6.841/18.405J: Advanced Complexity Theory April 24, 2002

Lecture 18
Lecturer: Madhu Sudan Seribe: Nitin Thaper

Today
e A high level view of NP C PCP[poly log, O(1)]

Our main goal will be to look at ways of reducing the number of queries down to a constant.

1 A p-prover l-round proof system

A p-prover, 1-round proof system consists of a verifier, tossing R private coins and asking 1 question each
from p provers. At the end of the protocol, the verifier returns Verdict(R, a1, a2, ... ,ap) = accept/reject.

Figure 1: A p-prover, 1-round proof system

We have seen such a model in the context of MIP earlier but today we shall say something stronger about
it.

Theorem 1 33-prover proof system for NP where
o verifier V tosses logn coins
* |ai| = O(polylogn)
e Completeness = 1, Soundness = 0.1 (arbitrarily small)

We shall assume this result for the remainder of the lecture (Proving it is part of your problem set)

2 Reducing # queries down further

Observe that asking the question: Is Verdict(R, a1, a2,a3) = accept ?
is equivalent to creating a poly log n sized circuit, Cg(a1,as,a3) and asking: Does Cr(a1, a2, as3) accept ?

Now in order to reduce the number of queries, intuitively, we would like the provers to commit to their

answers, not necessarily reveal them. Then we can run a NP protocol with another set of 3 provers to check
if Cr(a1,as,as3) is true.

18-1

Figure 2: A 6-prover, 1 round protocol for NP. Provers Py, P», P3 just return a single, encoded bit.

Without giving a formal proof, we claim that this 6-prover protocol is sufficient for any NP problem. Observe
that this protocol lets us trade off a constant number of provers with an exponential decrease in the number
of query bits. More formally, we’ve just argued that:

NP C MIP[3(provers),logn(randombits),logn(queries)]
C MIPI[6(provers),logn(randombits),loglog n(queries)]

This process can be repeated again and again to reduce the number of queries to loglog...logn. This
is still not a constant though! In order to get O(1) queries we have to be clever by trading off random coin
tosses against queries.

3 Is NP C PCPJpoly n, O(1)] ?

We shall look at a somewhat orthogonal issue now, namely, is it possible to get a constant number of queries
even if we were allowed polynomially many coin tosses. If the answer were yes, we might expect to put
together things such that we got our desired result of proving NP C PCP[log,0(1)].

As usual we’ll look at the SAT problem. Consider ¢ € SAT and let 7 be the proof string.

3.1 Structure of 7
Observe that each clause C; € ¥ can be viewed as a degree 3 polynomial, p; over F», such that
pi = 0 & (s satisfied

For example, Cy = 1 V T2 V x3 corresponds to the polynomial, p; (z1, %2, x3) = (1 — z1)z2(1 — z3). We can
derive such a correspondence for all the m clauses.

Given some satisfying assignment a, the honest prover writes down the value of p(a) for every polynomial
of degree 3. Since there are O(n®) possible coefficents, there are 20(n®) possible polynomials.
Thus, || = 20(7"),

18-2

An arbitrary prover, on the other hand, just writes down some function of the polynomials {F[p]},.

The verifier needs to make sure that:
1. pj(a) =0,Vj=1.m
2. Ja s.t. F(p) = p(a)Vp

3.2 Doing Step 1 using constant queries

In order to verify that all clauses are satisfied we need to sonehow combine their corresponding polynomials
into a single one, so that a single query reveals the answer with high confidence. A simple sum of all the
polynomials wouldn’t work since an even number of unsatisfied clauses would still fool the verifier. Instead
we do the following:

Pick r1,72,... ,7m €r 0,1 and consider the polynomial
pe(@) = rip;(a)
J
Observe that this corresponds to taking the sum of a random subset of the polynomials p1,p2,... ,pm.

Check if:

Flp,] = 0 1)

Repeat this test a few times to get good confidence.

What if the prover is malicious ? In other words, F'(p) usually equals p(a) but not on a small subset. Han-
dling this problem is somewhat analogous to self-correction. We’ll use the F'(p) oracle to get an oracle for p(a).

Given: Oracle F s.t. Ja s.t. for most p (all but a § fraction) F(p) = p(a).
Q, a polynomial of degree 3
Goal: Q(a)
Observe that Q(a) = (P + Q)(a) — P(a).
So pick P at random (using O(n?®) random bits) and return
Q(a) = F[P+ Q] - F[P]
It’s not hard to see that Q(a) is right with probability at least 1 — 24.

Thus in equation (1), the verifier should actually be checking F[P + p.] — F[P] instead of F[py].

3.3 Doing Step 2 using constant queries

Given: Oracle F.
Goal: Does Ja s.t. Prp[Fp] =p(a)] >1-46

Idea: Use linearity.
Pick P,Q at random. If F[P+Q] = F[P] + F[Q] then

3&,’ E]b“ Hcijk s.t. F[P] = Zpi]‘kcz’jk

18-3

Note that s
#possible F’s = 22"
while,
#possible ¢y, = on’

Phase 2: Use multiplication.
The polynomials can be partitioned into three classes depending on their degree.

a b. G

i J

F F F
1 2 3

Figure 3: Proof 7 partitioned into polynomials of different degrees

Pick at random L;, Lo of degree 1, @ of degree 2. Test if Fy[L1]Fi[L2] = F>[Q + L1 Ls] — F2[Q)].
Similarly test for degree 3 polynomials by picking Ly € Fy, Ly € F5.

Overall, by reading ~ 19 = O(1) bits from the proof we are still able to get a non-zero probability of detecting

cheating. We will not formally prove the corectness of this procedure but a result due to Blum, Ruby and
Rubinfeld shows that this is indeed the case.

18-4

