, Q' ol is of degree < d.

Now, to extend our previous protocol’s capabilities, we change the protocol to:

i. The verifier wants to verify that Q(x) = a. To do so, it generates xg, x1 , and a line
[through the two points. Now it asks the prover for Q' o l.

i+1. The prover responds with a degree d univariate polynomial h.

i+2. The verifier checks that h is a univariate polynomial of degree d and rejects if not.
It checks the local consistency by checking that a = h(0) + h(1). Iff it is locally
consistent, the verifier goes on to verify recursively that h(«) is correct for random a.

Note that as we progress down the tree, the polynomials involved gets simpler- eventually
at the leave nodes the verifier will be powerful enough to check the much simpler condition
by itself.

2.2 Straight line programs of polynomials

The above extension motivates the following definitions.

Definition 3 py, ...,pr is an (n,d,L,w)-straight line program of polynomials if:
1. Ewvery p; is on at most n variables.

Every p; is of degree at most d.

po 1s easy to evaluate (i.e. computable in polynomial time)

p;i 18 easy to evaluate given oracle access to p;—1 (i.e. there is a polynomial time
algorithm A that, given i,x and an oracle for p;—1 can compute p;(x) making at most
w non-adaptive queries to p;; w is the “width” of the straigt line program).

Definition 4 Polynomial straight line program satisfaction is the language whose members
are (< po, .-, PL >,X,@) s.t. pr(x) = «, where x € Z", a € Z, and < py,...,pr, > is an
(n,d, L,w)-straigt line program of polynomials.

Lemma 5 Polynomial straight line program satisfaction € IP for w = 2.

Proof The rough idea is as follows:

14-4

e The verifier picks a random prime p = poly(n,d, L,log||z||) and sends it to the prover.
Set ar, <+ a and z, < x.

e For i = L — 1 downto 0 do:

- Let (x0); and (x1); be queries of A on input ¢ + 1, (x);+1. Let I; b ethe line
through (xg); and (x1);. The verifier asks the prover for p; o [;.
- The prover responds with A;.

- The verifier verifies that A’s answer on oracle values h(0) and h(1) is a;4+1 and
rejects if not. It picks a random « € Z, and sets x; < l;(«) and a; < hi().

At the end the verifier verifies that hy(a) = po(lp(r)). HE

Lemma 6 Polynomial straight line program satisfaction is PSPACE complete.

Proof The basic idea is as follows:

e We fix a PSPACE machine M taking s space with input x. Let f;(a,b) be polyno-
mials that have configurations of M (namely a and b, from {0, 1}*) as its inputs, s.t.
fi(a,b) = 1 if configuration a yields configuration b in (exactly) 2¢ steps; fi(a,b) =0
otherwise. Notice that fy is a constant degree polynomial of degree C = O(1) in each
variable.

e fiy1(a,b) = Xceqo,13s fi(a, €)- fi(c, b) is also a polynomial of degree C' in each variable.

Unfortunately in the above, w # 2; but we can fix that by doing summation “slowly”- we
define a longer sequence:

® gi = gis = fi-

gi0 (aa ba C) = gi—l,s(a, C) *Gi—1,s (C, b)

gij(a,b,c) = g; j_1(a,b,c0) + g; j_1(a, b,cl), where c € Z57.

e g has degree at most C in the variables of a, b, and at most 2C in the variables of c.

Then, we have a sequence of width w = 2, as required: g, 910, 911, ---» 15, G205 ---, gss- L here-
fore PSPACE completeness follows. Il

We have shown that a PSP AC E-complete problem, (Polynomial straight line program
satisfaction), has an I P, implying that PSPACE C IP. Actually, we can further generalize
the line arguments even “wider”, for w > 2. We will leave this as an exercise- this will give
a direct proof that the permanent has an interactive proof, where the prover only needs to
be able to compute the permanent.

14-5

