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Recall PCP.[r,q]
e Verifier tosses r(n) coins.
e Queries the proof oracle with g(n) bits.
e Completeness ¢(n). Omit if ¢ = 1.
e Soundness s(n). Zero subscripts means ¢ =1 and s = %

Last time NP =PCP., [O(logn),3] [Héstad]

Proposition 1 NP = PCP%+E[O(log n),3] = MaxSAT is hard to approzimate to within % +€.

MaxSAT is the problem of satisfying as many clauses as possible.
Today A weaker statement: NP C PCP, 1 [poly log, poly log]

1. Set up an algebraic promise problem (GapPCS).
2. Show it is NP-hard (similar to IP=PSPACE proof).

3. Give a PCP verifier for this problem.

Constraint Satisfaction Problems
Z1,... , %, (variables)
C1,--- ¢ (constraints)
Find an assignment to the n variables such that all (or many) of the constraints are satisfied.

Ezamples:
1. 3SAT. z; boolean. ¢; = x;, V xi, V Ty, -

2. 3COL. z; tertiary (colors). ¢; = “z;;, # xj,

Polynomial Constraint Satisfaction Problems
F'is a field and |F|™ = n. Also, have a degree parameter d and |F'| > d.
In 3SAT, an assignment A : [n] — {0,1}.
Here, assignments will be functions f : F™ — F. Variables will be vectors in F'™.
Constraints will be ¢; = (4;,2, 28, ... ,mg)). A; is an algebraic circuit F* — F.
A constraint ¢; is satisfied by f if A;(f(z\), f(@), ..., f=)) = 0.

GapPCS
We define a promise problem based on the polynomial constraint satisfaction problem.

e YES instances: 3f : F™ — F that satisfies all constraints and f is a degree d polynomial.

e NO instances: Yf : F™ — F that are of degree d, at least 90% of constraints are unsatisfied by f.

16-1



Hardness of GapPCS
To show that GapPCS is NP-hard, we reduce SAT on N variables to GapPCS in time |F|™ with:

o k,d= (logN)?

log N
e m2> loglog N

o |F| ~ (log N)'
ot |F|™
Then the reduction is done in polynomial time in N:

|F|m — ((IOgN)IO)% — 2% — 21010gN — N10

PCP Verifier for GapPCS

1. Expect to be given a proof oracle f : F™ — F.

[\S]

. Verifier tests that f is close to some degree d polynomial p : F™ — F' (low degree testing).
3. Build an oracle computing p : F™ — F” from oracle for f : F™ — F (self correction).

4. Pick random j and verify ¢; is satisfied by p (not f).

We note that

e Self correction can be done in time poly(m, d)
(Contrast with the number of coefficients of p: (%)m < # coeffs < d™)

e Low degree testing can also be done in time poly(m, d).

e To verify c;, the verifier needs to make polylog IV queries.

e We need logt random bits to select j, for low degree testing, we need O(mlog|F'|) = O(logn) bits,
and for self correction, we need m log|F| bits. This shows that the verifier uses O(log N) random bits.

Self Correction

e Given oracle f : ™™ — F' such that there exists a polynomial p : F™ — F of degree d and

Pr{f(z) # pla)] < 5

e Also given a € F™

e Compute p(a). For all a, should be computing p(a) correctly with high probability over internal
randomness. We cannot just use f(a) as for some fraction of a, f(a) may be incorrect.

Algorithm
1. Pick r eg F™.
2. Take the line I(t) = (1 — t)a + tr and we’ll look at p along this line.

3. Let 1,79, ... ,7441 be distinct and non-zero elements from F'. These do not need to be random.
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4. Compute coefficients of h : F' — F of degree d such that h(r;) = f(I(7))-
5. Output h(0).
Claim 2 Self correction outputs p(a) with probability > 1 — (d + 1)4.

Proof I(r;) is a random point in F™ over random choice of r for all non-zero ;.

Pr(f(i(r:)) # p(U(ri))] <0
By the union bound,
Pri3i € {L,...,d+ 1}f(i(r)) # p((7))] < (d+1)d

If the above event does not occur, then for all 4, h(7;) = f(I(7:)) = p(l(7)).
So with probability 1 — (d + 1)d, h = p|; and h(0) = p(I(0)) = p(a). K

The above is due to [Beaver, Feigenbaum] and [Lipton].
They were interested in how to compute a function f(a) without revealing a.

Low Degree Testing
e Given oracle f : F™ — F
e Completeness: if f = p of degree d, then must accept with probability 1.

e Soundness: if Vp of degree d,

Pr[f(z) # p(x)] > § = must reject with high probability
xz

Algorithm
1. Repeat many times

(a) Pick a €g F™ at random.
(b) Use the self correction algorithm to find p(a) and verify p(a) = f(a).

Theorem 3 (Rubinfeld-Sudan, ALMSS) Soundness of above algorithm. 30y such that if f is 6-far from
any polynomial p then f is rejected with probability mz’n{%,&)}.

[Rubinfeld, Sudan] showed & = O(3) and [ALMSS] showed that 6, = 1073.
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